Abstract

Predictable tuning behavior and stable laser operation are both crucial for laser spectroscopy measurements. We report a sampled grating quantum cascade laser (QCL) with high spectral tuning stability over the entire tuning range. We have determined the minimum loss margin required to suppress undesired lasing modes in order to ensure predictable tuning behavior. We have quantified power fluctuations and drift of our devices by measuring the Allan deviation. To demonstrate the feasibility of sampled grating QCLs for high-precision molecular spectroscopy, we have built a simple transmission spectroscopy setup. Our results prove that sampled grating QCLs are suitable light sources for highly sensitive spectroscopy measurements.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors

Tobias S. Mansuripur, Stefan Menzel, Romain Blanchard, Laurent Diehl, Christian Pflügl, Yong Huang, Jae-Hyun Ryou, Russell D. Dupuis, Marko Loncar, and Federico Capasso
Opt. Express 20(21) 23339-23348 (2012)

Quantum cascade lasers with discrete and non equidistant extended tuning tailored by simulated annealing

Nicolas Villa, Grégory Strübi, Tobias Gresch, Jérémy Butet, Stéphane Blaser, and Antoine Müller
Opt. Express 27(19) 26701-26707 (2019)

Multi-wavelength sampled Bragg grating quantum cascade laser arrays

Xue-Feng Jia, Li-Jun Wang, Ning Zhuo, Jin-Chuan Zhang, Shen-Qiang Zhai, Jun-Qi Liu, Shu-Man Liu, Feng-Qi Liu, and Zhanguo Wang
Photon. Res. 6(7) 721-725 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
    [Crossref]
  2. P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21(4), 4518–4530 (2013).
    [Crossref] [PubMed]
  3. R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
    [Crossref]
  4. A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
    [Crossref]
  5. B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett. 21(13), 914–916 (2009).
    [Crossref]
  6. V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE Jour. Quant. Elec. 29(6), 1824–1834 (1993).
    [Crossref]
  7. B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. Denbaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(7), 762–764 (2000).
    [Crossref]
  8. T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J. H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express 20(21), 23339–23348 (2012).
    [Crossref] [PubMed]
  9. S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
    [Crossref]
  10. M. Carras, M. Garcia, X. Marcadet, O. Parillaud, A. De Rossi, and S. Bansropun, “Top grating index-coupled distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 93(1), 011109 (2008).
    [Crossref]
  11. C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17(15), 12929–12943 (2009).
    [Crossref] [PubMed]
  12. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).
  13. P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace gas monitoring by tunable diode laser absorption spectroscopy,” Appl. Phys. B 57, 131–139 (1993).
    [Crossref]
  14. R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 µm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(31), 12587–12592 (2009).
    [Crossref] [PubMed]
  15. A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67(3), 317–330 (1998).
    [Crossref]

2013 (2)

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21(4), 4518–4530 (2013).
[Crossref] [PubMed]

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

2012 (2)

2010 (1)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

2009 (5)

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17(15), 12929–12943 (2009).
[Crossref] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 µm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(31), 12587–12592 (2009).
[Crossref] [PubMed]

2008 (1)

M. Carras, M. Garcia, X. Marcadet, O. Parillaud, A. De Rossi, and S. Bansropun, “Top grating index-coupled distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 93(1), 011109 (2008).
[Crossref]

2000 (1)

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. Denbaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(7), 762–764 (2000).
[Crossref]

1998 (1)

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67(3), 317–330 (1998).
[Crossref]

1993 (2)

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace gas monitoring by tunable diode laser absorption spectroscopy,” Appl. Phys. B 57, 131–139 (1993).
[Crossref]

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE Jour. Quant. Elec. 29(6), 1824–1834 (1993).
[Crossref]

Bai, Y.

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

Bandyopadhyay, N.

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

Bansropun, S.

M. Carras, M. Garcia, X. Marcadet, O. Parillaud, A. De Rossi, and S. Bansropun, “Top grating index-coupled distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 93(1), 011109 (2008).
[Crossref]

Barton, J.

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. Denbaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(7), 762–764 (2000).
[Crossref]

Beck, M.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Belkin, M. A.

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17(15), 12929–12943 (2009).
[Crossref] [PubMed]

Belyanin, A.

Blanchard, R.

Bonetti, Y.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Capasso, F.

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21(4), 4518–4530 (2013).
[Crossref] [PubMed]

T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J. H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express 20(21), 23339–23348 (2012).
[Crossref] [PubMed]

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17(15), 12929–12943 (2009).
[Crossref] [PubMed]

Carras, M.

M. Carras, M. Garcia, X. Marcadet, O. Parillaud, A. De Rossi, and S. Bansropun, “Top grating index-coupled distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 93(1), 011109 (2008).
[Crossref]

Chuang, Z. M.

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE Jour. Quant. Elec. 29(6), 1824–1834 (1993).
[Crossref]

Coldren, L. A.

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. Denbaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(7), 762–764 (2000).
[Crossref]

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE Jour. Quant. Elec. 29(6), 1824–1834 (1993).
[Crossref]

Curl, R. F.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 µm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(31), 12587–12592 (2009).
[Crossref] [PubMed]

De Rossi, A.

M. Carras, M. Garcia, X. Marcadet, O. Parillaud, A. De Rossi, and S. Bansropun, “Top grating index-coupled distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 93(1), 011109 (2008).
[Crossref]

Denbaars, S. P.

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. Denbaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(7), 762–764 (2000).
[Crossref]

Diehl, L.

T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J. H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express 20(21), 23339–23348 (2012).
[Crossref] [PubMed]

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, “Mode-locked pulses from mid-infrared quantum cascade lasers,” Opt. Express 17(15), 12929–12943 (2009).
[Crossref] [PubMed]

Doty, J. H.

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 µm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(31), 12587–12592 (2009).
[Crossref] [PubMed]

Drummond, J. R.

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67(3), 317–330 (1998).
[Crossref]

Dupuis, R. D.

Faist, J.

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Fischer, M.

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Fish, G. A.

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. Denbaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(7), 762–764 (2000).
[Crossref]

Fried, A.

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67(3), 317–330 (1998).
[Crossref]

Garcia, M.

M. Carras, M. Garcia, X. Marcadet, O. Parillaud, A. De Rossi, and S. Bansropun, “Top grating index-coupled distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 93(1), 011109 (2008).
[Crossref]

Gini, E.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Gkortsas, V. M.

Gmachl, C.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

Gmachl, C. F.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Go, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

Goyal, A. K.

Grant, P.

Haffouz, S.

Ham, D.

Henry, B.

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67(3), 317–330 (1998).
[Crossref]

Hoffman, A. J.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Huang, Y.

Hugi, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Jayaraman, V.

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE Jour. Quant. Elec. 29(6), 1824–1834 (1993).
[Crossref]

Kärtner, F. X.

Kosterev, A. A.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

Kumar, C.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

Kuznetsova, L.

Lee, B. G.

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

Lewicki, R.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 µm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(31), 12587–12592 (2009).
[Crossref] [PubMed]

Li, X.

Liu, H. C.

Loncar, M.

Lu, Q. Y.

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

Lyakh, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

Mansuripur, T. S.

Marcadet, X.

M. Carras, M. Garcia, X. Marcadet, O. Parillaud, A. De Rossi, and S. Bansropun, “Top grating index-coupled distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 93(1), 011109 (2008).
[Crossref]

Mason, B.

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. Denbaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(7), 762–764 (2000).
[Crossref]

Maulini, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

McManus, B.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

Menzel, S.

Mücke, R.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace gas monitoring by tunable diode laser absorption spectroscopy,” Appl. Phys. B 57, 131–139 (1993).
[Crossref]

Parillaud, O.

M. Carras, M. Garcia, X. Marcadet, O. Parillaud, A. De Rossi, and S. Bansropun, “Top grating index-coupled distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 93(1), 011109 (2008).
[Crossref]

Patel, N.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

Pflugl, C.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

Pflügl, C.

T. S. Mansuripur, S. Menzel, R. Blanchard, L. Diehl, C. Pflügl, Y. Huang, J. H. Ryou, R. D. Dupuis, M. Loncar, and F. Capasso, “Widely tunable mid-infrared quantum cascade lasers using sampled grating reflectors,” Opt. Express 20(21), 23339–23348 (2012).
[Crossref] [PubMed]

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

Pusharsky, M.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

Rauter, P.

Razeghi, M.

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

Ryou, J. H.

Sanchez, A.

Schneider, H.

Sewell, S.

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67(3), 317–330 (1998).
[Crossref]

Slemr, F.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace gas monitoring by tunable diode laser absorption spectroscopy,” Appl. Phys. B 57, 131–139 (1993).
[Crossref]

Slivken, S.

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

Song, C. Y.

Terazzi, R.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

Tittel, F. K.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 µm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(31), 12587–12592 (2009).
[Crossref] [PubMed]

Tsekoun, A.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

Turner, G.

Wang, C. A.

Wang, C. Y.

Wang, Q. J.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

Wasilewski, Z. R.

Werle, P.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace gas monitoring by tunable diode laser absorption spectroscopy,” Appl. Phys. B 57, 131–139 (1993).
[Crossref]

Wert, B.

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67(3), 317–330 (1998).
[Crossref]

Wittmann, A.

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

Wysocki, G.

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 µm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(31), 12587–12592 (2009).
[Crossref] [PubMed]

Yao, Y.

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Zhang, H. F. A.

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

Appl. Phys. B (2)

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace gas monitoring by tunable diode laser absorption spectroscopy,” Appl. Phys. B 57, 131–139 (1993).
[Crossref]

A. Fried, B. Henry, B. Wert, S. Sewell, and J. R. Drummond, “Laboratory, ground-based, and airborne tunable diode laser systems: performance characteristics and applications in atmospheric studies,” Appl. Phys. B 67(3), 317–330 (1998).
[Crossref]

Appl. Phys. Lett. (4)

A. Hugi, R. Terazzi, Y. Bonetti, A. Wittmann, M. Fischer, M. Beck, J. Faist, and E. Gini, “External cavity quantum cascade laser tunable from 7.6 to 11.4 μm,” Appl. Phys. Lett. 95(6), 061103 (2009).
[Crossref]

S. Slivken, N. Bandyopadhyay, Y. Bai, Q. Y. Lu, and M. Razeghi, “Extended electrical tuning of quantum cascade lasers with digital concatenated gratings,” Appl. Phys. Lett. 103(23), 231110 (2013).
[Crossref]

M. Carras, M. Garcia, X. Marcadet, O. Parillaud, A. De Rossi, and S. Bansropun, “Top grating index-coupled distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 93(1), 011109 (2008).
[Crossref]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, Q. J. Wang, F. Capasso, C. Kumar, and N. Patel, “3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach,” Appl. Phys. Lett. 95(14), 141113 (2009).

Chem. Phys. Lett. (1)

R. F. Curl, F. Capasso, C. Gmachl, A. A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, and F. K. Tittel, “Quantum cascade lasers in chemical physics,” Chem. Phys. Lett. 487(1–3), 1–18 (2010).
[Crossref]

IEEE Jour. Quant. Elec. (1)

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE Jour. Quant. Elec. 29(6), 1824–1834 (1993).
[Crossref]

IEEE Photon. Technol. Lett. (2)

B. Mason, J. Barton, G. A. Fish, L. A. Coldren, and S. P. Denbaars, “Design of sampled grating DBR lasers with integrated semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 12(7), 762–764 (2000).
[Crossref]

B. G. Lee, H. F. A. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittmann, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 µm,” IEEE Photon. Technol. Lett. 21(13), 914–916 (2009).
[Crossref]

Nat. Photonics (1)

Y. Yao, A. J. Hoffman, and C. F. Gmachl, “Mid-infrared quantum cascade lasers,” Nat. Photonics 6(7), 432–439 (2012).
[Crossref]

Opt. Express (3)

Proc. Natl. Acad. Sci. U.S.A. (1)

R. Lewicki, J. H. Doty, R. F. Curl, F. K. Tittel, and G. Wysocki, “Ultrasensitive detection of nitric oxide at 5.33 µm by using external cavity quantum cascade laser-based Faraday rotation spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 106(31), 12587–12592 (2009).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Schematic SGDBR-QCL device structure. (a) Cross section of the device. (b) Top view of the grating layout.
Fig. 2
Fig. 2 Reflectivity combs of both mirror sections. The difference in reflectivity comb spacing ∆ν1−∆ν2 determines the reflectivity peak overlap of the adjacent modes. A large overlap results in low SMSR. The spectra were calculated using ∆ν1 = 9cm−1 (top and bottom), and ∆ν2 = 10 cm−1 (top) and ∆ν2 = 9.5 cm−1 (bottom).
Fig. 3
Fig. 3 Envelope of the reflectivity comb as a function of the number of grating periods per sampling period Ng.
Fig. 4
Fig. 4 SGDBR mirror design using transfer matrix simulation. (a) Reflectivity spectra of the two SGDBR mirror sections for Ng = 10 (in linear scale) and (b) the corresponding reflectivity product (in log scale). (c) Normalized adjacent mode loss margin Madj calculated for the entire tuning range. Mirror section 2 was tuned while mirror section 1 was kept fixed. Each circle shows the value of Madj as two reflectivity peaks are exactly aligned at that wavenumber.
Fig. 5
Fig. 5 The adjacent mode loss margin Madj increases with the number of grating periods Ng. The plotted values show Madj of the mode at the center of the tuning range (2192cm−1). The upper limit for Ng is determined by the necessary envelope width, which is proportional to 1/Ng.
Fig. 6
Fig. 6 Tuning performance of the SGDBR-QCL using a single DC source to heat one mirror section. The reflectivity comb spacing is ∆ν1 = 9 cm−1 and ∆ν2 = 9.7 cm−1. The open circles indicate the peak power per facet of the corresponding emission line (right vertical axis). (top) Front mirror heating causes discrete tuning towards lower wavenumbers. The numbers next to the emission peaks indicate the order in which the lasing modes appear. (center) Back mirror heating causes discrete tuning towards higher wavenumbers. (bottom) Optical output power and mode suppression ratio when combining the tuning range of both mirror sections. The side mode suppression is better than 20 dB across the entire tuning range. All measurements were acquired from the front facet of the laser.
Fig. 7
Fig. 7 Allan deviation of a SGDBR-QCL without tuning current (black like), and with 80 mA tuning current applied onto the back mirror (red line).
Fig. 8
Fig. 8 Comparison of the tuning behavior with and without AR coatings. Feedback from the facets reduces the SMSR, tuning range, and causes unstable tuning behavior. The coatings deposited on the tested devices consist of a single layer of Al2O3 (thickness ≈700 nm) that reduces the facet reflectivity from 28% to 0.9%. The number of grating periods of the tested device is Ng = 10.
Fig. 9
Fig. 9 Tuning stability of AR-coated SGDBR-QCLs. The tuning behavior becomes more predictable with increasing number of grating periods Ng, since the adjacent mode loss margin Madj increases. If Madj is too low, then the mode jumps chaotically between SGDBR modes. Ng = 4 corresponds to an adjacent mode loss margin Madj = 0.18 and Ng = 10 corresponds to Madj = 0.31.
Fig. 10
Fig. 10 Comparison of the transmission spectrum measured with a SGDBR-QCL and a standard FTIR spectrometer. The sample was a 400 µm thick sheet of Polyurethane.
Fig. 11
Fig. 11 Driving schemes for SGDBR-QCLs. (a) Simple tuning scheme: The gain section is pumped with short current pulses to provide gain. A small DC current is applied to one mirror section to heat it up via the Joule effect and tune the laser emission. (b) High power operation: A small pulse is overlaid on both mirror sections to reduce absorption losses. The pulse current remains low enough to prevent self lasing of the mirror section.
Fig. 12
Fig. 12 Optical output power and SMSR of a SGDBR-QCL. Pumping the gain section at an injection current of 750 mA and leaving the mirrors unpumped yields good SMSR over the entire tuning range (blue circles). Increasing the current injected into the gain section to 1000 mA ( = rollover current) results in slightly higher output power (green diamonds). In this case, the SMSR increases for back mirror tuning but decreases for front mirror tuning. When the gain section is pumped at a relatively low injection current (750 mA), but both mirror sections are pumped with a small current pulse (100 mA), the output power almost triples. The increase of the output power depends on the absorption of the unpumped section, which is mostly a function of the doping concentration in the active region and waveguide.
Fig. 13
Fig. 13 Tuning stability of the SGDBR-QCL with Ng = 10 for increasing gain section pumping. The optical output power increases as the gain section is pumped at higher currents, but the SMSR decreases. The peak power given in each panel was measured at no tuning current.
Fig. 14
Fig. 14 The time series x is split into subgroups of size k. As(k) is the average value of each subgroup. The Allan deviation is calculated from the series of averages As(k).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ν rep = ν 1 ν 2 ν 1 ν 2
M adj = ln( R 1 ( ν 1 ) R 2 ( ν 1 ) / R 1 ( ν 0 ) R 2 ( ν 0 ) ) ln( R 1 ( ν 0 ) R 2 ( ν 0 ) )
x i = 1 X ¯ X i i=1N
A s (k)= 1 k l=1 k x (s1)k+l
σ A (k)= 1 2m s=1 m [ A s+1 (k) A s (k) ] 2
m=M1

Metrics