Abstract

Bragg gratings operating in reflection are versatile filters that are an important building block of photonic circuits but, so far, their use has been limited due to the absence of CMOS compatible integrated circulators. In this paper, we propose to introduce two identical Bragg gratings in the arms of a Mach-Zehnder interferometer built with multimode interference 2 x 2 couplers to provide a reflective filter without circulator. We show that this structure has unique properties that significantly reduce phase noise distortions, avoid the need for thermal phase tuning, and make it compatible with complex apodization functions implemented through superposition apodization. We experimentally demonstrate several Bragg grating filters with high quality reflection spectra. For example, we successfully fabricated a 4 nm dispersion-less square-shaped filter having a sidelobe suppression ratio better than 15 dB and an in-band phase response with a group delay standard deviation of 2.0 ps. This result will enable the fabrication of grating based narrowband reflective filters having sharp spectral responses, which represents a major improvement in the filtering capability of the silicon platform.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Characterization and compensation of apodization phase noise in silicon integrated Bragg gratings

Rui Cheng, Ya Han, and Lukas Chrostowski
Opt. Express 27(7) 9516-9535 (2019)

Integrated Bragg gratings in spiral waveguides

Alexandre D. Simard, Yves Painchaud, and Sophie LaRochelle
Opt. Express 21(7) 8953-8963 (2013)

Characterization and reduction of spectral distortions in Silicon-on-Insulator integrated Bragg gratings

Alexandre D. Simard, Guillaume Beaudin, Vincent Aimez, Yves Painchaud, and Sophie LaRochelle
Opt. Express 21(20) 23145-23159 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact silicon tunable Fabry-Perot resonator with low power consumption,” IEEE Photon. Technol. Lett. 16(2), 506–508 (2004).
    [Crossref]
  2. Y. Painchaud, M. Poulin, C. Latrasse, and M. Picard, “Bragg grating based Fabry-Perot filters for characterizing silicon-on-insulator waveguides,” in 2012 IEEE 9th Int. Conf. Group IV Photonics GFP, 180–182 (2012).
    [Crossref]
  3. J. Skaar, “Synthesis of fiber Bragg gratings for use in transmission,” J. Opt. Soc. Am. A 18(3), 557–564 (2001).
    [Crossref]
  4. M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trepanier, “Gain equalization of EDFA’s with Bragg gratings,” IEEE Photon. Technol. Lett. 11(5), 536–538 (1999).
    [Crossref]
  5. W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic bragg grating sensors,” Proc. SPIE 1169, 98 (1990).
  6. J. Azaa, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” IEEE Photonics J. 2(3), 359–386 (2010).
    [Crossref]
  7. Y. Painchaud, M. Lapointe, F. Trepanier, R. L. Lachance, C. Paquet, and M. Guy, “Recent progress on FBG-based tunable dispersion compensators for 40 Gb/s applications,” in Opt. Fiber Commun. Conf. Opt. Soc. Am., 1–3 (2007).
    [Crossref]
  8. M. N. Zervas and M. K. Durkin, “Physical insights into inverse-scattering profiles and symmetric dispersionless FBG designs,” Opt. Express 21(15), 17472–17483 (2013).
    [Crossref] [PubMed]
  9. Y. Painchaud, M. Poulin, C. Latrasse, N. Ayotte, M.-J. Picard, and M. Morin, “Bragg grating notch filters in silicon-on-insulator waveguides,” in Bragg Gratings Photosensitivity, Poling Glass Waveguides, BW2E.3, Optical Society of America (2012).
  10. X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
    [Crossref] [PubMed]
  11. K. A. Rutkowska, D. Duchesne, M. J. Strain, R. Morandotti, M. Sorel, and J. Azaña, “Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings,” Opt. Express 19(20), 19514–19522 (2011).
    [Crossref] [PubMed]
  12. M. J. Strain, S. Thoms, D. S. MacIntyre, and M. Sorel, “Multi-wavelength filters in silicon using superposition sidewall Bragg grating devices,” Opt. Lett. 39(2), 413–416 (2014).
    [Crossref] [PubMed]
  13. D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett. 33(24), 3013–3015 (2008).
    [Crossref] [PubMed]
  14. G. F. R. Chen, T. Wang, C. Donnelly, and D. T. H. Tan, “Second and third order dispersion generation using nonlinearly chirped silicon waveguide gratings,” Opt. Express 21(24), 29223–29230 (2013).
    [Crossref] [PubMed]
  15. A. D. Simard, M. J. Strain, L. Meriggi, M. Sorel, and S. LaRochelle, “Bandpass integrated Bragg gratings in silicon-on-insulator with well-controlled amplitude and phase responses,” Opt. Lett. 40(5), 736–739 (2015).
    [Crossref] [PubMed]
  16. A. D. Simard and S. LaRochelle, “High Performance Narrow Bandpass Filters Based on Integrated Bragg Gratings in Silicon-on-Insulator,” in Opt. Fiber Commun. Conf. Opt. Soc. Am., Tu3A.2 (2015).
    [Crossref]
  17. A. D. Simard, N. Ayotte, Y. Painchaud, S. Bedard, and S. LaRochelle, “Impact of sidewall roughness on integrated Bragg gratings,” J. Lightwave Technol. 29(24), 3693–3704 (2011).
    [Crossref]
  18. A. D. Simard, G. Beaudin, V. Aimez, Y. Painchaud, and S. Larochelle, “Characterization and reduction of spectral distortions in silicon-on-insulator integrated Bragg gratings,” Opt. Express 21(20), 23145–23159 (2013).
    [Crossref] [PubMed]
  19. D. T. H. Tan, K. Ikeda, and Y. Fainman, “Coupled chirped vertical gratings for on-chip group velocity dispersion engineering,” Appl. Phys. Lett. 95(14), 141109 (2009).
    [Crossref]
  20. W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36(20), 3999–4001 (2011).
    [Crossref] [PubMed]
  21. W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
    [Crossref] [PubMed]
  22. D. C. Johnson, K. O. Hill, F. Bilodeau, and S. Faucher, “New design concept for a narrowband wavelength-selective optical tap and combiner,” Electron. Lett. 23(13), 668–669 (1987).
    [Crossref]
  23. F. Bilodeau, D. C. Johnson, S. Thériault, B. Malo, J. Albert, and K. O. Hill, “An All-Fiber Dense-Wavelength-Division Multiplexer-Demultiplexer Using Photoimprinted Bragg Gratings,” IEEE Photon. Technol. Lett. 7(4), 388–390 (1995).
    [Crossref]
  24. Y.-K. Chen, C.-H. Chang, Y.-L. Yang, I.-Y. Kuo, and T.-C. Liang, “Mach–Zehnder fiber-grating-based fixed and reconfigurable multichannel optical add-drop multiplexers for DWDM networks,” Opt. Commun. 169(1–6), 245–262 (1999).
    [Crossref]
  25. J.-M. Jouanno and M. Kristensen, “Low crosstalk planar optical add-drop multiplexer fabricated with UV-induced Bragg gratings,” Electron. Lett. 33(25), 2120–2121 (1997).
    [Crossref]
  26. J. Kim, G. Li, and K. A. Winick, “Design and fabrication of a glass waveguide optical add-drop multiplexer by use of an amorphous-silicon overlay distributed Bragg reflector,” Appl. Opt. 43(3), 671–677 (2004).
    [Crossref] [PubMed]
  27. C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Phase controlled integrated interferometric single-sideband filter based on planar Bragg gratings implementing photonic Hilbert transform,” Opt. Lett. 38(5), 727–729 (2013).
    [Crossref] [PubMed]
  28. C. Sima, J. C. Gates, C. Holmes, P. L. Mennea, M. N. Zervas, and P. G. R. Smith, “Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication,” Opt. Lett. 38(17), 3448–3451 (2013).
    [Crossref] [PubMed]
  29. Z. Zou, L. Zhou, X. Li, and J. Chen, “Channel-spacing tunable silicon comb filter using two linearly chirped Bragg gratings,” Opt. Express 22(16), 19513–19522 (2014).
    [Crossref] [PubMed]
  30. J. Wang, J. Flueckiger, L. Chrostowski, and L. R. Chen, “Bandpass Bragg grating transmission filter on silicon-on-insulator,” in Group IV Photonics GFP 2014 IEEE 11th Int. Conf. On, 79–80, IEEE (2014).
    [Crossref]
  31. H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Polarization rotation Bragg grating using Si wire waveguide with non-vertical sidewall,” Opt. Express 22(25), 31371–31378 (2014).
    [Crossref] [PubMed]
  32. J. B. Khurgin and P. A. Morton, “Linearized Bragg grating assisted electro-optic modulator,” Opt. Lett. 39(24), 6946–6949 (2014).
    [Crossref] [PubMed]
  33. A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photonics Technol. Lett. 24(12), 1033–1035 (2012).
    [Crossref]
  34. D. Mechin, P. Yvernault, L. Brilland, and D. Pureur, “Influence of Bragg gratings phase mismatch in a Mach-Zehnder-based add-drop multiplexer,” J. Lightwave Technol. 21(5), 1411–1416 (2003).
    [Crossref]
  35. L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
    [Crossref]
  36. C. A. Mack, “Analytical expression for impact of linewidth roughness on critical dimension uniformity,” J. Micro/Nanolithogr., MEMS, MOEMS 13(2), 020501 (2014).
    [Crossref]
  37. N. Ayotte and A. D. Simard, “Matlab GDS Photonics Toolbox,” < http://www.mathworks.com/ matlabcentral/fileexchange/file_infos/46827-nicolasayotte-matlabgdsphotonicstoolbox >.
  38. Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
    [Crossref] [PubMed]
  39. A. D. Simard, Y. Painchaud, and S. LaRochelle, “Characterization of integrated Bragg grating profiles,” in Bragg Gratings Photosensit. Poling Glass Waveguides, BM3D.7 (2012).
    [Crossref]
  40. A. Rosenthal and M. Horowitz, “Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings,” IEEE J. Quantum Electron. 39(8), 1018–1026 (2003).
    [Crossref]
  41. H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55(1), 109–126 (1976).
    [Crossref]

2015 (1)

2014 (6)

2013 (6)

2012 (2)

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
[Crossref] [PubMed]

A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photonics Technol. Lett. 24(12), 1033–1035 (2012).
[Crossref]

2011 (3)

2010 (1)

J. Azaa, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” IEEE Photonics J. 2(3), 359–386 (2010).
[Crossref]

2009 (1)

D. T. H. Tan, K. Ikeda, and Y. Fainman, “Coupled chirped vertical gratings for on-chip group velocity dispersion engineering,” Appl. Phys. Lett. 95(14), 141109 (2009).
[Crossref]

2008 (1)

2004 (2)

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact silicon tunable Fabry-Perot resonator with low power consumption,” IEEE Photon. Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

J. Kim, G. Li, and K. A. Winick, “Design and fabrication of a glass waveguide optical add-drop multiplexer by use of an amorphous-silicon overlay distributed Bragg reflector,” Appl. Opt. 43(3), 671–677 (2004).
[Crossref] [PubMed]

2003 (2)

A. Rosenthal and M. Horowitz, “Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings,” IEEE J. Quantum Electron. 39(8), 1018–1026 (2003).
[Crossref]

D. Mechin, P. Yvernault, L. Brilland, and D. Pureur, “Influence of Bragg gratings phase mismatch in a Mach-Zehnder-based add-drop multiplexer,” J. Lightwave Technol. 21(5), 1411–1416 (2003).
[Crossref]

2001 (1)

1999 (2)

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trepanier, “Gain equalization of EDFA’s with Bragg gratings,” IEEE Photon. Technol. Lett. 11(5), 536–538 (1999).
[Crossref]

Y.-K. Chen, C.-H. Chang, Y.-L. Yang, I.-Y. Kuo, and T.-C. Liang, “Mach–Zehnder fiber-grating-based fixed and reconfigurable multichannel optical add-drop multiplexers for DWDM networks,” Opt. Commun. 169(1–6), 245–262 (1999).
[Crossref]

1997 (1)

J.-M. Jouanno and M. Kristensen, “Low crosstalk planar optical add-drop multiplexer fabricated with UV-induced Bragg gratings,” Electron. Lett. 33(25), 2120–2121 (1997).
[Crossref]

1995 (2)

F. Bilodeau, D. C. Johnson, S. Thériault, B. Malo, J. Albert, and K. O. Hill, “An All-Fiber Dense-Wavelength-Division Multiplexer-Demultiplexer Using Photoimprinted Bragg Gratings,” IEEE Photon. Technol. Lett. 7(4), 388–390 (1995).
[Crossref]

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

1990 (1)

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic bragg grating sensors,” Proc. SPIE 1169, 98 (1990).

1987 (1)

D. C. Johnson, K. O. Hill, F. Bilodeau, and S. Faucher, “New design concept for a narrowband wavelength-selective optical tap and combiner,” Electron. Lett. 23(13), 668–669 (1987).
[Crossref]

1976 (1)

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55(1), 109–126 (1976).
[Crossref]

Aimez, V.

Albert, J.

F. Bilodeau, D. C. Johnson, S. Thériault, B. Malo, J. Albert, and K. O. Hill, “An All-Fiber Dense-Wavelength-Division Multiplexer-Demultiplexer Using Photoimprinted Bragg Gratings,” IEEE Photon. Technol. Lett. 7(4), 388–390 (1995).
[Crossref]

Almeida, V. R.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact silicon tunable Fabry-Perot resonator with low power consumption,” IEEE Photon. Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

Ayotte, N.

Azaa, J.

J. Azaa, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” IEEE Photonics J. 2(3), 359–386 (2010).
[Crossref]

Azaña, J.

Barrios, C. A.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact silicon tunable Fabry-Perot resonator with low power consumption,” IEEE Photon. Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

Beaudin, G.

Bedard, S.

Belhadj, N.

A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photonics Technol. Lett. 24(12), 1033–1035 (2012).
[Crossref]

Bilodeau, F.

F. Bilodeau, D. C. Johnson, S. Thériault, B. Malo, J. Albert, and K. O. Hill, “An All-Fiber Dense-Wavelength-Division Multiplexer-Demultiplexer Using Photoimprinted Bragg Gratings,” IEEE Photon. Technol. Lett. 7(4), 388–390 (1995).
[Crossref]

D. C. Johnson, K. O. Hill, F. Bilodeau, and S. Faucher, “New design concept for a narrowband wavelength-selective optical tap and combiner,” Electron. Lett. 23(13), 668–669 (1987).
[Crossref]

Bojko, R.

Brilland, L.

Chang, C.-H.

Y.-K. Chen, C.-H. Chang, Y.-L. Yang, I.-Y. Kuo, and T.-C. Liang, “Mach–Zehnder fiber-grating-based fixed and reconfigurable multichannel optical add-drop multiplexers for DWDM networks,” Opt. Commun. 169(1–6), 245–262 (1999).
[Crossref]

Chen, G. F. R.

Chen, J.

Chen, Y.-K.

Y.-K. Chen, C.-H. Chang, Y.-L. Yang, I.-Y. Kuo, and T.-C. Liang, “Mach–Zehnder fiber-grating-based fixed and reconfigurable multichannel optical add-drop multiplexers for DWDM networks,” Opt. Commun. 169(1–6), 245–262 (1999).
[Crossref]

Chrostowski, L.

Donnelly, C.

Duchesne, D.

Durkin, M. K.

Fainman, Y.

D. T. H. Tan, K. Ikeda, and Y. Fainman, “Coupled chirped vertical gratings for on-chip group velocity dispersion engineering,” Appl. Phys. Lett. 95(14), 141109 (2009).
[Crossref]

D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett. 33(24), 3013–3015 (2008).
[Crossref] [PubMed]

Faucher, S.

D. C. Johnson, K. O. Hill, F. Bilodeau, and S. Faucher, “New design concept for a narrowband wavelength-selective optical tap and combiner,” Electron. Lett. 23(13), 668–669 (1987).
[Crossref]

Flueckiger, J.

Gates, J. C.

Glenn, W. H.

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic bragg grating sensors,” Proc. SPIE 1169, 98 (1990).

Grist, S.

Guy, M.

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trepanier, “Gain equalization of EDFA’s with Bragg gratings,” IEEE Photon. Technol. Lett. 11(5), 536–538 (1999).
[Crossref]

Y. Painchaud, M. Lapointe, F. Trepanier, R. L. Lachance, C. Paquet, and M. Guy, “Recent progress on FBG-based tunable dispersion compensators for 40 Gb/s applications,” in Opt. Fiber Commun. Conf. Opt. Soc. Am., 1–3 (2007).
[Crossref]

Hill, K. O.

F. Bilodeau, D. C. Johnson, S. Thériault, B. Malo, J. Albert, and K. O. Hill, “An All-Fiber Dense-Wavelength-Division Multiplexer-Demultiplexer Using Photoimprinted Bragg Gratings,” IEEE Photon. Technol. Lett. 7(4), 388–390 (1995).
[Crossref]

D. C. Johnson, K. O. Hill, F. Bilodeau, and S. Faucher, “New design concept for a narrowband wavelength-selective optical tap and combiner,” Electron. Lett. 23(13), 668–669 (1987).
[Crossref]

Holmes, C.

Horowitz, M.

A. Rosenthal and M. Horowitz, “Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings,” IEEE J. Quantum Electron. 39(8), 1018–1026 (2003).
[Crossref]

Ikeda, K.

D. T. H. Tan, K. Ikeda, and Y. Fainman, “Coupled chirped vertical gratings for on-chip group velocity dispersion engineering,” Appl. Phys. Lett. 95(14), 141109 (2009).
[Crossref]

D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett. 33(24), 3013–3015 (2008).
[Crossref] [PubMed]

Jaeger, N. A. F.

Johnson, D. C.

F. Bilodeau, D. C. Johnson, S. Thériault, B. Malo, J. Albert, and K. O. Hill, “An All-Fiber Dense-Wavelength-Division Multiplexer-Demultiplexer Using Photoimprinted Bragg Gratings,” IEEE Photon. Technol. Lett. 7(4), 388–390 (1995).
[Crossref]

D. C. Johnson, K. O. Hill, F. Bilodeau, and S. Faucher, “New design concept for a narrowband wavelength-selective optical tap and combiner,” Electron. Lett. 23(13), 668–669 (1987).
[Crossref]

Jouanno, J.-M.

J.-M. Jouanno and M. Kristensen, “Low crosstalk planar optical add-drop multiplexer fabricated with UV-induced Bragg gratings,” Electron. Lett. 33(25), 2120–2121 (1997).
[Crossref]

Khurgin, J. B.

Kim, J.

Kogelnik, H.

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55(1), 109–126 (1976).
[Crossref]

Kristensen, M.

J.-M. Jouanno and M. Kristensen, “Low crosstalk planar optical add-drop multiplexer fabricated with UV-induced Bragg gratings,” Electron. Lett. 33(25), 2120–2121 (1997).
[Crossref]

Kuo, I.-Y.

Y.-K. Chen, C.-H. Chang, Y.-L. Yang, I.-Y. Kuo, and T.-C. Liang, “Mach–Zehnder fiber-grating-based fixed and reconfigurable multichannel optical add-drop multiplexers for DWDM networks,” Opt. Commun. 169(1–6), 245–262 (1999).
[Crossref]

Lachance, R. L.

Y. Painchaud, M. Lapointe, F. Trepanier, R. L. Lachance, C. Paquet, and M. Guy, “Recent progress on FBG-based tunable dispersion compensators for 40 Gb/s applications,” in Opt. Fiber Commun. Conf. Opt. Soc. Am., 1–3 (2007).
[Crossref]

Lapointe, M.

Y. Painchaud, M. Lapointe, F. Trepanier, R. L. Lachance, C. Paquet, and M. Guy, “Recent progress on FBG-based tunable dispersion compensators for 40 Gb/s applications,” in Opt. Fiber Commun. Conf. Opt. Soc. Am., 1–3 (2007).
[Crossref]

LaRochelle, S.

Lauzon, J.

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trepanier, “Gain equalization of EDFA’s with Bragg gratings,” IEEE Photon. Technol. Lett. 11(5), 536–538 (1999).
[Crossref]

Li, G.

Li, X.

Liang, T.-C.

Y.-K. Chen, C.-H. Chang, Y.-L. Yang, I.-Y. Kuo, and T.-C. Liang, “Mach–Zehnder fiber-grating-based fixed and reconfigurable multichannel optical add-drop multiplexers for DWDM networks,” Opt. Commun. 169(1–6), 245–262 (1999).
[Crossref]

Lin, C.

Lipson, M.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact silicon tunable Fabry-Perot resonator with low power consumption,” IEEE Photon. Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

MacIntyre, D. S.

Mack, C. A.

C. A. Mack, “Analytical expression for impact of linewidth roughness on critical dimension uniformity,” J. Micro/Nanolithogr., MEMS, MOEMS 13(2), 020501 (2014).
[Crossref]

Malo, B.

F. Bilodeau, D. C. Johnson, S. Thériault, B. Malo, J. Albert, and K. O. Hill, “An All-Fiber Dense-Wavelength-Division Multiplexer-Demultiplexer Using Photoimprinted Bragg Gratings,” IEEE Photon. Technol. Lett. 7(4), 388–390 (1995).
[Crossref]

Mechin, D.

Meltz, G.

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic bragg grating sensors,” Proc. SPIE 1169, 98 (1990).

Mennea, P. L.

Meriggi, L.

Morandotti, R.

Morey, W. W.

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic bragg grating sensors,” Proc. SPIE 1169, 98 (1990).

Morton, P. A.

Okayama, H.

Onawa, Y.

Painchaud, Y.

A. D. Simard, G. Beaudin, V. Aimez, Y. Painchaud, and S. Larochelle, “Characterization and reduction of spectral distortions in silicon-on-insulator integrated Bragg gratings,” Opt. Express 21(20), 23145–23159 (2013).
[Crossref] [PubMed]

A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photonics Technol. Lett. 24(12), 1033–1035 (2012).
[Crossref]

A. D. Simard, N. Ayotte, Y. Painchaud, S. Bedard, and S. LaRochelle, “Impact of sidewall roughness on integrated Bragg gratings,” J. Lightwave Technol. 29(24), 3693–3704 (2011).
[Crossref]

Y. Painchaud, M. Lapointe, F. Trepanier, R. L. Lachance, C. Paquet, and M. Guy, “Recent progress on FBG-based tunable dispersion compensators for 40 Gb/s applications,” in Opt. Fiber Commun. Conf. Opt. Soc. Am., 1–3 (2007).
[Crossref]

Panepucci, R. R.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact silicon tunable Fabry-Perot resonator with low power consumption,” IEEE Photon. Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

Paquet, C.

Y. Painchaud, M. Lapointe, F. Trepanier, R. L. Lachance, C. Paquet, and M. Guy, “Recent progress on FBG-based tunable dispersion compensators for 40 Gb/s applications,” in Opt. Fiber Commun. Conf. Opt. Soc. Am., 1–3 (2007).
[Crossref]

Pennings, E. C. M.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Pureur, D.

Rochette, M.

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trepanier, “Gain equalization of EDFA’s with Bragg gratings,” IEEE Photon. Technol. Lett. 11(5), 536–538 (1999).
[Crossref]

Rogers, H. L.

Rosenthal, A.

A. Rosenthal and M. Horowitz, “Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings,” IEEE J. Quantum Electron. 39(8), 1018–1026 (2003).
[Crossref]

Rutkowska, K. A.

Saperstein, R. E.

Sasaki, H.

Schmidt, B. S.

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact silicon tunable Fabry-Perot resonator with low power consumption,” IEEE Photon. Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

Shi, W.

Shimura, D.

Sima, C.

Simard, A. D.

Skaar, J.

Slutsky, B.

Smith, P. G. R.

Soldano, L. B.

L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995).
[Crossref]

Sorel, M.

Strain, M. J.

Tan, D. T. H.

Thériault, S.

F. Bilodeau, D. C. Johnson, S. Thériault, B. Malo, J. Albert, and K. O. Hill, “An All-Fiber Dense-Wavelength-Division Multiplexer-Demultiplexer Using Photoimprinted Bragg Gratings,” IEEE Photon. Technol. Lett. 7(4), 388–390 (1995).
[Crossref]

Thoms, S.

Trepanier, F.

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trepanier, “Gain equalization of EDFA’s with Bragg gratings,” IEEE Photon. Technol. Lett. 11(5), 536–538 (1999).
[Crossref]

Y. Painchaud, M. Lapointe, F. Trepanier, R. L. Lachance, C. Paquet, and M. Guy, “Recent progress on FBG-based tunable dispersion compensators for 40 Gb/s applications,” in Opt. Fiber Commun. Conf. Opt. Soc. Am., 1–3 (2007).
[Crossref]

Wang, T.

Wang, X.

Wang, Y.

Winick, K. A.

Yaegashi, H.

Yang, Y.-L.

Y.-K. Chen, C.-H. Chang, Y.-L. Yang, I.-Y. Kuo, and T.-C. Liang, “Mach–Zehnder fiber-grating-based fixed and reconfigurable multichannel optical add-drop multiplexers for DWDM networks,” Opt. Commun. 169(1–6), 245–262 (1999).
[Crossref]

Yun, H.

Yvernault, P.

Zervas, M. N.

Zhang, W.

Zhou, L.

Zou, Z.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. T. H. Tan, K. Ikeda, and Y. Fainman, “Coupled chirped vertical gratings for on-chip group velocity dispersion engineering,” Appl. Phys. Lett. 95(14), 141109 (2009).
[Crossref]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Filter response of nonuniform almost-periodic structures,” Bell Syst. Tech. J. 55(1), 109–126 (1976).
[Crossref]

Electron. Lett. (2)

D. C. Johnson, K. O. Hill, F. Bilodeau, and S. Faucher, “New design concept for a narrowband wavelength-selective optical tap and combiner,” Electron. Lett. 23(13), 668–669 (1987).
[Crossref]

J.-M. Jouanno and M. Kristensen, “Low crosstalk planar optical add-drop multiplexer fabricated with UV-induced Bragg gratings,” Electron. Lett. 33(25), 2120–2121 (1997).
[Crossref]

IEEE J. Quantum Electron. (1)

A. Rosenthal and M. Horowitz, “Inverse scattering algorithm for reconstructing strongly reflecting fiber Bragg gratings,” IEEE J. Quantum Electron. 39(8), 1018–1026 (2003).
[Crossref]

IEEE Photon. Technol. Lett. (3)

F. Bilodeau, D. C. Johnson, S. Thériault, B. Malo, J. Albert, and K. O. Hill, “An All-Fiber Dense-Wavelength-Division Multiplexer-Demultiplexer Using Photoimprinted Bragg Gratings,” IEEE Photon. Technol. Lett. 7(4), 388–390 (1995).
[Crossref]

C. A. Barrios, V. R. Almeida, R. R. Panepucci, B. S. Schmidt, and M. Lipson, “Compact silicon tunable Fabry-Perot resonator with low power consumption,” IEEE Photon. Technol. Lett. 16(2), 506–508 (2004).
[Crossref]

M. Rochette, M. Guy, S. LaRochelle, J. Lauzon, and F. Trepanier, “Gain equalization of EDFA’s with Bragg gratings,” IEEE Photon. Technol. Lett. 11(5), 536–538 (1999).
[Crossref]

IEEE Photonics J. (1)

J. Azaa, “Ultrafast analog all-optical signal processors based on fiber-grating devices,” IEEE Photonics J. 2(3), 359–386 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized silicon-on-insulator Bragg gratings,” IEEE Photonics Technol. Lett. 24(12), 1033–1035 (2012).
[Crossref]

J. Lightwave Technol. (3)

J. Micro/Nanolithogr., MEMS, MOEMS (1)

C. A. Mack, “Analytical expression for impact of linewidth roughness on critical dimension uniformity,” J. Micro/Nanolithogr., MEMS, MOEMS 13(2), 020501 (2014).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

Y.-K. Chen, C.-H. Chang, Y.-L. Yang, I.-Y. Kuo, and T.-C. Liang, “Mach–Zehnder fiber-grating-based fixed and reconfigurable multichannel optical add-drop multiplexers for DWDM networks,” Opt. Commun. 169(1–6), 245–262 (1999).
[Crossref]

Opt. Express (8)

Z. Zou, L. Zhou, X. Li, and J. Chen, “Channel-spacing tunable silicon comb filter using two linearly chirped Bragg gratings,” Opt. Express 22(16), 19513–19522 (2014).
[Crossref] [PubMed]

H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, and H. Sasaki, “Polarization rotation Bragg grating using Si wire waveguide with non-vertical sidewall,” Opt. Express 22(25), 31371–31378 (2014).
[Crossref] [PubMed]

A. D. Simard, G. Beaudin, V. Aimez, Y. Painchaud, and S. Larochelle, “Characterization and reduction of spectral distortions in silicon-on-insulator integrated Bragg gratings,” Opt. Express 21(20), 23145–23159 (2013).
[Crossref] [PubMed]

G. F. R. Chen, T. Wang, C. Donnelly, and D. T. H. Tan, “Second and third order dispersion generation using nonlinearly chirped silicon waveguide gratings,” Opt. Express 21(24), 29223–29230 (2013).
[Crossref] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
[Crossref] [PubMed]

K. A. Rutkowska, D. Duchesne, M. J. Strain, R. Morandotti, M. Sorel, and J. Azaña, “Ultrafast all-optical temporal differentiators based on CMOS-compatible integrated-waveguide Bragg gratings,” Opt. Express 19(20), 19514–19522 (2011).
[Crossref] [PubMed]

M. N. Zervas and M. K. Durkin, “Physical insights into inverse-scattering profiles and symmetric dispersionless FBG designs,” Opt. Express 21(15), 17472–17483 (2013).
[Crossref] [PubMed]

Y. Wang, X. Wang, J. Flueckiger, H. Yun, W. Shi, R. Bojko, N. A. F. Jaeger, and L. Chrostowski, “Focusing sub-wavelength grating couplers with low back reflections for rapid prototyping of silicon photonic circuits,” Opt. Express 22(17), 20652–20662 (2014).
[Crossref] [PubMed]

Opt. Lett. (8)

M. J. Strain, S. Thoms, D. S. MacIntyre, and M. Sorel, “Multi-wavelength filters in silicon using superposition sidewall Bragg grating devices,” Opt. Lett. 39(2), 413–416 (2014).
[Crossref] [PubMed]

D. T. H. Tan, K. Ikeda, R. E. Saperstein, B. Slutsky, and Y. Fainman, “Chip-scale dispersion engineering using chirped vertical gratings,” Opt. Lett. 33(24), 3013–3015 (2008).
[Crossref] [PubMed]

A. D. Simard, M. J. Strain, L. Meriggi, M. Sorel, and S. LaRochelle, “Bandpass integrated Bragg gratings in silicon-on-insulator with well-controlled amplitude and phase responses,” Opt. Lett. 40(5), 736–739 (2015).
[Crossref] [PubMed]

J. B. Khurgin and P. A. Morton, “Linearized Bragg grating assisted electro-optic modulator,” Opt. Lett. 39(24), 6946–6949 (2014).
[Crossref] [PubMed]

W. Shi, X. Wang, W. Zhang, L. Chrostowski, and N. A. F. Jaeger, “Contradirectional couplers in silicon-on-insulator rib waveguides,” Opt. Lett. 36(20), 3999–4001 (2011).
[Crossref] [PubMed]

W. Shi, H. Yun, C. Lin, J. Flueckiger, N. A. F. Jaeger, and L. Chrostowski, “Coupler-apodized Bragg-grating add-drop filter,” Opt. Lett. 38(16), 3068–3070 (2013).
[Crossref] [PubMed]

C. Sima, J. C. Gates, H. L. Rogers, P. L. Mennea, C. Holmes, M. N. Zervas, and P. G. R. Smith, “Phase controlled integrated interferometric single-sideband filter based on planar Bragg gratings implementing photonic Hilbert transform,” Opt. Lett. 38(5), 727–729 (2013).
[Crossref] [PubMed]

C. Sima, J. C. Gates, C. Holmes, P. L. Mennea, M. N. Zervas, and P. G. R. Smith, “Terahertz bandwidth photonic Hilbert transformers based on synthesized planar Bragg grating fabrication,” Opt. Lett. 38(17), 3448–3451 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

W. W. Morey, G. Meltz, and W. H. Glenn, “Fiber optic bragg grating sensors,” Proc. SPIE 1169, 98 (1990).

Other (7)

Y. Painchaud, M. Poulin, C. Latrasse, and M. Picard, “Bragg grating based Fabry-Perot filters for characterizing silicon-on-insulator waveguides,” in 2012 IEEE 9th Int. Conf. Group IV Photonics GFP, 180–182 (2012).
[Crossref]

Y. Painchaud, M. Poulin, C. Latrasse, N. Ayotte, M.-J. Picard, and M. Morin, “Bragg grating notch filters in silicon-on-insulator waveguides,” in Bragg Gratings Photosensitivity, Poling Glass Waveguides, BW2E.3, Optical Society of America (2012).

Y. Painchaud, M. Lapointe, F. Trepanier, R. L. Lachance, C. Paquet, and M. Guy, “Recent progress on FBG-based tunable dispersion compensators for 40 Gb/s applications,” in Opt. Fiber Commun. Conf. Opt. Soc. Am., 1–3 (2007).
[Crossref]

A. D. Simard and S. LaRochelle, “High Performance Narrow Bandpass Filters Based on Integrated Bragg Gratings in Silicon-on-Insulator,” in Opt. Fiber Commun. Conf. Opt. Soc. Am., Tu3A.2 (2015).
[Crossref]

J. Wang, J. Flueckiger, L. Chrostowski, and L. R. Chen, “Bandpass Bragg grating transmission filter on silicon-on-insulator,” in Group IV Photonics GFP 2014 IEEE 11th Int. Conf. On, 79–80, IEEE (2014).
[Crossref]

N. Ayotte and A. D. Simard, “Matlab GDS Photonics Toolbox,” < http://www.mathworks.com/ matlabcentral/fileexchange/file_infos/46827-nicolasayotte-matlabgdsphotonicstoolbox >.

A. D. Simard, Y. Painchaud, and S. LaRochelle, “Characterization of integrated Bragg grating profiles,” in Bragg Gratings Photosensit. Poling Glass Waveguides, BM3D.7 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic of a Bragg grating filter operated in reflection with the reflected signal directed to an output port distinct from the input port using (a) a circulator, (b) a 3 dB coupler, (c) a grating-assisted contra-directional coupler, and (d) a Mach-Zehnder interferometer structure.
Fig. 2
Fig. 2 Schematic of a MZI-IBG made with MMIs and phase noise reduction waveguides
Fig. 3
Fig. 3 Amplitude ((a) and (c)) and group delay ((b) and (d)) of the reflection ((a) and (b)) and transmission ((c) and (d)) ports of a uniform MZI-IBG. Experimental measurement results are in red and the response simulated using the extracted value of the coupling coefficient is in black.
Fig. 4
Fig. 4 Amplitude ((a) and (c)) and group delay ((b) and (d)) of the reflection ((a) and (b)) and transmission ((c) and (d)) ports of a phase shifted MZI-IBG. Experimental measurement results are in red and the response simulated using the extracted value of the coupling coefficient is in black.
Fig. 5
Fig. 5 Amplitude of the excess a) transmission and b) reflection losses of a uniform MZI-IBG (experimental results in red). The optimal fit (Δκ = 200 m−1, SRA1 = 8% and SRA2 = 4%) is shown in black. Also shown are simulations done with with the same Δκ when the MMIs are ideal (green) and when the SRAs are twice the value (blue) used for the optimal fit.
Fig. 6
Fig. 6 Amplitude of the excess a) transmission and b) reflection loss of a uniform MZI-IBG (experimental results in red). The optimal fit (Δκ = 200 m−1, SRA1 = 8% and SRA2 = 4%) is shown in black. Also shown are simulations done when Δκ = 0 (blue) and 400 m−1 (green) respectively with the same SRAs.
Fig. 7
Fig. 7 Bragg wavelength (a) and coupling coefficient (b) profiles of the square-shaped dispersion-less filter with a 3 dB bandwidth of 4 nm.
Fig. 8
Fig. 8 Amplitude ((a) and (c)) and group delay ((b) and (d)) of the reflection ((a) and (b)) and transmission ((c) and (d)) ports of a square-shaped dispersion-less MZI-IBG. Experimental results are shown in red and the design in black.
Fig. 9
Fig. 9 Amplitude of the excess a) transmission and b) reflection loss of a square-shaped dispersion-less MZI-IBG. The experimental results are in red and the optimal fit (Δκ = 200 m−1, SRA1 = 8% and SRA2 = 4% and Δneff = 1x10−4) is shown in black.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

[ E out,1 E out,2 ]=[ A B C D ][ E in,1 E in,2 ]
[ E z 0 + E z 0 ]=[ 1 t r * t * r t 1 t * ][ E z 0 + L g + E z 0 + L g ],
E 1 =( A 1 A 1 r 1 + B 1 C 1 e i2Δ ϕ in r 2 ) e i2 ϕ in E 2 =( A 1 C 1 r 1 + C 1 D 1 e i2Δ ϕ in r 2 ) e i2 ϕ in E 3 =( A 1 A 2 t 1 + C 1 B 2 e iΔ ϕ in e iΔ ϕ out t 2 ) e i ϕ in e i ϕ out E 4 =( A 1 C 2 t 1 + C 1 D 2 e iΔ ϕ in e iΔ ϕ out t 2 ) e i ϕ in e i ϕ out
E 1 = 1 2 ( r 1 r 2 ) e i2 ϕ in E 3 = 1 2 ( t 1 t 2 ) e i ϕ in e i ϕ out E 2 = 1 2 ( r 1 + r 2 )i e i2 ϕ in E 4 = 1 2 ( t 1 + t 2 )i e i ϕ in e i ϕ out
E 1 =r( A 1 A 1 + B 1 C 1 ) e i2 ϕ in E 3 =t( A 1 A 2 + C 1 B 2 ) e i ϕ in e i ϕ out E 2 =r( A 1 C 1 + C 1 D 1 ) e i2 ϕ in E 4 =t( A 1 C 2 + C 1 D 2 ) e i ϕ in e i ϕ out .
ABCD=[ 1K i K i K 1K ]
E 1 =r( 12 K 1 ) e i2 ϕ in E 2 =2r K 1 1 K 1 i e i2 ϕ in E 3 =t( 1 K 1 1 K 2 K 1 K 2 ) e i ϕ in e i ϕ out . E 4 =t( 1 K 1 K 2 + K 1 1 K 2 )i e i ϕ in e i ϕ out
E 1 = r 2 ( 1 e i2Δ ϕ in ) e i2 ϕ in irΔ ϕ in e i2 ϕ in E 2 = r 2 ( 1+ e i2Δ ϕ in )i e i2 ϕ in r( 1+iΔ ϕ in )i e i2 ϕ in E 3 = t 2 ( 1 e iΔ ϕ in e iΔ ϕ out ) e i ϕ in e i ϕ out t Δ ϕ in +Δ ϕ out 2 i e i ϕ in e i ϕ out , E 4 = t 2 ( 1+ e iΔ ϕ in e iΔ ϕ out )i e i ϕ in e i ϕ out t( 1+i( Δ ϕ in +Δ ϕ out 2 ) )i e i ϕ in e i ϕ out

Metrics