Abstract

We present a helix photonic metamaterial that exhibits nondispersive optical rotation in a broad passband at optical frequencies. Several features, including zero dispersion, zero ellipticity, and high transmission, can be simultaneously achieved in the presented structure. Pure optical rotation with extremely low dispersion is exhibited in a broad band covering the optical telecommunication wavelengths along with high transmission above 95%. We show that the chiral responses as well as the wavelength-dependent properties of the passband are governed by the behaviors of adjacent resonances. A systematic study of the optical properties with various geometrical parameters is performed, where the dependence of passband properties on resonance behaviors is examined and discussed. Such broadband dispersion-free optical rotation at optical frequencies may be of great interest for high-performance polarization manipulation and relevant applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gold helix photonic metamaterials: A numerical parameter study

Justyna K. Gansel, Martin Wegener, Sven Burger, and Stefan Linden
Opt. Express 18(2) 1059-1069 (2010)

Dual circular polarization gaps in helix photonic metamaterials

Tzu-Hung Kao, Lung-Yu Chang Chien, and Yu-Chueh Hung
Opt. Express 23(19) 24416-24425 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University, 2004).
    [Crossref]
  2. N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody, Comprehensive Chiroptical Spectroscopy, Applications in Stereochemical Analysis of Synthetic Compounds, Natural Products, and Biomolecules (Wiley, 2012).
    [Crossref]
  3. V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: Fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
    [Crossref] [PubMed]
  4. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, 2000).
  5. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
    [Crossref] [PubMed]
  6. C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
    [Crossref] [PubMed]
  7. Y. Zhao, M. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
    [Crossref] [PubMed]
  8. R. Zhao, J. Zhou, T. Koschny, E. Economou, and C. Soukoulis, “Repulsive casimir force in chiral metamaterials,” Phys. Rev. Lett. 103, 103602 (2009).
    [Crossref] [PubMed]
  9. M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
    [Crossref] [PubMed]
  10. A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25, 3409–3412 (2013).
    [Crossref] [PubMed]
  11. V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
    [Crossref] [PubMed]
  12. A. Rogacheva, V. Fedotov, A. Schwanecke, and N. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
    [Crossref] [PubMed]
  13. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
    [Crossref]
  14. E. Plum, J. Zhou, J. Dong, V. Fedotov, T. Koschny, C. Soukoulis, and N. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
    [Crossref]
  15. M. Decker, M. Ruther, C. Kriegler, J. Zhou, C. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009).
    [Crossref] [PubMed]
  16. M. Decker, R. Zhao, C. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35, 1593–1595 (2010).
    [Crossref] [PubMed]
  17. R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83, 035105 (2011).
    [Crossref]
  18. Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98, 161907 (2011).
    [Crossref]
  19. K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Dispersionless optical activity in metamaterials,” Appl. Phys. Lett. 102, 201121 (2013).
    [Crossref]
  20. H. S. Park, T.-T. Kim, H.-D. Kim, K. Kim, and B. Min, “Nondispersive optical activity of meshed helical metamaterials,” Nat. Commun. 5, 5435 (2014).
    [Crossref] [PubMed]
  21. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7, 22–44 (2013).
    [Crossref]
  22. M. Esposito, V. Tasco, M. Cuscun, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2, 105–114 (2015).
    [Crossref]
  23. M. Esposito, V. Tasco, F. Todisco, M. Cuscun, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
    [Crossref] [PubMed]
  24. Y.-R. Li, R.-M. Ho, and Y.-C. Hung, “Plasmon hybridization and dipolar interaction on the resonances of helix metamaterials,” IEEE Photonics J. 5, 2700510 (2013).
    [Crossref]
  25. H.-H. Huang and Y.-C. Hung, “Designs of helix metamaterials for broadband and high-transmission polarization rotation,” IEEE Photonics J. 6, 1–7 (2014).
    [Crossref]
  26. Lumerical FDTD Solutions, http://www.lumerical.com .
  27. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic thin films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [Crossref]
  28. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  29. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18, 1059–1069 (2010).
    [Crossref] [PubMed]
  30. Z. Yang, M. Zhao, and P. Lu, “How to improve the signal-to-noise ratio for circular polarizers consisting of helical metamaterials,” Opt. Express 19, 4255–4260 (2011).
    [Crossref] [PubMed]
  31. J. Kaschke, J. K. Gansel, and M. Wegener, “On metamaterial circular polarizers based on metal n-helices,” Opt. Express 20, 26012–26020 (2012).
    [Crossref] [PubMed]
  32. Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96, 203501 (2010).
    [Crossref]
  33. K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21, 7439–7446 (2013).
    [Crossref] [PubMed]

2015 (2)

M. Esposito, V. Tasco, M. Cuscun, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2, 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, M. Cuscun, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

2014 (3)

H.-H. Huang and Y.-C. Hung, “Designs of helix metamaterials for broadband and high-transmission polarization rotation,” IEEE Photonics J. 6, 1–7 (2014).
[Crossref]

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

H. S. Park, T.-T. Kim, H.-D. Kim, K. Kim, and B. Min, “Nondispersive optical activity of meshed helical metamaterials,” Nat. Commun. 5, 5435 (2014).
[Crossref] [PubMed]

2013 (6)

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7, 22–44 (2013).
[Crossref]

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25, 3409–3412 (2013).
[Crossref] [PubMed]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: Fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
[Crossref] [PubMed]

Y.-R. Li, R.-M. Ho, and Y.-C. Hung, “Plasmon hybridization and dipolar interaction on the resonances of helix metamaterials,” IEEE Photonics J. 5, 2700510 (2013).
[Crossref]

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Dispersionless optical activity in metamaterials,” Appl. Phys. Lett. 102, 201121 (2013).
[Crossref]

K. Song, Y. Liu, Q. Fu, X. Zhao, C. Luo, and W. Zhu, “90° polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial,” Opt. Express 21, 7439–7446 (2013).
[Crossref] [PubMed]

2012 (3)

J. Kaschke, J. K. Gansel, and M. Wegener, “On metamaterial circular polarizers based on metal n-helices,” Opt. Express 20, 26012–26020 (2012).
[Crossref] [PubMed]

Y. Zhao, M. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
[Crossref] [PubMed]

2011 (4)

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[Crossref] [PubMed]

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83, 035105 (2011).
[Crossref]

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98, 161907 (2011).
[Crossref]

Z. Yang, M. Zhao, and P. Lu, “How to improve the signal-to-noise ratio for circular polarizers consisting of helical metamaterials,” Opt. Express 19, 4255–4260 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (5)

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. Fedotov, T. Koschny, C. Soukoulis, and N. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[Crossref]

M. Decker, M. Ruther, C. Kriegler, J. Zhou, C. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009).
[Crossref] [PubMed]

R. Zhao, J. Zhou, T. Koschny, E. Economou, and C. Soukoulis, “Repulsive casimir force in chiral metamaterials,” Phys. Rev. Lett. 103, 103602 (2009).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref] [PubMed]

2006 (1)

A. Rogacheva, V. Fedotov, A. Schwanecke, and N. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref] [PubMed]

1998 (1)

Alici, K. B.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98, 161907 (2011).
[Crossref]

Alù, A.

Y. Zhao, M. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Ameloot, M.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref] [PubMed]

Barron, L. D.

L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University, 2004).
[Crossref]

Baumberg, J. J.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: Fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
[Crossref] [PubMed]

Belkin, M.

Y. Zhao, M. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Belov, P. A.

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25, 3409–3412 (2013).
[Crossref] [PubMed]

Benedetti, A.

M. Esposito, V. Tasco, M. Cuscun, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2, 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, M. Cuscun, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Berova, N.

N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody, Comprehensive Chiroptical Spectroscopy, Applications in Stereochemical Analysis of Synthetic Compounds, Natural Products, and Biomolecules (Wiley, 2012).
[Crossref]

Biris, C. G.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

Blejean, C.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

Braz, N.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

Burger, S.

Chan, C.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[Crossref] [PubMed]

Chen, H.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[Crossref] [PubMed]

Colak, E.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98, 161907 (2011).
[Crossref]

Cuscun, M.

M. Esposito, V. Tasco, M. Cuscun, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2, 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, M. Cuscun, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

De Clercq, B.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

Decker, M.

Djurisic, A. B.

Dong, J.

E. Plum, J. Zhou, J. Dong, V. Fedotov, T. Koschny, C. Soukoulis, and N. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

Economou, E.

R. Zhao, J. Zhou, T. Koschny, E. Economou, and C. Soukoulis, “Repulsive casimir force in chiral metamaterials,” Phys. Rev. Lett. 103, 103602 (2009).
[Crossref] [PubMed]

Ekinci, Y.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

Elazar, J. M.

Esposito, M.

M. Esposito, V. Tasco, F. Todisco, M. Cuscun, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

M. Esposito, V. Tasco, M. Cuscun, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2, 105–114 (2015).
[Crossref]

Fedotov, V.

E. Plum, J. Zhou, J. Dong, V. Fedotov, T. Koschny, C. Soukoulis, and N. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[Crossref]

A. Rogacheva, V. Fedotov, A. Schwanecke, and N. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref] [PubMed]

Fischer, J.

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7, 22–44 (2013).
[Crossref]

Fu, Q.

Gansel, J. K.

Giorgi, M. D.

M. Esposito, V. Tasco, M. Cuscun, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2, 105–114 (2015).
[Crossref]

Hannam, K.

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Dispersionless optical activity in metamaterials,” Appl. Phys. Lett. 102, 201121 (2013).
[Crossref]

He, S.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96, 203501 (2010).
[Crossref]

Ho, R.-M.

Y.-R. Li, R.-M. Ho, and Y.-C. Hung, “Plasmon hybridization and dipolar interaction on the resonances of helix metamaterials,” IEEE Photonics J. 5, 2700510 (2013).
[Crossref]

Hojeij, M.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

Huang, H.-H.

H.-H. Huang and Y.-C. Hung, “Designs of helix metamaterials for broadband and high-transmission polarization rotation,” IEEE Photonics J. 6, 1–7 (2014).
[Crossref]

Hung, Y.-C.

H.-H. Huang and Y.-C. Hung, “Designs of helix metamaterials for broadband and high-transmission polarization rotation,” IEEE Photonics J. 6, 1–7 (2014).
[Crossref]

Y.-R. Li, R.-M. Ho, and Y.-C. Hung, “Plasmon hybridization and dipolar interaction on the resonances of helix metamaterials,” IEEE Photonics J. 5, 2700510 (2013).
[Crossref]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

Kafesaki, M.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

Kaschke, J.

Kim, H.-D.

H. S. Park, T.-T. Kim, H.-D. Kim, K. Kim, and B. Min, “Nondispersive optical activity of meshed helical metamaterials,” Nat. Commun. 5, 5435 (2014).
[Crossref] [PubMed]

Kim, K.

H. S. Park, T.-T. Kim, H.-D. Kim, K. Kim, and B. Min, “Nondispersive optical activity of meshed helical metamaterials,” Nat. Commun. 5, 5435 (2014).
[Crossref] [PubMed]

Kim, T.-T.

H. S. Park, T.-T. Kim, H.-D. Kim, K. Kim, and B. Min, “Nondispersive optical activity of meshed helical metamaterials,” Nat. Commun. 5, 5435 (2014).
[Crossref] [PubMed]

Kivshar, Y. S.

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Dispersionless optical activity in metamaterials,” Appl. Phys. Lett. 102, 201121 (2013).
[Crossref]

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25, 3409–3412 (2013).
[Crossref] [PubMed]

Kong, J. A.

J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, 2000).

Koschny, T.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83, 035105 (2011).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. Fedotov, T. Koschny, C. Soukoulis, and N. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

R. Zhao, J. Zhou, T. Koschny, E. Economou, and C. Soukoulis, “Repulsive casimir force in chiral metamaterials,” Phys. Rev. Lett. 103, 103602 (2009).
[Crossref] [PubMed]

Kriegler, C.

Lapine, M.

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25, 3409–3412 (2013).
[Crossref] [PubMed]

Li, F.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[Crossref] [PubMed]

Li, H.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[Crossref] [PubMed]

Li, Y.-R.

Y.-R. Li, R.-M. Ho, and Y.-C. Hung, “Plasmon hybridization and dipolar interaction on the resonances of helix metamaterials,” IEEE Photonics J. 5, 2700510 (2013).
[Crossref]

Li, Z.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98, 161907 (2011).
[Crossref]

Linden, S.

Liu, Y.

Lu, P.

Luo, C.

Majewski, M. L.

McPhedran, R. C.

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25, 3409–3412 (2013).
[Crossref] [PubMed]

Mertens, J.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

Min, B.

H. S. Park, T.-T. Kim, H.-D. Kim, K. Kim, and B. Min, “Nondispersive optical activity of meshed helical metamaterials,” Nat. Commun. 5, 5435 (2014).
[Crossref] [PubMed]

Moshchalkov, V. V.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

Nakanishi, K.

N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody, Comprehensive Chiroptical Spectroscopy, Applications in Stereochemical Analysis of Synthetic Compounds, Natural Products, and Biomolecules (Wiley, 2012).
[Crossref]

Osley, E. J.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

Ozbay, E.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98, 161907 (2011).
[Crossref]

Panoiu, N. C.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

Park, H. S.

H. S. Park, T.-T. Kim, H.-D. Kim, K. Kim, and B. Min, “Nondispersive optical activity of meshed helical metamaterials,” Nat. Commun. 5, 5435 (2014).
[Crossref] [PubMed]

Passaseo, A.

M. Esposito, V. Tasco, F. Todisco, M. Cuscun, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

M. Esposito, V. Tasco, M. Cuscun, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2, 105–114 (2015).
[Crossref]

Plum, E.

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
[Crossref] [PubMed]

E. Plum, J. Zhou, J. Dong, V. Fedotov, T. Koschny, C. Soukoulis, and N. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[Crossref]

Polavarapu, P. L.

N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody, Comprehensive Chiroptical Spectroscopy, Applications in Stereochemical Analysis of Synthetic Compounds, Natural Products, and Biomolecules (Wiley, 2012).
[Crossref]

Powell, D. A.

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25, 3409–3412 (2013).
[Crossref] [PubMed]

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Dispersionless optical activity in metamaterials,” Appl. Phys. Lett. 102, 201121 (2013).
[Crossref]

Rakic, A. D.

Ren, M.

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
[Crossref] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref] [PubMed]

Rogacheva, A.

A. Rogacheva, V. Fedotov, A. Schwanecke, and N. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref] [PubMed]

Ruther, M.

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref] [PubMed]

Sanvitto, D.

M. Esposito, V. Tasco, F. Todisco, M. Cuscun, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

M. Esposito, V. Tasco, M. Cuscun, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2, 105–114 (2015).
[Crossref]

Schwanecke, A.

A. Rogacheva, V. Fedotov, A. Schwanecke, and N. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref] [PubMed]

Shadrivov, I. V.

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25, 3409–3412 (2013).
[Crossref] [PubMed]

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Dispersionless optical activity in metamaterials,” Appl. Phys. Lett. 102, 201121 (2013).
[Crossref]

Sibilia, C.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: Fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
[Crossref] [PubMed]

Slobozhanyuk, A. P.

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25, 3409–3412 (2013).
[Crossref] [PubMed]

Song, K.

Soukoulis, C.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83, 035105 (2011).
[Crossref]

M. Decker, R. Zhao, C. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35, 1593–1595 (2010).
[Crossref] [PubMed]

M. Decker, M. Ruther, C. Kriegler, J. Zhou, C. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009).
[Crossref] [PubMed]

E. Plum, J. Zhou, J. Dong, V. Fedotov, T. Koschny, C. Soukoulis, and N. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[Crossref]

R. Zhao, J. Zhou, T. Koschny, E. Economou, and C. Soukoulis, “Repulsive casimir force in chiral metamaterials,” Phys. Rev. Lett. 103, 103602 (2009).
[Crossref] [PubMed]

Soukoulis, C. M.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

Tarantini, I.

M. Esposito, V. Tasco, M. Cuscun, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2, 105–114 (2015).
[Crossref]

Tasco, V.

M. Esposito, V. Tasco, M. Cuscun, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2, 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, M. Cuscun, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref] [PubMed]

Todisco, F.

M. Esposito, V. Tasco, F. Todisco, M. Cuscun, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

M. Esposito, V. Tasco, M. Cuscun, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2, 105–114 (2015).
[Crossref]

Valev, V. K.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: Fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
[Crossref] [PubMed]

Vandenbosch, G. A. E.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

Vandendriessche, S.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

Verbiest, T.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: Fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
[Crossref] [PubMed]

Volskiy, V.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref] [PubMed]

Wang, B.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

Warburton, P. A.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

Wegener, M.

Woody, R. W.

N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody, Comprehensive Chiroptical Spectroscopy, Applications in Stereochemical Analysis of Synthetic Compounds, Natural Products, and Biomolecules (Wiley, 2012).
[Crossref]

Wu, C.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[Crossref] [PubMed]

Xu, J.

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
[Crossref] [PubMed]

Yang, Z.

Ye, Y.

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96, 203501 (2010).
[Crossref]

Yu, X.

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[Crossref] [PubMed]

Zhang, L.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83, 035105 (2011).
[Crossref]

Zhao, M.

Zhao, R.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83, 035105 (2011).
[Crossref]

M. Decker, R. Zhao, C. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35, 1593–1595 (2010).
[Crossref] [PubMed]

R. Zhao, J. Zhou, T. Koschny, E. Economou, and C. Soukoulis, “Repulsive casimir force in chiral metamaterials,” Phys. Rev. Lett. 103, 103602 (2009).
[Crossref] [PubMed]

Zhao, X.

Zhao, Y.

Y. Zhao, M. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Zheludev, N.

E. Plum, J. Zhou, J. Dong, V. Fedotov, T. Koschny, C. Soukoulis, and N. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[Crossref]

A. Rogacheva, V. Fedotov, A. Schwanecke, and N. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref] [PubMed]

Zheludev, N. I.

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
[Crossref] [PubMed]

Zheng, X.

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

Zhou, J.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83, 035105 (2011).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. Fedotov, T. Koschny, C. Soukoulis, and N. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[Crossref]

M. Decker, M. Ruther, C. Kriegler, J. Zhou, C. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34, 2501–2503 (2009).
[Crossref] [PubMed]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

R. Zhao, J. Zhou, T. Koschny, E. Economou, and C. Soukoulis, “Repulsive casimir force in chiral metamaterials,” Phys. Rev. Lett. 103, 103602 (2009).
[Crossref] [PubMed]

Zhu, W.

ACS Photonics (1)

M. Esposito, V. Tasco, M. Cuscun, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2, 105–114 (2015).
[Crossref]

Adv. Mater. (3)

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: Fundamentals, recent progress, and outlook,” Adv. Mater. 25, 2517–2534 (2013).
[Crossref] [PubMed]

A. P. Slobozhanyuk, M. Lapine, D. A. Powell, I. V. Shadrivov, Y. S. Kivshar, R. C. McPhedran, and P. A. Belov, “Flexible helices for nonlinear metamaterials,” Adv. Mater. 25, 3409–3412 (2013).
[Crossref] [PubMed]

V. K. Valev, J. J. Baumberg, B. De Clercq, N. Braz, X. Zheng, E. J. Osley, S. Vandendriessche, M. Hojeij, C. Blejean, J. Mertens, C. G. Biris, V. Volskiy, M. Ameloot, Y. Ekinci, G. A. E. Vandenbosch, P. A. Warburton, V. V. Moshchalkov, N. C. Panoiu, and T. Verbiest, “Nonlinear superchiral meta-surfaces: Tuning chirality and disentangling non-reciprocity at the nanoscale,” Adv. Mater. 26, 4074–4081 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Y. Ye and S. He, “90° polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett. 96, 203501 (2010).
[Crossref]

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett. 98, 161907 (2011).
[Crossref]

K. Hannam, D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, “Dispersionless optical activity in metamaterials,” Appl. Phys. Lett. 102, 201121 (2013).
[Crossref]

IEEE Photonics J. (2)

Y.-R. Li, R.-M. Ho, and Y.-C. Hung, “Plasmon hybridization and dipolar interaction on the resonances of helix metamaterials,” IEEE Photonics J. 5, 2700510 (2013).
[Crossref]

H.-H. Huang and Y.-C. Hung, “Designs of helix metamaterials for broadband and high-transmission polarization rotation,” IEEE Photonics J. 6, 1–7 (2014).
[Crossref]

Laser Photonics Rev. (1)

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7, 22–44 (2013).
[Crossref]

Nat. Commun. (4)

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
[Crossref] [PubMed]

M. Esposito, V. Tasco, F. Todisco, M. Cuscun, A. Benedetti, D. Sanvitto, and A. Passaseo, “Triple-helical nanowires by tomographic rotatory growth for chiral photonics,” Nat. Commun. 6, 6484 (2015).
[Crossref] [PubMed]

H. S. Park, T.-T. Kim, H.-D. Kim, K. Kim, and B. Min, “Nondispersive optical activity of meshed helical metamaterials,” Nat. Commun. 5, 5435 (2014).
[Crossref] [PubMed]

Y. Zhao, M. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (3)

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B 83, 035105 (2011).
[Crossref]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B 79, 121104 (2009).
[Crossref]

E. Plum, J. Zhou, J. Dong, V. Fedotov, T. Koschny, C. Soukoulis, and N. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79, 035407 (2009).
[Crossref]

Phys. Rev. Lett. (3)

A. Rogacheva, V. Fedotov, A. Schwanecke, and N. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97, 177401 (2006).
[Crossref] [PubMed]

R. Zhao, J. Zhou, T. Koschny, E. Economou, and C. Soukoulis, “Repulsive casimir force in chiral metamaterials,” Phys. Rev. Lett. 103, 103602 (2009).
[Crossref] [PubMed]

C. Wu, H. Li, X. Yu, F. Li, H. Chen, and C. Chan, “Metallic helix array as a broadband wave plate,” Phys. Rev. Lett. 107, 177401 (2011).
[Crossref] [PubMed]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325, 1513–1515 (2009).
[Crossref] [PubMed]

Other (5)

J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, 2000).

L. D. Barron, Molecular Light Scattering and Optical Activity (Cambridge University, 2004).
[Crossref]

N. Berova, P. L. Polavarapu, K. Nakanishi, and R. W. Woody, Comprehensive Chiroptical Spectroscopy, Applications in Stereochemical Analysis of Synthetic Compounds, Natural Products, and Biomolecules (Wiley, 2012).
[Crossref]

Lumerical FDTD Solutions, http://www.lumerical.com .

J. D. Jackson, Classical Electrodynamics (Wiley, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Perspective view of half-pitch helix structure for intertwined number N = 1 and N = 4 with geometries defined by helix diameter D, wire diameter d, axial pitch height p. (b) Top view of a unit cell of N = 1 half-pitch helix photonic metamaterial with C4 symmetry. a is the helix spacing. (c) Illustration of optical rotation based on a helix photonic metamaterial. Light incidence along the helix axis (z-axis) undergoes a rotation of the polarization plane.
Fig. 2
Fig. 2 Optical properties of the single half-pitch helix structure: (a) transmission, (b) polarization rotation (in red) and ellipticity (in blue). Transmission, polarization rotation, ellipticity and their differential values with respect to wavelength are shown in (c)–(e). The shaded regions indicate the operation band for pure optical rotation (with e < 1%).
Fig. 3
Fig. 3 (a) Transmission, (b) polarization rotation, and (c) ellipticity for various intertwined number N =2, and 4. In passband region the optical properties and their differential to wavelength are shown in (d)–(f) for transmission, polarization rotation, and ellipticity respectively.
Fig. 4
Fig. 4 Optical properties of single half-pitch helix metamaterials while varying different geometrical parameters. The differential of transmission, polarization rotation, and ellipticity with respect to wavelength (in colors) and their values (in equi-value contour lines) are illustrated respectively in (a)–(c) for varying the helix diameter D, in (d)–(f) for varying the wire diameter d, and in (g)–(i) for varying the helix spacing a.
Fig. 5
Fig. 5 The rotatory power and the e < 1% bandwidth while varying the (a) helix diameter D, (b) wire diameter d, and (c) helix spacing a for N = 1, and (d) for N =1, 2, and 4.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ε r ( ω ) = 1 f 0 ω p 2 ω ( ω i Γ 0 ) + j = 1 k f j ω p 2 ( ω j 2 ω 2 ) i ω Γ j ,
t ± = t x x ± i t y x .
θ = 1 2 [ arg ( t + ) arg ( t ) ] ,
e = | t + | | t | | t + | + | t | .

Metrics