Abstract

We demonstrate a high-power, dual-polarization Yb-fiber oscillator, by separately locking the two linear polarization states defined by slow and fast axis of a polarization-maintaining gain fiber with volume Bragg gratings. Dual-line lasing is achieved with a tunable wavelength separation from 0.03 to 2 THz, while exceeding output powers of 78 W over the entire tuning range, maintaining a high beam-quality with M2<1.2. With this laser configuration we achieve a peak-to-peak power variation of <1% for the dual-line signal and <3% for the individual signals.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Single- and dual-wavelength switchable linear polarized Yb3+-doped double-clad fiber laser

Guanxiu Liu and Dejun Feng
Appl. Opt. 54(14) 4309-4312 (2015)

Tunable dual-comb from an all-polarization-maintaining single-cavity dual-color Yb:fiber laser

Jakob Fellinger, Aline S. Mayer, Georg Winkler, Wilfrid Grosinger, Gar-Wing Truong, Stefan Droste, Chen Li, Christoph M. Heyl, Ingmar Hartl, and Oliver H. Heckl
Opt. Express 27(20) 28062-28074 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
    [Crossref] [PubMed]
  2. Z. Luo, Z. Yuan, Y. Pan, and C. Du, “Simultaneous imaging of cortical hemodynamics and blood oxygenation change during cerebral ischemia using dual-wavelength laser speckle contrast imaging,” Opt. Lett. 34(9), 1480–1482 (2009).
    [Crossref] [PubMed]
  3. L. Chen, Z. Wang, S. Zhuang, H. Yu, Y. Zhao, L. Guo, and X. Xu, “Dual-wavelength Nd:YAG crystal laser at 1074 and 1112 nm,” Opt. Lett. 36(13), 2554–2556 (2011).
    [Crossref] [PubMed]
  4. A. J. Seeds and K. J. Williams, “Microwave photonics,” J. Lightwave Technol. 24(12), 4628–4641 (2006).
    [Crossref]
  5. Y. Ding, “Progress in terahertz sources based on difference-frequency generation [Invited],” J. Opt. Soc. Am. B 31(11), 2696–2711 (2014).
    [Crossref]
  6. M. Tang, H. Minamide, Y. Wang, T. Notake, S. Ohno, and H. Ito, “Tunable Terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser,” Opt. Express 19(2), 779–786 (2011).
    [Crossref] [PubMed]
  7. M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S. P. Han, C. W. Lee, Y. A. Leem, D. S. Yee, H. S. Chun, and K. H. Park, “Widely tunable dual-wavelength Er3+-doped fiber laser for tunable continuous-wave terahertz radiation,” Opt. Express 18(12), 12291–12297 (2010).
    [Crossref] [PubMed]
  8. S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro- and THz-waves at 1.5 μm by dual-frequency Er:Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
    [Crossref]
  9. F. Wang, D. Shen, D. Fan, and Q. Lu, “Widely tunable dual-wavelength operation of a high-power Tm:fiber laser using volume Bragg gratings,” Opt. Lett. 35(14), 2388–2390 (2010).
    [Crossref] [PubMed]
  10. J. Liu, D. Shen, H. Huang, T. Zhao, X. Zhang, and D. Fan, “High-power, stable dual-wavelength tunable Er:Yb fiber laser using volume Bragg gratings,” Appl. Phys. Express 7(3), 032702 (2014).
    [Crossref]
  11. S. Feng, O. Xu, S. Lu, X. Mao, T. Ning, and S. Jian, “Single-polarization, switchable dual-wavelength erbium-doped fiber laser with two polarization-maintaining fiber Bragg gratings,” Opt. Express 16(16), 11830–11835 (2008).
    [Crossref] [PubMed]
  12. W. Liu, M. Jiang, D. Chen, and S. He, “Dual-wavelength single-longitudinal-mode polarization-maintaining fiber laser and its application in microwave generation,” J. Lightwave Technol. 27(20), 4455–4459 (2009).
    [Crossref]
  13. P. Zeil, V. Pasiskevicius, and F. Laurell, “Efficient spectral control and tuning of a high-power narrow-linewidth Yb-doped fiber laser using a transversely chirped volume Bragg grating,” Opt. Express 21(4), 4027–4035 (2013).
    [Crossref] [PubMed]
  14. J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
    [Crossref]

2014 (2)

Y. Ding, “Progress in terahertz sources based on difference-frequency generation [Invited],” J. Opt. Soc. Am. B 31(11), 2696–2711 (2014).
[Crossref]

J. Liu, D. Shen, H. Huang, T. Zhao, X. Zhang, and D. Fan, “High-power, stable dual-wavelength tunable Er:Yb fiber laser using volume Bragg gratings,” Appl. Phys. Express 7(3), 032702 (2014).
[Crossref]

2013 (1)

2011 (2)

2010 (2)

2009 (2)

2008 (2)

S. Feng, O. Xu, S. Lu, X. Mao, T. Ning, and S. Jian, “Single-polarization, switchable dual-wavelength erbium-doped fiber laser with two polarization-maintaining fiber Bragg gratings,” Opt. Express 16(16), 11830–11835 (2008).
[Crossref] [PubMed]

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[Crossref]

2007 (1)

2006 (1)

2001 (1)

S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro- and THz-waves at 1.5 μm by dual-frequency Er:Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
[Crossref]

Cattaneo, S.

S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro- and THz-waves at 1.5 μm by dual-frequency Er:Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
[Crossref]

Charrière, F.

Chen, D.

Chen, L.

Chun, H. S.

Colomb, T.

Cuche, E.

Della Valle, G.

S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro- and THz-waves at 1.5 μm by dual-frequency Er:Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
[Crossref]

Depeursinge, C.

Ding, Y.

Du, C.

Emery, Y.

Fan, D.

J. Liu, D. Shen, H. Huang, T. Zhao, X. Zhang, and D. Fan, “High-power, stable dual-wavelength tunable Er:Yb fiber laser using volume Bragg gratings,” Appl. Phys. Express 7(3), 032702 (2014).
[Crossref]

F. Wang, D. Shen, D. Fan, and Q. Lu, “Widely tunable dual-wavelength operation of a high-power Tm:fiber laser using volume Bragg gratings,” Opt. Lett. 35(14), 2388–2390 (2010).
[Crossref] [PubMed]

Feng, S.

Guo, L.

Han, S. P.

He, S.

Hellström, J. E.

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[Crossref]

Huang, H.

J. Liu, D. Shen, H. Huang, T. Zhao, X. Zhang, and D. Fan, “High-power, stable dual-wavelength tunable Er:Yb fiber laser using volume Bragg gratings,” Appl. Phys. Express 7(3), 032702 (2014).
[Crossref]

Ito, H.

Jacobsson, B.

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[Crossref]

Jeon, M. Y.

Jeong, J. S.

Jian, S.

Jiang, M.

Karlsson, G.

S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro- and THz-waves at 1.5 μm by dual-frequency Er:Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
[Crossref]

Kim, N.

Kühn, J.

Laporta, P.

S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro- and THz-waves at 1.5 μm by dual-frequency Er:Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
[Crossref]

Laurell, F.

P. Zeil, V. Pasiskevicius, and F. Laurell, “Efficient spectral control and tuning of a high-power narrow-linewidth Yb-doped fiber laser using a transversely chirped volume Bragg grating,” Opt. Express 21(4), 4027–4035 (2013).
[Crossref] [PubMed]

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[Crossref]

S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro- and THz-waves at 1.5 μm by dual-frequency Er:Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
[Crossref]

Lee, C. W.

Leem, Y. A.

Liu, J.

J. Liu, D. Shen, H. Huang, T. Zhao, X. Zhang, and D. Fan, “High-power, stable dual-wavelength tunable Er:Yb fiber laser using volume Bragg gratings,” Appl. Phys. Express 7(3), 032702 (2014).
[Crossref]

Liu, W.

Lu, Q.

Lu, S.

Luo, Z.

Mao, X.

Margulis, W.

S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro- and THz-waves at 1.5 μm by dual-frequency Er:Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
[Crossref]

Marquet, P.

Minamide, H.

Montfort, F.

Ning, T.

Notake, T.

Ohno, S.

Pan, Y.

Park, K. H.

Pasiskevicius, V.

P. Zeil, V. Pasiskevicius, and F. Laurell, “Efficient spectral control and tuning of a high-power narrow-linewidth Yb-doped fiber laser using a transversely chirped volume Bragg grating,” Opt. Express 21(4), 4027–4035 (2013).
[Crossref] [PubMed]

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[Crossref]

Seeds, A. J.

Shen, D.

J. Liu, D. Shen, H. Huang, T. Zhao, X. Zhang, and D. Fan, “High-power, stable dual-wavelength tunable Er:Yb fiber laser using volume Bragg gratings,” Appl. Phys. Express 7(3), 032702 (2014).
[Crossref]

F. Wang, D. Shen, D. Fan, and Q. Lu, “Widely tunable dual-wavelength operation of a high-power Tm:fiber laser using volume Bragg gratings,” Opt. Lett. 35(14), 2388–2390 (2010).
[Crossref] [PubMed]

Shin, J.

Sorbello, G.

S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro- and THz-waves at 1.5 μm by dual-frequency Er:Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
[Crossref]

Taccheo, S.

S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro- and THz-waves at 1.5 μm by dual-frequency Er:Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
[Crossref]

Tang, M.

Wang, F.

Wang, Y.

Wang, Z.

Williams, K. J.

Xu, O.

Xu, X.

Yee, D. S.

Yu, H.

Yuan, Z.

Zeil, P.

Zhang, X.

J. Liu, D. Shen, H. Huang, T. Zhao, X. Zhang, and D. Fan, “High-power, stable dual-wavelength tunable Er:Yb fiber laser using volume Bragg gratings,” Appl. Phys. Express 7(3), 032702 (2014).
[Crossref]

Zhao, T.

J. Liu, D. Shen, H. Huang, T. Zhao, X. Zhang, and D. Fan, “High-power, stable dual-wavelength tunable Er:Yb fiber laser using volume Bragg gratings,” Appl. Phys. Express 7(3), 032702 (2014).
[Crossref]

Zhao, Y.

Zhuang, S.

Appl. Phys. Express (1)

J. Liu, D. Shen, H. Huang, T. Zhao, X. Zhang, and D. Fan, “High-power, stable dual-wavelength tunable Er:Yb fiber laser using volume Bragg gratings,” Appl. Phys. Express 7(3), 032702 (2014).
[Crossref]

Electron. Lett. (1)

S. Taccheo, G. Sorbello, G. Della Valle, P. Laporta, G. Karlsson, F. Laurell, W. Margulis, and S. Cattaneo, “Generation of micro- and THz-waves at 1.5 μm by dual-frequency Er:Yb laser,” Electron. Lett. 37(24), 1463–1464 (2001).
[Crossref]

IEEE J. Quantum Electron. (1)

J. E. Hellström, B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Finite beams in reflective volume Bragg gratings: theory and experiments,” IEEE J. Quantum Electron. 44(1), 81–89 (2008).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 High-power dual-polarization laser setup.
Fig. 2
Fig. 2 (a) Slope efficiency measurements for single-line (triangles, circles) and dual-line operation (squares); inset graph depicts maximum dual-line power vs wavelength separation (b) Dual-line laser spectra for different wavelength separations.
Fig. 3
Fig. 3 Spectral (upper graphs) and power (lower graphs) stability for dual-line laser operation at (a) 30 GHz and (b) 2 THz wavelength separations.
Fig. 4
Fig. 4 Polarization extinction ratio measurement for 0.14 THz (left) and 1.5 THz (right).
Fig. 5
Fig. 5 (a) Setup for Single-polarization dual-wavelength laser, (b) power stability measurement for the dual-wavelength lasers with single-polarization and dual-polarization output.

Metrics