Abstract

The first demonstration of grating-coupled long range surface plasmon polaritons in cladded free-standing membrane waveguides is presented. Two different waveguide structures are explored: the first is a gold (Au) stripe embedded in a thin Cytop free-standing membrane, the other being the same structure but with a thin palladium (Pd) over-layer. The waveguides are excited with integrated grating couplers designed for a working wavelength of 1550 nm. The waveguides are characterized by applying a cutback technique with the Au waveguide loss measured as 3.4 dB/mm and the Pd/Au waveguide loss as 57 dB/mm. The wavelength dependency of the weakly reflecting optical cavity is also observed with a free spectral range of ~3.6 nm and a finesse of 2.1.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Grating couplers fabricated by e-beam lithography for long-range surface plasmon waveguides embedded in a fluoropolymer

Zohreh Hirboodvash, Maryam Khodami, Norman R. Fong, Ewa Lisicka-Skrzek, Anthony Olivieri, Howard Northfield, R. Niall Tait, and Pierre Berini
Appl. Opt. 58(11) 2994-3002 (2019)

Grating couplers for broadside input and output coupling of long-range surface plasmons

Chengkun Chen and Pierre Berini
Opt. Express 18(8) 8006-8018 (2010)

Long-range surface plasmon polariton waveguides embedded in fluorinated polymer

Jia Jiang, Claire L. Callender, Sarkis Jacob, Julian P. Noad, Shengrong Chen, John Ballato, and Dennis W. Smith, Jr.
Appl. Opt. 47(21) 3892-3900 (2008)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
    [Crossref]
  2. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
    [Crossref]
  3. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
    [Crossref]
  4. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
  5. P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007).
    [Crossref] [PubMed]
  6. P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons along membrane-supported metal stripes,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1479–1495 (2008).
    [Crossref]
  7. N. R. Fong, P. Berini, and R. N. Tait, “Modeling and design of hydrogen gas sensors based on a membrane-supported surface plasmon waveguide,” Sensor Actuat. Biol. Chem. 161, 285–296 (2012).
  8. N. R. Fong, P. Berini, and R. N. Tait, “Modeling of long range surface plasmon polariton cladded membrane waveguides with integrated grating couplers as hydrogen sensors,” J. Appl. Phys. 117(16), 163108 (2015).
    [Crossref]
  9. H. Fan, R. Buckley, and P. Berini, “Passive long-range surface plasmon-polariton devices in Cytop,” Appl. Opt. 51(10), 1459–1467 (2012).
    [PubMed]
  10. B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multi-channel transmission through a gold strip plasmonic waveguide embedded in Cytop,” IEEE Photon. J. 5(3), 2201811 (2013).
    [Crossref]
  11. H. Fan and P. Berini, “Thermo-optic characterization of long-range surface-plasmon devices in Cytop,” Appl. Opt. 52(2), 162–170 (2013).
    [Crossref] [PubMed]
  12. O. Krupin, H. Asiri, C. Wang, R. N. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21(1), 698–709 (2013).
    [Crossref] [PubMed]
  13. N. R. Fong, P. Berini, and R. N. Tait, “Fabrication of long-range surface plasmon hydrogen sensors on Cytop membranes integrating grating couplers,” J. Vac. Sci. Technol. B 33(2), 021201 (2015).
    [Crossref]
  14. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25(11), 844–846 (2000).
    [Crossref] [PubMed]
  15. T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
    [Crossref]
  16. P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
    [Crossref]

2015 (2)

N. R. Fong, P. Berini, and R. N. Tait, “Modeling of long range surface plasmon polariton cladded membrane waveguides with integrated grating couplers as hydrogen sensors,” J. Appl. Phys. 117(16), 163108 (2015).
[Crossref]

N. R. Fong, P. Berini, and R. N. Tait, “Fabrication of long-range surface plasmon hydrogen sensors on Cytop membranes integrating grating couplers,” J. Vac. Sci. Technol. B 33(2), 021201 (2015).
[Crossref]

2013 (3)

2012 (2)

N. R. Fong, P. Berini, and R. N. Tait, “Modeling and design of hydrogen gas sensors based on a membrane-supported surface plasmon waveguide,” Sensor Actuat. Biol. Chem. 161, 285–296 (2012).

H. Fan, R. Buckley, and P. Berini, “Passive long-range surface plasmon-polariton devices in Cytop,” Appl. Opt. 51(10), 1459–1467 (2012).
[PubMed]

2009 (1)

2008 (1)

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons along membrane-supported metal stripes,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1479–1495 (2008).
[Crossref]

2007 (1)

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007).
[Crossref] [PubMed]

2006 (1)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

2005 (1)

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[Crossref]

2003 (1)

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[Crossref]

2000 (2)

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25(11), 844–846 (2000).
[Crossref] [PubMed]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[Crossref]

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[Crossref]

Asiri, H.

Banan, B.

B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multi-channel transmission through a gold strip plasmonic waveguide embedded in Cytop,” IEEE Photon. J. 5(3), 2201811 (2013).
[Crossref]

Barnes, W. L.

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

Berini, P.

N. R. Fong, P. Berini, and R. N. Tait, “Modeling of long range surface plasmon polariton cladded membrane waveguides with integrated grating couplers as hydrogen sensors,” J. Appl. Phys. 117(16), 163108 (2015).
[Crossref]

N. R. Fong, P. Berini, and R. N. Tait, “Fabrication of long-range surface plasmon hydrogen sensors on Cytop membranes integrating grating couplers,” J. Vac. Sci. Technol. B 33(2), 021201 (2015).
[Crossref]

B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multi-channel transmission through a gold strip plasmonic waveguide embedded in Cytop,” IEEE Photon. J. 5(3), 2201811 (2013).
[Crossref]

H. Fan and P. Berini, “Thermo-optic characterization of long-range surface-plasmon devices in Cytop,” Appl. Opt. 52(2), 162–170 (2013).
[Crossref] [PubMed]

O. Krupin, H. Asiri, C. Wang, R. N. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21(1), 698–709 (2013).
[Crossref] [PubMed]

H. Fan, R. Buckley, and P. Berini, “Passive long-range surface plasmon-polariton devices in Cytop,” Appl. Opt. 51(10), 1459–1467 (2012).
[PubMed]

N. R. Fong, P. Berini, and R. N. Tait, “Modeling and design of hydrogen gas sensors based on a membrane-supported surface plasmon waveguide,” Sensor Actuat. Biol. Chem. 161, 285–296 (2012).

P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons along membrane-supported metal stripes,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1479–1495 (2008).
[Crossref]

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007).
[Crossref] [PubMed]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[Crossref]

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25(11), 844–846 (2000).
[Crossref] [PubMed]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[Crossref]

Berolo, E.

Bozhevolnyi, S. I.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[Crossref]

Buckley, R.

Charbonneau, R.

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons along membrane-supported metal stripes,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1479–1495 (2008).
[Crossref]

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007).
[Crossref] [PubMed]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[Crossref]

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25(11), 844–846 (2000).
[Crossref] [PubMed]

Fan, H.

Fong, N. R.

N. R. Fong, P. Berini, and R. N. Tait, “Fabrication of long-range surface plasmon hydrogen sensors on Cytop membranes integrating grating couplers,” J. Vac. Sci. Technol. B 33(2), 021201 (2015).
[Crossref]

N. R. Fong, P. Berini, and R. N. Tait, “Modeling of long range surface plasmon polariton cladded membrane waveguides with integrated grating couplers as hydrogen sensors,” J. Appl. Phys. 117(16), 163108 (2015).
[Crossref]

N. R. Fong, P. Berini, and R. N. Tait, “Modeling and design of hydrogen gas sensors based on a membrane-supported surface plasmon waveguide,” Sensor Actuat. Biol. Chem. 161, 285–296 (2012).

Hai, M. S.

B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multi-channel transmission through a gold strip plasmonic waveguide embedded in Cytop,” IEEE Photon. J. 5(3), 2201811 (2013).
[Crossref]

Krupin, O.

Lahoud, N.

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons along membrane-supported metal stripes,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1479–1495 (2008).
[Crossref]

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007).
[Crossref] [PubMed]

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[Crossref]

Leosson, K.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[Crossref]

Liboiron-Ladouceur, O.

B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multi-channel transmission through a gold strip plasmonic waveguide embedded in Cytop,” IEEE Photon. J. 5(3), 2201811 (2013).
[Crossref]

Lisicka-Shrzek, E.

Lisicka-Skrzek, E.

B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multi-channel transmission through a gold strip plasmonic waveguide embedded in Cytop,” IEEE Photon. J. 5(3), 2201811 (2013).
[Crossref]

Mattiussi, G.

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[Crossref]

Nikolajsen, T.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[Crossref]

Salakhutdinov, I.

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[Crossref]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[Crossref]

Tait, R. N.

N. R. Fong, P. Berini, and R. N. Tait, “Modeling of long range surface plasmon polariton cladded membrane waveguides with integrated grating couplers as hydrogen sensors,” J. Appl. Phys. 117(16), 163108 (2015).
[Crossref]

N. R. Fong, P. Berini, and R. N. Tait, “Fabrication of long-range surface plasmon hydrogen sensors on Cytop membranes integrating grating couplers,” J. Vac. Sci. Technol. B 33(2), 021201 (2015).
[Crossref]

O. Krupin, H. Asiri, C. Wang, R. N. Tait, and P. Berini, “Biosensing using straight long-range surface plasmon waveguides,” Opt. Express 21(1), 698–709 (2013).
[Crossref] [PubMed]

N. R. Fong, P. Berini, and R. N. Tait, “Modeling and design of hydrogen gas sensors based on a membrane-supported surface plasmon waveguide,” Sensor Actuat. Biol. Chem. 161, 285–296 (2012).

Wang, C.

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. Lett. (1)

T. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon-polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons along membrane-supported metal stripes,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1479–1495 (2008).
[Crossref]

IEEE Photon. J. (1)

B. Banan, M. S. Hai, E. Lisicka-Skrzek, P. Berini, and O. Liboiron-Ladouceur, “Multi-channel transmission through a gold strip plasmonic waveguide embedded in Cytop,” IEEE Photon. J. 5(3), 2201811 (2013).
[Crossref]

J. Appl. Phys. (2)

P. Berini, R. Charbonneau, N. Lahoud, and G. Mattiussi, “Characterization of long-range surface plasmon-polariton waveguides,” J. Appl. Phys. 98(4), 043109 (2005).
[Crossref]

N. R. Fong, P. Berini, and R. N. Tait, “Modeling of long range surface plasmon polariton cladded membrane waveguides with integrated grating couplers as hydrogen sensors,” J. Appl. Phys. 117(16), 163108 (2015).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

W. L. Barnes, “Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. A, Pure Appl. Opt. 8(4), S87–S93 (2006).
[Crossref]

J. Vac. Sci. Technol. B (1)

N. R. Fong, P. Berini, and R. N. Tait, “Fabrication of long-range surface plasmon hydrogen sensors on Cytop membranes integrating grating couplers,” J. Vac. Sci. Technol. B 33(2), 021201 (2015).
[Crossref]

Nano Lett. (1)

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[Crossref]

Phys. Rev. Lett. (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[Crossref]

Sensor Actuat. Biol. Chem. (1)

N. R. Fong, P. Berini, and R. N. Tait, “Modeling and design of hydrogen gas sensors based on a membrane-supported surface plasmon waveguide,” Sensor Actuat. Biol. Chem. 161, 285–296 (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) A cross sectional depiction through the x-y plane with typical dimensions identified (not drawn to scale). (b) y-z plane cross section showing the gratings geometry (c) 3-D depiction of a single waveguide with Pd patch
Fig. 2
Fig. 2 (a) Photograph of a finished 2 inch wafer. (b) Cell view under microscope. The lighter shaded surface is Cytop over silicon while the dark area is the free-standing membrane. Each cell contains four devices, three of which have Pd patches.
Fig. 3
Fig. 3 (a) Curved beam support attached to a micro-positioner with mounted input PM optical fiber. (b) Large range of motion cantilever with ring chuck. (c) Testing assembly with wafer in place.
Fig. 4
Fig. 4 (a) Microscope image of a cutback cell with varying lengths of Au between gratings. (b)-(d) Cutback measurements from three different samples from different portions of the wafer for determining the mode attenuation of the Au-only membrane waveguide.
Fig. 5
Fig. 5 AFM scans of (a) an uncladded Au waveguide and (b) a Pd patch section showing significant topography underneath.
Fig. 6
Fig. 6 Au membrane waveguide mode profiles (Ey) computed via FEM for (a) the intended structure with exact dimensions, and (b) a fabricated structure with asymmetric cladding and topography.
Fig. 7
Fig. 7 Plot of the cutback measurements for the Pd/Au waveguide. Measurements are taken as the difference in insertion loss between the Pd/Au structure and Au-only waveguide, as depicted in the inset.
Fig. 8
Fig. 8 AFM scan over a sample region of a grating showing a curved Cytop infill between the grating bumps along with residue along the Au edges.
Fig. 9
Fig. 9 Measured insertion loss as a function of optical wavelength for a Au only waveguide section. Diagram of the optical cavity formed by the gratings shown in inset.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

I L REF =( CP L IN +CP L OUT )+MP A Au ( L 1 )
I L total =( CP L IN +CP L OUT )+MP A Au ( L 1 L Pd )+MP A Pd ( L Pd )+2CP L Pd
I L total I L REF =MP A Pd ( L Pd )+2CP L Pd MP A Au ( L Pd )
FSR= λ 0 2 / 2 n eff d
F= FSR / FWHM

Metrics