Abstract

Diffractive mask-aligner lithography allows printing structures that have a sub-micrometer resolution by using non-contact mode. For such a purpose, masks are often designed to operate with monochromatic linearly polarized light, which is obtained by placing a spectral filter and a polarizer in the beam path. We propose here a mask design that includes a wire-grid polarizer (WGP) on the top side of a photo-mask and a diffractive element on the bottom one to print a 350 nm period grating by using a classical mask-aligner in proximity exposure mode. Linearly polarizing locally an unpolarized incident beam is only possible by using a WGP on the top side of the mask. This configuration opens the possibility to use different linear polarization orientation on a single mask and allows to print high resolution structures with different orientation within one exposure.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
175  nm period grating fabricated by i-line proximity mask-aligner lithography

Yannick Bourgin, Daniel Voigt, Thomas Käsebier, Thomas Siefke, Ernst-Bernhard Kley, and Uwe D. Zeitner
Opt. Lett. 42(19) 3816-3819 (2017)

Printing sub-micron structures using Talbot mask-aligner lithography with a 193 nm CW laser light source

Andreas Vetter, Raoul Kirner, Dmitrijs Opalevs, Matthias Scholz, Patrick Leisching, Toralf Scharf, Wilfried Noell, Carsten Rockstuhl, and Reinhard Voelkel
Opt. Express 26(17) 22218-22233 (2018)

250  nm period grating transferred by proximity i-line mask-aligner lithography

Yannick Bourgin, Thomas Käsebier, and Uwe D. Zeitner
Opt. Lett. 39(6) 1665-1668 (2014)

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
    [Crossref]
  2. M. Ahn, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of 200 nm period blazed transmission gratings on silicon-on-insulator wafers,” J. Vac. Sci. Technol. B 26, 2179 (2008).
  3. Y. M. Song, J. S. Yu, and Y. T. Lee, “Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement,” Opt. Lett. 35(3), 276–278 (2010).
    [Crossref] [PubMed]
  4. Y. Ye, Y. Zhou, and L. Chen, “Color filter based on a two-dimensional submicrometer metal grating,” Appl. Opt. 48(27), 5035–5039 (2009).
    [PubMed]
  5. L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007).
    [Crossref]
  6. T. Weber, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett. 36(4), 445–447 (2011).
    [Crossref] [PubMed]
  7. Y. Bourgin, T. Käsebier, and U. D. Zeitner, “250 nm period grating transferred by proximity i-line mask-aligner lithography,” Opt. Lett. 39(6), 1665–1668 (2014).
    [Crossref] [PubMed]
  8. T. J. Suleski, B. Baggett, W. F. Delaney, C. Koehler, and E. G. Johnson, “Fabrication of high-spatial-frequency gratings through computer-generated near-field holography,” Opt. Lett. 24(9), 602–604 (1999).
    [Crossref] [PubMed]
  9. D. M. Tennant, K. Feder, K. F. Dreyer, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, and M. G. Young, “Phase grating masks for photonic integrated circuits fabricated by e-beam writing and dry etching: Challenges to commercial applications,” Microelectron. Eng. 27(1-4), 427–434 (1995).
    [Crossref]
  10. E. Gamet, A. V. Tishchenko, and O. Parriaux, “Cancellation of the zeroth order in a phase mask by mode interplay in a high index contrast binary grating,” Appl. Opt. 46(27), 6719–6726 (2007).
    [Crossref] [PubMed]
  11. P. Laakkonen, M. Kuittinen, and J. Turunen, “Coated phase masks for proximity printing of Bragg gratings,” Opt. Commun. 192(3-6), 153–159 (2001).
    [Crossref]
  12. Y. Bourgin, Y. Jourlin, O. Parriaux, A. Talneau, S. Tonchev, C. Veillas, P. Karvinen, N. Passilly, A. R. Md Zain, R. M. De La Rue, J. Van Erps, and D. Troadec, “100 nm period grating by high-index phase-mask immersion lithography,” Opt. Express 18(10), 10557–10566 (2010).
    [Crossref] [PubMed]
  13. J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
    [Crossref]
  14. N. Cabrera and N. F. Mott, “Theory of the oxidation of metals,” Rep. Prog. Phys. 12(1), 163–184 (1949).
    [Crossref]
  15. T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “Iridium wire grid polarizer fabricated using atomic layer deposition,” Nanoscale Res. Lett. 6(1), 558 (2011).
    [Crossref] [PubMed]
  16. T. Siefke, D. Lehr, T. Weber, D. Voigt, E.-B. Kley, and A. Tünnermann, “Fabrication influences on deep-ultraviolet tungsten wire grid polarizers manufactured by double patterning,” Opt. Lett. 39(22), 6434–6437 (2014).
    [Crossref] [PubMed]
  17. E.-B. Kley, H. Schmidt, U. Zeitner, M. Banasch, and B. Schnabel, “Enhanced e-beam pattern writing for nano-optics based on character projection,” Proc. SPIE 8352, 83520M (2012).
  18. R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18(20), 20968–20978 (2010).
    [Crossref] [PubMed]

2014 (2)

2012 (1)

E.-B. Kley, H. Schmidt, U. Zeitner, M. Banasch, and B. Schnabel, “Enhanced e-beam pattern writing for nano-optics based on character projection,” Proc. SPIE 8352, 83520M (2012).

2011 (2)

T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “Iridium wire grid polarizer fabricated using atomic layer deposition,” Nanoscale Res. Lett. 6(1), 558 (2011).
[Crossref] [PubMed]

T. Weber, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett. 36(4), 445–447 (2011).
[Crossref] [PubMed]

2010 (3)

2009 (1)

2008 (1)

M. Ahn, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of 200 nm period blazed transmission gratings on silicon-on-insulator wafers,” J. Vac. Sci. Technol. B 26, 2179 (2008).

2007 (3)

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007).
[Crossref]

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

E. Gamet, A. V. Tishchenko, and O. Parriaux, “Cancellation of the zeroth order in a phase mask by mode interplay in a high index contrast binary grating,” Appl. Opt. 46(27), 6719–6726 (2007).
[Crossref] [PubMed]

2001 (1)

P. Laakkonen, M. Kuittinen, and J. Turunen, “Coated phase masks for proximity printing of Bragg gratings,” Opt. Commun. 192(3-6), 153–159 (2001).
[Crossref]

1999 (1)

1995 (1)

D. M. Tennant, K. Feder, K. F. Dreyer, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, and M. G. Young, “Phase grating masks for photonic integrated circuits fabricated by e-beam writing and dry etching: Challenges to commercial applications,” Microelectron. Eng. 27(1-4), 427–434 (1995).
[Crossref]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

1949 (1)

N. Cabrera and N. F. Mott, “Theory of the oxidation of metals,” Rep. Prog. Phys. 12(1), 163–184 (1949).
[Crossref]

Ahn, M.

M. Ahn, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of 200 nm period blazed transmission gratings on silicon-on-insulator wafers,” J. Vac. Sci. Technol. B 26, 2179 (2008).

Baggett, B.

Banasch, M.

E.-B. Kley, H. Schmidt, U. Zeitner, M. Banasch, and B. Schnabel, “Enhanced e-beam pattern writing for nano-optics based on character projection,” Proc. SPIE 8352, 83520M (2012).

Bich, A.

Bourgin, Y.

Buonanno, M.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007).
[Crossref]

Cabrera, N.

N. Cabrera and N. F. Mott, “Theory of the oxidation of metals,” Rep. Prog. Phys. 12(1), 163–184 (1949).
[Crossref]

Chen, L.

Y. Ye, Y. Zhou, and L. Chen, “Color filter based on a two-dimensional submicrometer metal grating,” Appl. Opt. 48(27), 5035–5039 (2009).
[PubMed]

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007).
[Crossref]

Cullmann, E.

De La Rue, R. M.

Delaney, W. F.

Deng, X.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007).
[Crossref]

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

Dreyer, K. F.

D. M. Tennant, K. Feder, K. F. Dreyer, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, and M. G. Young, “Phase grating masks for photonic integrated circuits fabricated by e-beam writing and dry etching: Challenges to commercial applications,” Microelectron. Eng. 27(1-4), 427–434 (1995).
[Crossref]

Feder, K.

D. M. Tennant, K. Feder, K. F. Dreyer, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, and M. G. Young, “Phase grating masks for photonic integrated circuits fabricated by e-beam writing and dry etching: Challenges to commercial applications,” Microelectron. Eng. 27(1-4), 427–434 (1995).
[Crossref]

Gamet, E.

Gnall, R. P.

D. M. Tennant, K. Feder, K. F. Dreyer, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, and M. G. Young, “Phase grating masks for photonic integrated circuits fabricated by e-beam writing and dry etching: Challenges to commercial applications,” Microelectron. Eng. 27(1-4), 427–434 (1995).
[Crossref]

Harzendorf, T.

Heilmann, R. K.

M. Ahn, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of 200 nm period blazed transmission gratings on silicon-on-insulator wafers,” J. Vac. Sci. Technol. B 26, 2179 (2008).

Hornung, M.

Johnson, E. G.

Jourlin, Y.

Karvinen, P.

Käsebier, T.

Kley, E.-B.

T. Siefke, D. Lehr, T. Weber, D. Voigt, E.-B. Kley, and A. Tünnermann, “Fabrication influences on deep-ultraviolet tungsten wire grid polarizers manufactured by double patterning,” Opt. Lett. 39(22), 6434–6437 (2014).
[Crossref] [PubMed]

E.-B. Kley, H. Schmidt, U. Zeitner, M. Banasch, and B. Schnabel, “Enhanced e-beam pattern writing for nano-optics based on character projection,” Proc. SPIE 8352, 83520M (2012).

T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “Iridium wire grid polarizer fabricated using atomic layer deposition,” Nanoscale Res. Lett. 6(1), 558 (2011).
[Crossref] [PubMed]

T. Weber, T. Käsebier, E.-B. Kley, and A. Tünnermann, “Broadband iridium wire grid polarizer for UV applications,” Opt. Lett. 36(4), 445–447 (2011).
[Crossref] [PubMed]

Knez, M.

T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “Iridium wire grid polarizer fabricated using atomic layer deposition,” Nanoscale Res. Lett. 6(1), 558 (2011).
[Crossref] [PubMed]

Koch, T. L.

D. M. Tennant, K. Feder, K. F. Dreyer, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, and M. G. Young, “Phase grating masks for photonic integrated circuits fabricated by e-beam writing and dry etching: Challenges to commercial applications,” Microelectron. Eng. 27(1-4), 427–434 (1995).
[Crossref]

Koehler, C.

Koren, U.

D. M. Tennant, K. Feder, K. F. Dreyer, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, and M. G. Young, “Phase grating masks for photonic integrated circuits fabricated by e-beam writing and dry etching: Challenges to commercial applications,” Microelectron. Eng. 27(1-4), 427–434 (1995).
[Crossref]

Kuittinen, M.

P. Laakkonen, M. Kuittinen, and J. Turunen, “Coated phase masks for proximity printing of Bragg gratings,” Opt. Commun. 192(3-6), 153–159 (2001).
[Crossref]

Laakkonen, P.

P. Laakkonen, M. Kuittinen, and J. Turunen, “Coated phase masks for proximity printing of Bragg gratings,” Opt. Commun. 192(3-6), 153–159 (2001).
[Crossref]

Lee, Y. T.

Lehr, D.

Liu, X.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007).
[Crossref]

Md Zain, A. R.

Miller, B. I.

D. M. Tennant, K. Feder, K. F. Dreyer, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, and M. G. Young, “Phase grating masks for photonic integrated circuits fabricated by e-beam writing and dry etching: Challenges to commercial applications,” Microelectron. Eng. 27(1-4), 427–434 (1995).
[Crossref]

Mott, N. F.

N. Cabrera and N. F. Mott, “Theory of the oxidation of metals,” Rep. Prog. Phys. 12(1), 163–184 (1949).
[Crossref]

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Parriaux, O.

Passilly, N.

Pernet, P.

Schattenburg, M. L.

M. Ahn, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of 200 nm period blazed transmission gratings on silicon-on-insulator wafers,” J. Vac. Sci. Technol. B 26, 2179 (2008).

Schmidt, H.

E.-B. Kley, H. Schmidt, U. Zeitner, M. Banasch, and B. Schnabel, “Enhanced e-beam pattern writing for nano-optics based on character projection,” Proc. SPIE 8352, 83520M (2012).

Schnabel, B.

E.-B. Kley, H. Schmidt, U. Zeitner, M. Banasch, and B. Schnabel, “Enhanced e-beam pattern writing for nano-optics based on character projection,” Proc. SPIE 8352, 83520M (2012).

Sciortino, P.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

Siefke, T.

Song, Y. M.

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Stuerzebecher, L.

Suleski, T. J.

Szeghalmi, A.

T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “Iridium wire grid polarizer fabricated using atomic layer deposition,” Nanoscale Res. Lett. 6(1), 558 (2011).
[Crossref] [PubMed]

Tai, S.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007).
[Crossref]

Talneau, A.

Tennant, D. M.

D. M. Tennant, K. Feder, K. F. Dreyer, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, and M. G. Young, “Phase grating masks for photonic integrated circuits fabricated by e-beam writing and dry etching: Challenges to commercial applications,” Microelectron. Eng. 27(1-4), 427–434 (1995).
[Crossref]

Tishchenko, A. V.

Tonchev, S.

Troadec, D.

Tünnermann, A.

Turunen, J.

P. Laakkonen, M. Kuittinen, and J. Turunen, “Coated phase masks for proximity printing of Bragg gratings,” Opt. Commun. 192(3-6), 153–159 (2001).
[Crossref]

Van Erps, J.

Veillas, C.

Voelkel, R.

Vogler, U.

Voigt, D.

Walters, F.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007).
[Crossref]

Wang, J. J.

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007).
[Crossref]

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

Weber, T.

Weible, K. J.

Ye, Y.

Young, M. G.

D. M. Tennant, K. Feder, K. F. Dreyer, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, and M. G. Young, “Phase grating masks for photonic integrated circuits fabricated by e-beam writing and dry etching: Challenges to commercial applications,” Microelectron. Eng. 27(1-4), 427–434 (1995).
[Crossref]

Yu, J. S.

Zeitner, U.

E.-B. Kley, H. Schmidt, U. Zeitner, M. Banasch, and B. Schnabel, “Enhanced e-beam pattern writing for nano-optics based on character projection,” Proc. SPIE 8352, 83520M (2012).

Zeitner, U. D.

Zhou, Y.

Zoberbier, R.

Appl. Opt. (2)

Appl. Phys. Lett. (2)

L. Chen, J. J. Wang, F. Walters, X. Deng, M. Buonanno, S. Tai, and X. Liu, “Large flexible nanowire grid visible polarizer made by nanoimprint lithography,” Appl. Phys. Lett. 90(6), 063111 (2007).
[Crossref]

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90(6), 061104 (2007).
[Crossref]

J. Vac. Sci. Technol. B (1)

M. Ahn, R. K. Heilmann, and M. L. Schattenburg, “Fabrication of 200 nm period blazed transmission gratings on silicon-on-insulator wafers,” J. Vac. Sci. Technol. B 26, 2179 (2008).

Microelectron. Eng. (1)

D. M. Tennant, K. Feder, K. F. Dreyer, R. P. Gnall, T. L. Koch, U. Koren, B. I. Miller, and M. G. Young, “Phase grating masks for photonic integrated circuits fabricated by e-beam writing and dry etching: Challenges to commercial applications,” Microelectron. Eng. 27(1-4), 427–434 (1995).
[Crossref]

Nanoscale Res. Lett. (1)

T. Weber, T. Käsebier, A. Szeghalmi, M. Knez, E.-B. Kley, and A. Tünnermann, “Iridium wire grid polarizer fabricated using atomic layer deposition,” Nanoscale Res. Lett. 6(1), 558 (2011).
[Crossref] [PubMed]

Opt. Commun. (2)

P. Laakkonen, M. Kuittinen, and J. Turunen, “Coated phase masks for proximity printing of Bragg gratings,” Opt. Commun. 192(3-6), 153–159 (2001).
[Crossref]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[Crossref]

Opt. Express (2)

Opt. Lett. (5)

Proc. SPIE (1)

E.-B. Kley, H. Schmidt, U. Zeitner, M. Banasch, and B. Schnabel, “Enhanced e-beam pattern writing for nano-optics based on character projection,” Proc. SPIE 8352, 83520M (2012).

Rep. Prog. Phys. (1)

N. Cabrera and N. F. Mott, “Theory of the oxidation of metals,” Rep. Prog. Phys. 12(1), 163–184 (1949).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Result of the modeling of the diffraction grating efficiencies. Top left: ± 1st transmitted order efficiency vs grating depth and duty cycle. Middle left: 0th transmitted order efficiency vs grating depth and duty cycle. Bottom left: extinction ratio η ± 1st/η0th vs grating depth and duty cycle [log scale]. Right: Optical intensity distribution under the phase-mask for an optimized phase-mask, the right part shows the different refractive indexes as color tones. The sub-windows displays this distribution at an arbitrary plane to show the contrast.
Fig. 2
Fig. 2 Left: Schematic view of the wire grid polarizer. The arrows show the electric field vector direction for TM (red) and TE (green) polarization. Right: Simulated transmittance of TM polarized light and extinction ratio for an iridium wire gird polarizer with a period of 100 nm a ridge width of 22 nm and a height of 150 nm
Fig. 3
Fig. 3 SEM-FIB micrograph of the phase-mask’s profile. The grating structure has been locally over-coated by a thin layer of platinum for the purpose of preparation of the FIB-cut.
Fig. 4
Fig. 4 Schematic fabrication of a wire grid polarizer. a) Initial layer stack b) Etched template grating c) Iridium coating c) Final polarizer.
Fig. 5
Fig. 5 Transmittance of the TM polarized light and TM/TE Extinction Ratio (ER) [dashed] versus wavelength of the reference polarizer. The vertical dotted line marks the operating wavelength and the table summarized the values at this wavelength.
Fig. 6
Fig. 6 Maps of the mask showing the transmission through the wire grid polarizer and the phase-mask in percentage of the incident intensity versus the position of the mask. Left: for 0th order with TM polarized light. Right: for ± 1st order with TM polarized light.
Fig. 7
Fig. 7 SEM micrograph of a 350 nm period grating transferred on photoresist
Fig. 8
Fig. 8 SEM micrograph of a 350 nm period grating printed by the double sided mask transferred into the silicon wafer by RIE. The Sub window shows the grating profile obtained by FIB.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

λ<p<2λ
± λ p =sin θ ±1st
Λ= λ 2nsinθ

Metrics