Abstract

Few methods exist that can accurately handle dynamic light scattering in the regime between single and highly multiple scattering. We demonstrate dynamic light scattering Monte Carlo (DLS-MC), a numerical method by which the electric field autocorrelation function may be calculated for arbitrary geometries if the optical properties and particle motion are known or assumed. DLS-MC requires no assumptions regarding the number of scattering events, the final form of the autocorrelation function, or the degree of correlation between scattering events. Furthermore, the method is capable of rapidly determining the effect of particle motion changes on the autocorrelation function in heterogeneous samples. We experimentally validated the method and demonstrated that the simulations match both the expected form and the experimental results. We also demonstrate the perturbation capabilities of the method by calculating the autocorrelation function of flow in a representation of mouse microvasculature and determining the sensitivity to flow changes as a function of depth.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sensitivity of laser speckle contrast imaging to flow perturbations in the cortex

Mitchell A. Davis, Louis Gagnon, David A. Boas, and Andrew K. Dunn
Biomed. Opt. Express 7(3) 759-775 (2016)

Laser light scattering in turbid media Part II: Spatial and temporal analysis of individual scattering orders via Monte Carlo simulation

Edouard Berrocal, David L. Sedarsky, Megan E. Paciaroni, Igor V. Meglinski, and Mark A. Linne
Opt. Express 17(16) 13792-13809 (2009)

Path-length-resolved dynamic light scattering: modeling the transition from single to diffusive scattering

Adam Wax, Changhuei Yang, Ramachandra R. Dasari, and Michael S. Feld
Appl. Opt. 40(24) 4222-4227 (2001)

References

  • View by:
  • |
  • |
  • |

  1. B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover, 2000).
  2. N. Ben-Yosef, “Mass motion as observed by light-beating spectroscopy,” Appl. Phys. Lett. 21, 436 (1972).
    [Crossref]
  3. T. Tanaka and G. B. Benedek, “Measurement of the Velocity of Blood Flow (in vivo) Using a Fiber Optic Catheter and Optical Mixing Spectroscopy,” Appl. Opt. 14, 189–196 (1975).
    [Crossref] [PubMed]
  4. B. Berne and R. Pecora, “Laser light scattering from liquids,” Annu. Rev. Phys. Chem. 25, 233–253 (1974).
    [Crossref]
  5. D. Pine, D. Weitz, J. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51, 2101–2127 (1990).
    [Crossref]
  6. D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” JOSA A 14, 192–215 (1997).
    [Crossref]
  7. D. Bicout and G. Maret, “Multiple light scattering in Taylor-Couette flow,” Phys. A Stat. Mech. its Appl. 210, 87–112 (1994).
    [Crossref]
  8. X.-L. Wu, D. J. Pine, P. M. Chaikin, J. S. Huang, and D. A. Weitz, “Diffusing-wave spectroscopy in a shear flow,” J. Opt. Soc. Am. B 7, 15 (1990).
    [Crossref]
  9. P. Zakharov, A. C. Völker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17, 13904–13917 (2009).
    [Crossref] [PubMed]
  10. D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 25, 2088–2094 (2008).
    [Crossref] [PubMed]
  11. A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
    [Crossref]
  12. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109 (2010).
    [Crossref] [PubMed]
  13. C. Urban and P. Schurtenberger, “Characterization of Turbid Colloidal Suspensions Using Light Scattering Techniques Combined with Cross-Correlation Methods,” J. Colloid Interface Sci. 207, 150–158 (1998).
    [Crossref] [PubMed]
  14. P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31, 3465–3467 (2006).
    [Crossref] [PubMed]
  15. W. V. Meyer, D. S. Cannell, a. E. Smart, T. W. Taylor, and P. Tin, “Multiple-scattering suppression by cross correlation,” Appl. Opt. 36, 7551–7558 (1997).
    [Crossref]
  16. F. F. de Mul, M. H. Koelink, M. L. Kok, P. J. Harmsma, J. Greve, R. Graaff, and J. G. Aarnoudse, “Laser Doppler velocimetry and Monte Carlo simulations on models for blood perfusion in tissue,” Appl. Opt. 34, 6595–6611 (1995).
    [Crossref] [PubMed]
  17. V. Asadpour, M. Miranbeigi, F. Towhidkhah, and M. Khosroshahi, “Laser-Doppler blood-flowmetery modeling by Monte Carlo method,” 2001 Conf. Proc. 23rd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 4, 3252–3254 (2001).
    [Crossref]
  18. R. Bonner and R. Nossal, “Model of laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981).
    [Crossref] [PubMed]
  19. T. Pfefer, J. Kehlet Barton, E. Chan, M. Ducros, B. Sorg, T. Milner, J. Nelson, and A. Welch, “A three-dimensional modular adaptable grid numerical model for light propagation during laser irradiation of skin tissue,” IEEE J. Sel. Top. Quantum Electron. 2, 934–942 (1996).
    [Crossref]
  20. D. A. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–170 (2002).
    [Crossref] [PubMed]
  21. M. A. Davis, S. M. Shams Kazmi, A. Ponticorvo, and A. K. Dunn, “Depth dependence of vascular fluorescence imaging,” Biomed. Opt. Express 2, 3349–3362 (2011).
    [Crossref] [PubMed]
  22. M. A. Davis, S. M. S. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19, 86001 (2014).
    [Crossref]
  23. W. Groop, E. L. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message Passing Interface (MIT Press, 1999).
  24. M. Mascagni and A. Srinivasan, “Algorithm 806: SPRNG: A scalable library for pseudorandom number generation,” ACM Trans. Math. Softw. 26, 436–461 (2000).
    [Crossref]
  25. Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates,” Biomed. Opt. Express 1, 165–175 (2010).
    [Crossref] [PubMed]
  26. E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).
    [Crossref]
  27. C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26, 1335–1337 (2001).
    [Crossref]
  28. S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25, 1463–1465 (2009).
    [Crossref] [PubMed]
  29. A. F. H. McCaslin, B. R. Chen, A. J. Radosevich, B. Cauli, and E. M. C. Hillman, “In vivo 3D morphology of astrocyte-vasculature interactions in the somatosensory cortex: implications for neurovascular coupling,” J. Cereb. blood flow Metab. 31, 795–806 (2011).
    [Crossref]
  30. P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
    [Crossref] [PubMed]
  31. M. Meinke, G. Müller, J. Helfmann, and M. Friebel, “Empirical model functions to calculate hematocrit-dependent optical properties of human blood,” Appl. Opt. 46, 1742–1753 (2007).
    [Crossref] [PubMed]
  32. A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
    [Crossref] [PubMed]

2014 (1)

M. A. Davis, S. M. S. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19, 86001 (2014).
[Crossref]

2011 (2)

A. F. H. McCaslin, B. R. Chen, A. J. Radosevich, B. Cauli, and E. M. C. Hillman, “In vivo 3D morphology of astrocyte-vasculature interactions in the somatosensory cortex: implications for neurovascular coupling,” J. Cereb. blood flow Metab. 31, 795–806 (2011).
[Crossref]

M. A. Davis, S. M. Shams Kazmi, A. Ponticorvo, and A. K. Dunn, “Depth dependence of vascular fluorescence imaging,” Biomed. Opt. Express 2, 3349–3362 (2011).
[Crossref] [PubMed]

2010 (2)

Q. Fang, “Mesh-based Monte Carlo method using fast ray-tracing in Plücker coordinates,” Biomed. Opt. Express 1, 165–175 (2010).
[Crossref] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109 (2010).
[Crossref] [PubMed]

2009 (3)

P. Zakharov, A. C. Völker, M. T. Wyss, F. Haiss, N. Calcinaghi, C. Zunzunegui, A. Buck, F. Scheffold, and B. Weber, “Dynamic laser speckle imaging of cerebral blood flow,” Opt. Express 17, 13904–13917 (2009).
[Crossref] [PubMed]

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
[Crossref] [PubMed]

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25, 1463–1465 (2009).
[Crossref] [PubMed]

2008 (2)

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).
[Crossref]

D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 25, 2088–2094 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

2002 (2)

D. A. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–170 (2002).
[Crossref] [PubMed]

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

2001 (2)

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26, 1335–1337 (2001).
[Crossref]

V. Asadpour, M. Miranbeigi, F. Towhidkhah, and M. Khosroshahi, “Laser-Doppler blood-flowmetery modeling by Monte Carlo method,” 2001 Conf. Proc. 23rd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 4, 3252–3254 (2001).
[Crossref]

2000 (1)

M. Mascagni and A. Srinivasan, “Algorithm 806: SPRNG: A scalable library for pseudorandom number generation,” ACM Trans. Math. Softw. 26, 436–461 (2000).
[Crossref]

1998 (1)

C. Urban and P. Schurtenberger, “Characterization of Turbid Colloidal Suspensions Using Light Scattering Techniques Combined with Cross-Correlation Methods,” J. Colloid Interface Sci. 207, 150–158 (1998).
[Crossref] [PubMed]

1997 (2)

W. V. Meyer, D. S. Cannell, a. E. Smart, T. W. Taylor, and P. Tin, “Multiple-scattering suppression by cross correlation,” Appl. Opt. 36, 7551–7558 (1997).
[Crossref]

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” JOSA A 14, 192–215 (1997).
[Crossref]

1996 (1)

T. Pfefer, J. Kehlet Barton, E. Chan, M. Ducros, B. Sorg, T. Milner, J. Nelson, and A. Welch, “A three-dimensional modular adaptable grid numerical model for light propagation during laser irradiation of skin tissue,” IEEE J. Sel. Top. Quantum Electron. 2, 934–942 (1996).
[Crossref]

1995 (1)

1994 (1)

D. Bicout and G. Maret, “Multiple light scattering in Taylor-Couette flow,” Phys. A Stat. Mech. its Appl. 210, 87–112 (1994).
[Crossref]

1990 (2)

X.-L. Wu, D. J. Pine, P. M. Chaikin, J. S. Huang, and D. A. Weitz, “Diffusing-wave spectroscopy in a shear flow,” J. Opt. Soc. Am. B 7, 15 (1990).
[Crossref]

D. Pine, D. Weitz, J. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51, 2101–2127 (1990).
[Crossref]

1981 (2)

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

R. Bonner and R. Nossal, “Model of laser Doppler measurements of blood flow in tissue,” Appl. Opt. 20, 2097–2107 (1981).
[Crossref] [PubMed]

1975 (1)

1974 (1)

B. Berne and R. Pecora, “Laser light scattering from liquids,” Annu. Rev. Phys. Chem. 25, 233–253 (1974).
[Crossref]

1972 (1)

N. Ben-Yosef, “Mass motion as observed by light-beating spectroscopy,” Appl. Phys. Lett. 21, 436 (1972).
[Crossref]

Aarnoudse, J. G.

Alerstam, E.

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).
[Crossref]

Andersson-Engels, S.

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).
[Crossref]

Asadpour, V.

V. Asadpour, M. Miranbeigi, F. Towhidkhah, and M. Khosroshahi, “Laser-Doppler blood-flowmetery modeling by Monte Carlo method,” 2001 Conf. Proc. 23rd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 4, 3252–3254 (2001).
[Crossref]

Benedek, G. B.

Ben-Yosef, N.

N. Ben-Yosef, “Mass motion as observed by light-beating spectroscopy,” Appl. Phys. Lett. 21, 436 (1972).
[Crossref]

Berne, B.

B. Berne and R. Pecora, “Laser light scattering from liquids,” Annu. Rev. Phys. Chem. 25, 233–253 (1974).
[Crossref]

Berne, B. J.

B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover, 2000).

Bevilacqua, F.

Bicout, D.

D. Bicout and G. Maret, “Multiple light scattering in Taylor-Couette flow,” Phys. A Stat. Mech. its Appl. 210, 87–112 (1994).
[Crossref]

Blinder, P.

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
[Crossref] [PubMed]

Boas, D. A.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109 (2010).
[Crossref] [PubMed]

D. A. Boas, J. Culver, J. Stott, and A. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159–170 (2002).
[Crossref] [PubMed]

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” JOSA A 14, 192–215 (1997).
[Crossref]

Bonner, R.

Briers, J.

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Buck, A.

Calcinaghi, N.

Cannell, D. S.

Cauli, B.

A. F. H. McCaslin, B. R. Chen, A. J. Radosevich, B. Cauli, and E. M. C. Hillman, “In vivo 3D morphology of astrocyte-vasculature interactions in the somatosensory cortex: implications for neurovascular coupling,” J. Cereb. blood flow Metab. 31, 795–806 (2011).
[Crossref]

Chaikin, P. M.

Chan, E.

T. Pfefer, J. Kehlet Barton, E. Chan, M. Ducros, B. Sorg, T. Milner, J. Nelson, and A. Welch, “A three-dimensional modular adaptable grid numerical model for light propagation during laser irradiation of skin tissue,” IEEE J. Sel. Top. Quantum Electron. 2, 934–942 (1996).
[Crossref]

Chen, B. R.

A. F. H. McCaslin, B. R. Chen, A. J. Radosevich, B. Cauli, and E. M. C. Hillman, “In vivo 3D morphology of astrocyte-vasculature interactions in the somatosensory cortex: implications for neurovascular coupling,” J. Cereb. blood flow Metab. 31, 795–806 (2011).
[Crossref]

Culver, J.

Davis, M. A.

M. A. Davis, S. M. S. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19, 86001 (2014).
[Crossref]

M. A. Davis, S. M. Shams Kazmi, A. Ponticorvo, and A. K. Dunn, “Depth dependence of vascular fluorescence imaging,” Biomed. Opt. Express 2, 3349–3362 (2011).
[Crossref] [PubMed]

de Mul, F. F.

Drew, P. J.

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
[Crossref] [PubMed]

Ducros, M.

T. Pfefer, J. Kehlet Barton, E. Chan, M. Ducros, B. Sorg, T. Milner, J. Nelson, and A. Welch, “A three-dimensional modular adaptable grid numerical model for light propagation during laser irradiation of skin tissue,” IEEE J. Sel. Top. Quantum Electron. 2, 934–942 (1996).
[Crossref]

Duncan, D. D.

D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 25, 2088–2094 (2008).
[Crossref] [PubMed]

Dunn, A.

Dunn, A. K.

Fang, Q.

Fercher, A.

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Friebel, M.

Friedman, B.

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
[Crossref] [PubMed]

Graaff, R.

Greve, J.

Groop, W.

W. Groop, E. L. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message Passing Interface (MIT Press, 1999).

Haiss, F.

Harmsma, P. J.

Hayakawa, C. K.

Helfmann, J.

Herbolzheimer, E.

D. Pine, D. Weitz, J. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51, 2101–2127 (1990).
[Crossref]

Hillman, E. M. C.

A. F. H. McCaslin, B. R. Chen, A. J. Radosevich, B. Cauli, and E. M. C. Hillman, “In vivo 3D morphology of astrocyte-vasculature interactions in the somatosensory cortex: implications for neurovascular coupling,” J. Cereb. blood flow Metab. 31, 795–806 (2011).
[Crossref]

Huang, J. S.

Karten, H. J.

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
[Crossref] [PubMed]

Kaufhold, J. P.

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
[Crossref] [PubMed]

Kazmi, S. M. S.

M. A. Davis, S. M. S. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19, 86001 (2014).
[Crossref]

Kehlet Barton, J.

T. Pfefer, J. Kehlet Barton, E. Chan, M. Ducros, B. Sorg, T. Milner, J. Nelson, and A. Welch, “A three-dimensional modular adaptable grid numerical model for light propagation during laser irradiation of skin tissue,” IEEE J. Sel. Top. Quantum Electron. 2, 934–942 (1996).
[Crossref]

Khosroshahi, M.

V. Asadpour, M. Miranbeigi, F. Towhidkhah, and M. Khosroshahi, “Laser-Doppler blood-flowmetery modeling by Monte Carlo method,” 2001 Conf. Proc. 23rd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 4, 3252–3254 (2001).
[Crossref]

Kirkpatrick, S. J.

D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 25, 2088–2094 (2008).
[Crossref] [PubMed]

Kleinfeld, D.

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
[Crossref] [PubMed]

Koelink, M. H.

Kok, M. L.

Lusk, E. L.

W. Groop, E. L. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message Passing Interface (MIT Press, 1999).

Lyden, P. D.

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
[Crossref] [PubMed]

Maret, G.

D. Bicout and G. Maret, “Multiple light scattering in Taylor-Couette flow,” Phys. A Stat. Mech. its Appl. 210, 87–112 (1994).
[Crossref]

Mascagni, M.

M. Mascagni and A. Srinivasan, “Algorithm 806: SPRNG: A scalable library for pseudorandom number generation,” ACM Trans. Math. Softw. 26, 436–461 (2000).
[Crossref]

McCaslin, A. F. H.

A. F. H. McCaslin, B. R. Chen, A. J. Radosevich, B. Cauli, and E. M. C. Hillman, “In vivo 3D morphology of astrocyte-vasculature interactions in the somatosensory cortex: implications for neurovascular coupling,” J. Cereb. blood flow Metab. 31, 795–806 (2011).
[Crossref]

Meinke, M.

Meyer, W. V.

Milner, T.

T. Pfefer, J. Kehlet Barton, E. Chan, M. Ducros, B. Sorg, T. Milner, J. Nelson, and A. Welch, “A three-dimensional modular adaptable grid numerical model for light propagation during laser irradiation of skin tissue,” IEEE J. Sel. Top. Quantum Electron. 2, 934–942 (1996).
[Crossref]

Miranbeigi, M.

V. Asadpour, M. Miranbeigi, F. Towhidkhah, and M. Khosroshahi, “Laser-Doppler blood-flowmetery modeling by Monte Carlo method,” 2001 Conf. Proc. 23rd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 4, 3252–3254 (2001).
[Crossref]

Müller, G.

Nelson, J.

T. Pfefer, J. Kehlet Barton, E. Chan, M. Ducros, B. Sorg, T. Milner, J. Nelson, and A. Welch, “A three-dimensional modular adaptable grid numerical model for light propagation during laser irradiation of skin tissue,” IEEE J. Sel. Top. Quantum Electron. 2, 934–942 (1996).
[Crossref]

Nossal, R.

Pecora, R.

B. Berne and R. Pecora, “Laser light scattering from liquids,” Annu. Rev. Phys. Chem. 25, 233–253 (1974).
[Crossref]

B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover, 2000).

Pfefer, T.

T. Pfefer, J. Kehlet Barton, E. Chan, M. Ducros, B. Sorg, T. Milner, J. Nelson, and A. Welch, “A three-dimensional modular adaptable grid numerical model for light propagation during laser irradiation of skin tissue,” IEEE J. Sel. Top. Quantum Electron. 2, 934–942 (1996).
[Crossref]

Pine, D.

D. Pine, D. Weitz, J. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51, 2101–2127 (1990).
[Crossref]

Pine, D. J.

Ponticorvo, A.

Preibisch, S.

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25, 1463–1465 (2009).
[Crossref] [PubMed]

Radosevich, A. J.

A. F. H. McCaslin, B. R. Chen, A. J. Radosevich, B. Cauli, and E. M. C. Hillman, “In vivo 3D morphology of astrocyte-vasculature interactions in the somatosensory cortex: implications for neurovascular coupling,” J. Cereb. blood flow Metab. 31, 795–806 (2011).
[Crossref]

Saalfeld, S.

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25, 1463–1465 (2009).
[Crossref] [PubMed]

Scheffold, F.

Schober, R.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

Schulze, P. C.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

Schurtenberger, P.

C. Urban and P. Schurtenberger, “Characterization of Turbid Colloidal Suspensions Using Light Scattering Techniques Combined with Cross-Correlation Methods,” J. Colloid Interface Sci. 207, 150–158 (1998).
[Crossref] [PubMed]

Schwarzmaier, H. J.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

Shams Kazmi, S. M.

Skjellum, A.

W. Groop, E. L. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message Passing Interface (MIT Press, 1999).

Smart, a. E.

Sorg, B.

T. Pfefer, J. Kehlet Barton, E. Chan, M. Ducros, B. Sorg, T. Milner, J. Nelson, and A. Welch, “A three-dimensional modular adaptable grid numerical model for light propagation during laser irradiation of skin tissue,” IEEE J. Sel. Top. Quantum Electron. 2, 934–942 (1996).
[Crossref]

Spanier, J.

Srinivasan, A.

M. Mascagni and A. Srinivasan, “Algorithm 806: SPRNG: A scalable library for pseudorandom number generation,” ACM Trans. Math. Softw. 26, 436–461 (2000).
[Crossref]

Stott, J.

Svensson, T.

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).
[Crossref]

Tanaka, T.

Taylor, T. W.

Tin, P.

Tomancak, P.

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25, 1463–1465 (2009).
[Crossref] [PubMed]

Towhidkhah, F.

V. Asadpour, M. Miranbeigi, F. Towhidkhah, and M. Khosroshahi, “Laser-Doppler blood-flowmetery modeling by Monte Carlo method,” 2001 Conf. Proc. 23rd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 4, 3252–3254 (2001).
[Crossref]

Tromberg, B. J.

Tsai, P. S.

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
[Crossref] [PubMed]

Ulrich, F.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

Urban, C.

C. Urban and P. Schurtenberger, “Characterization of Turbid Colloidal Suspensions Using Light Scattering Techniques Combined with Cross-Correlation Methods,” J. Colloid Interface Sci. 207, 150–158 (1998).
[Crossref] [PubMed]

Venugopalan, V.

Völker, A.

Völker, A. C.

Weber, B.

Weitz, D.

D. Pine, D. Weitz, J. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51, 2101–2127 (1990).
[Crossref]

Weitz, D. A.

Welch, A.

T. Pfefer, J. Kehlet Barton, E. Chan, M. Ducros, B. Sorg, T. Milner, J. Nelson, and A. Welch, “A three-dimensional modular adaptable grid numerical model for light propagation during laser irradiation of skin tissue,” IEEE J. Sel. Top. Quantum Electron. 2, 934–942 (1996).
[Crossref]

Wu, X.-L.

Wyss, M. T.

Yaroslavsky, A. N.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

Yaroslavsky, I. V.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

Yodh, A. G.

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” JOSA A 14, 192–215 (1997).
[Crossref]

You, J. S.

Zakharov, P.

Zhu, J.

D. Pine, D. Weitz, J. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51, 2101–2127 (1990).
[Crossref]

Zunzunegui, C.

2001 Conf. Proc. 23rd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (1)

V. Asadpour, M. Miranbeigi, F. Towhidkhah, and M. Khosroshahi, “Laser-Doppler blood-flowmetery modeling by Monte Carlo method,” 2001 Conf. Proc. 23rd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 4, 3252–3254 (2001).
[Crossref]

ACM Trans. Math. Softw. (1)

M. Mascagni and A. Srinivasan, “Algorithm 806: SPRNG: A scalable library for pseudorandom number generation,” ACM Trans. Math. Softw. 26, 436–461 (2000).
[Crossref]

Annu. Rev. Phys. Chem. (1)

B. Berne and R. Pecora, “Laser light scattering from liquids,” Annu. Rev. Phys. Chem. 25, 233–253 (1974).
[Crossref]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

N. Ben-Yosef, “Mass motion as observed by light-beating spectroscopy,” Appl. Phys. Lett. 21, 436 (1972).
[Crossref]

Bioinformatics (1)

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25, 1463–1465 (2009).
[Crossref] [PubMed]

Biomed. Opt. Express (2)

IEEE J. Sel. Top. Quantum Electron. (1)

T. Pfefer, J. Kehlet Barton, E. Chan, M. Ducros, B. Sorg, T. Milner, J. Nelson, and A. Welch, “A three-dimensional modular adaptable grid numerical model for light propagation during laser irradiation of skin tissue,” IEEE J. Sel. Top. Quantum Electron. 2, 934–942 (1996).
[Crossref]

J. Biomed. Opt. (3)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt. 15, 011109 (2010).
[Crossref] [PubMed]

E. Alerstam, T. Svensson, and S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008).
[Crossref]

M. A. Davis, S. M. S. Kazmi, and A. K. Dunn, “Imaging depth and multiple scattering in laser speckle contrast imaging,” J. Biomed. Opt. 19, 86001 (2014).
[Crossref]

J. Cereb. blood flow Metab. (1)

A. F. H. McCaslin, B. R. Chen, A. J. Radosevich, B. Cauli, and E. M. C. Hillman, “In vivo 3D morphology of astrocyte-vasculature interactions in the somatosensory cortex: implications for neurovascular coupling,” J. Cereb. blood flow Metab. 31, 795–806 (2011).
[Crossref]

J. Colloid Interface Sci. (1)

C. Urban and P. Schurtenberger, “Characterization of Turbid Colloidal Suspensions Using Light Scattering Techniques Combined with Cross-Correlation Methods,” J. Colloid Interface Sci. 207, 150–158 (1998).
[Crossref] [PubMed]

J. Neurosci. (1)

P. S. Tsai, J. P. Kaufhold, P. Blinder, B. Friedman, P. J. Drew, H. J. Karten, P. D. Lyden, and D. Kleinfeld, “Correlations of neuronal and microvascular densities in murine cortex revealed by direct counting and colocalization of nuclei and vessels,” J. Neurosci. 29, 14553–14570 (2009).
[Crossref] [PubMed]

J. Opt. Soc. Am. A. Opt. Image Sci. Vis. (1)

D. D. Duncan and S. J. Kirkpatrick, “Can laser speckle flowmetry be made a quantitative tool?” J. Opt. Soc. Am. A. Opt. Image Sci. Vis. 25, 2088–2094 (2008).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. (1)

D. Pine, D. Weitz, J. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: dynamic light scattering in the multiple scattering limit,” J. Phys. 51, 2101–2127 (1990).
[Crossref]

JOSA A (1)

D. A. Boas and A. G. Yodh, “Spatially varying dynamical properties of turbid media probed with diffusing temporal light correlation,” JOSA A 14, 192–215 (1997).
[Crossref]

Opt. Commun. (1)

A. Fercher and J. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326–330 (1981).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. A Stat. Mech. its Appl. (1)

D. Bicout and G. Maret, “Multiple light scattering in Taylor-Couette flow,” Phys. A Stat. Mech. its Appl. 210, 87–112 (1994).
[Crossref]

Phys. Med. Biol. (1)

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47, 2059–2073 (2002).
[Crossref] [PubMed]

Other (2)

W. Groop, E. L. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming with the Message Passing Interface (MIT Press, 1999).

B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics (Dover, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Autocorrelation measurement setup for PDMS phantom experiments.
Fig. 2
Fig. 2 Comparison of experimental and simulation results from PDMS phantom experiment. (a) Shows the simulation (−) and experimental (x) results at four different constant linear speeds. (b) and (c) show the simulated histograms of q · v and the number of scattering events.
Fig. 3
Fig. 3 Example calculation of autocorrelation function of mouse cortical microvasculature. Two photon maximum intensity projection of microvasculature stack is shown in (a).
Fig. 4
Fig. 4 The change in τc from a 95% change in flow velocity for the (a) surface vessel ROI and (b) parenchyma ROI in each 50 μm layer of the geometry.

Tables (1)

Tables Icon

Table 1 Optical properties for microvasculature geometry

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

g 1 ( t ) = E ( 0 ) E * ( t )
E i = E 0 ( r ) exp ( j k r )
E s ( R , t ) = A ( r ) E 0 ( r ) exp ( j k f R ) exp ( j ( k f k i ) r ( t ) )
q = k f k i ,
g 1 ( t ) = E ( 0 ) E * ( t ) = A ( r ) | E 0 ( r ) | 2 exp ( j q [ r ( t ) r ( 0 ) ] )
E ( 0 ) E * ( t ) = A ( r ) | E 0 ( r ) | 2 exp ( j 2 k 0 t n N ( sin ( θ n 2 ) q ^ n V n ) ) .
g 1 ( t ) = E ( 0 ) E * ( t ) = P ( Y ) exp ( j 2 k 0 Y t ) d Y .
Y i , n = ( k ^ f , n k ^ i , n ) V n
w i = j exp ( μ a j l i j )
P ( Y i ) = w i i M w i
g 1 ( t ) = i = 1 M P ( Y i ) exp ( j k 0 t n = 1 N Y i , n ) .
g 2 ( t ) = B ( 1 + β | g 1 ( t ) | 2 )

Metrics