Abstract

A highly sensitive optical fiber twist sensor has been proposed by employing a Sagnac interferometer based on polarization-maintaining elliptical core fibers (PM-ECFs). The twist effects have been theoretically analyzed and experimentally demonstrated. Based on the photoelastic effect, the resonance wavelength linearly shifts with the increment of twist and the wavelength shift is also dependent on the torsion direction. The maximum torsion sensitivities reach 18.60nm/(rad/m) for clockwise (CW) torsion direction and 15.83nm/(rad/m) for anticlockwise (ACW) torsion direction, respectively. To eliminate the temperature cross-sensitivity effect, a sensor matrix for simultaneous measurement of twist and temperature has also been obtained. Moreover, theoretical and experimental investigations indicate that by optimizing the refractive index difference between the core and cladding, core ellipticity and cladding diameter, the twist sensitivity could be further improved.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Multi-mode interferometer-based twist sensor with low temperature sensitivity employing square coreless fibers

Binbin Song, Yinping Miao, Wei Lin, Hao Zhang, Jixuan Wu, and Bo Liu
Opt. Express 21(22) 26806-26811 (2013)

Experimental and theoretical study of the in- fiber twist sensor based on quasi-fan Solc structure filter

Chunran Sun, Muguang Wang, and Shuisheng Jian
Opt. Express 25(17) 19955-19965 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Y. Lin, L. A. Wang, and G. W. Chern, “Corrugated long-period fiber gratings as strain, torsion, and bending sensors,” J. Lightwave Technol. 19(8), 1159–1168 (2001).
    [Crossref]
  2. J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
    [Crossref]
  3. D. E. Ceballos-Herrera, I. Torres-Gómez, A. Martinez-Ríos, L. García, and J. J. Sanchez-Mondragón, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
    [Crossref]
  4. R. Gao, Y. Jiang, and L. Jiang, “Multi-phase-shifted helical long period fiber grating based temperature-insensitive optical twist sensor,” Opt. Express 22(13), 15697–15709 (2014).
    [Crossref] [PubMed]
  5. W. Yiping, M. Wang, and X. Huang, “In fiber Bragg grating twist sensor based on analysis of polarization dependent loss,” Opt. Express 21(10), 11913–11920 (2013).
    [Crossref] [PubMed]
  6. J. Wo, M. Jiang, M. Malnou, Q. Sun, J. Zhang, P. P. Shum, and D. Liu, “Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser,” Opt. Express 20(3), 2844–2850 (2012).
    [Crossref] [PubMed]
  7. C. Y. Shen, Y. Zhang, W. J. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
    [Crossref]
  8. X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photon. Technol. Lett. 18(24), 2596–2598 (2006).
    [Crossref]
  9. S. M. Nalawade, S. S. Harnol, and H. V. Thakur, “Temperature and strain independent modal interferometric torsion sensor using photonic crystal fiber,” IEEE Sens. J. 12(8), 2614–2615 (2012).
    [Crossref]
  10. D. Lesnik and D. Donlagic, “In-line, fiber-optic polarimetric twist/torsion sensor,” Opt. Lett. 38(9), 1494–1496 (2013).
    [Crossref] [PubMed]
  11. O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
    [Crossref]
  12. X. Xi, G. K. L. Wong, T. Weiss, and P. S. J. Russell, “Measuring mechanical strain and twist using helical photonic crystal fiber,” Opt. Lett. 38(24), 5401–5404 (2013).
    [Crossref] [PubMed]
  13. H. Xuan, W. Jin, M. Zhang, J. Ju, and Y. Liao, “In-fiber polarimeters based on hollow-core photonic bandgap fibers,” Opt. Express 17(15), 13246–13254 (2009).
    [Crossref] [PubMed]
  14. B. Song, Y. Miao, W. Lin, H. Zhang, J. Wu, and B. Liu, “Multi-mode interferometer-based twist sensor with low temperature sensitivity employing square coreless fibers,” Opt. Express 21(22), 26806–26811 (2013).
    [Crossref] [PubMed]
  15. O. Frazão, S. O. Silva, J. M. Baptista, J. L. Santos, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, “Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber,” Appl. Opt. 47(27), 4841–4848 (2008).
    [Crossref] [PubMed]
  16. O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett. 35(16), 2777–2779 (2010).
    [Crossref] [PubMed]
  17. W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(21), 1639–1641 (2011).
    [Crossref]
  18. H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(20), 1539–1541 (2010).
    [Crossref]
  19. P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer,” IEEE Photon. Technol. Lett. 23(13), 920–922 (2011).
    [Crossref]
  20. D. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6(7), 1217–1224 (1988).
    [Crossref]
  21. T. Geisler and S. Herstrøm, “Measured phase and group birefringence in elliptical core fibers with systematically varied ellipticities,” Opt. Express 19(26), B283–B288 (2011).
    [Crossref] [PubMed]
  22. X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
    [Crossref]
  23. Y. P. Wang and Y. J. Rao, “Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously,” Electron. Lett. 40(3), 164–166 (2004).
    [Crossref]

2014 (2)

R. Gao, Y. Jiang, and L. Jiang, “Multi-phase-shifted helical long period fiber grating based temperature-insensitive optical twist sensor,” Opt. Express 22(13), 15697–15709 (2014).
[Crossref] [PubMed]

C. Y. Shen, Y. Zhang, W. J. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

2013 (4)

2012 (3)

J. Wo, M. Jiang, M. Malnou, Q. Sun, J. Zhang, P. P. Shum, and D. Liu, “Twist sensor based on axial strain insensitive distributed Bragg reflector fiber laser,” Opt. Express 20(3), 2844–2850 (2012).
[Crossref] [PubMed]

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

S. M. Nalawade, S. S. Harnol, and H. V. Thakur, “Temperature and strain independent modal interferometric torsion sensor using photonic crystal fiber,” IEEE Sens. J. 12(8), 2614–2615 (2012).
[Crossref]

2011 (3)

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer,” IEEE Photon. Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

T. Geisler and S. Herstrøm, “Measured phase and group birefringence in elliptical core fibers with systematically varied ellipticities,” Opt. Express 19(26), B283–B288 (2011).
[Crossref] [PubMed]

2010 (3)

O. Frazão, R. M. Silva, J. Kobelke, and K. Schuster, “Temperature- and strain-independent torsion sensor using a fiber loop mirror based on suspended twin-core fiber,” Opt. Lett. 35(16), 2777–2779 (2010).
[Crossref] [PubMed]

H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

D. E. Ceballos-Herrera, I. Torres-Gómez, A. Martinez-Ríos, L. García, and J. J. Sanchez-Mondragón, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

2009 (2)

H. Xuan, W. Jin, M. Zhang, J. Ju, and Y. Liao, “In-fiber polarimeters based on hollow-core photonic bandgap fibers,” Opt. Express 17(15), 13246–13254 (2009).
[Crossref] [PubMed]

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[Crossref]

2008 (1)

2007 (1)

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

2006 (1)

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photon. Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

2004 (1)

Y. P. Wang and Y. J. Rao, “Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously,” Electron. Lett. 40(3), 164–166 (2004).
[Crossref]

2001 (1)

1988 (1)

D. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6(7), 1217–1224 (1988).
[Crossref]

Albert, J.

C. Y. Shen, Y. Zhang, W. J. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

Baptista, J. M.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[Crossref]

O. Frazão, S. O. Silva, J. M. Baptista, J. L. Santos, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, “Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber,” Appl. Opt. 47(27), 4841–4848 (2008).
[Crossref] [PubMed]

Bennion, I.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photon. Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

Ceballos-Herrera, D. E.

D. E. Ceballos-Herrera, I. Torres-Gómez, A. Martinez-Ríos, L. García, and J. J. Sanchez-Mondragón, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

Chan, C. C.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer,” IEEE Photon. Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Chen, L. H.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer,” IEEE Photon. Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Chen, W. G.

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Chen, X.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photon. Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

Chern, G. W.

Chung, Y.

H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Dong, X. Y.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer,” IEEE Photon. Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Donlagic, D.

Frazão, O.

Gao, R.

García, L.

D. E. Ceballos-Herrera, I. Torres-Gómez, A. Martinez-Ríos, L. García, and J. J. Sanchez-Mondragón, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

Geisler, T.

Geng, P. C.

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

Gong, T. X.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer,” IEEE Photon. Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Harnol, S. S.

S. M. Nalawade, S. S. Harnol, and H. V. Thakur, “Temperature and strain independent modal interferometric torsion sensor using photonic crystal fiber,” IEEE Sens. J. 12(8), 2614–2615 (2012).
[Crossref]

Herstrøm, S.

Huang, X.

Jesus, C.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[Crossref]

Jian, S. S.

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Jiang, L.

Jiang, M.

Jiang, Y.

Jin, W.

Jin, Y. X.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer,” IEEE Photon. Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Ju, J.

Kim, B.

H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Kim, H. M.

H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Kim, T. H.

H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

Kobelke, J.

Lesnik, D.

Li, X. L.

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

Liao, Y.

Lin, C. Y.

Lin, W.

Liu, B.

Liu, D.

Lou, S. Q.

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Lu, W. L.

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Malnou, M.

Martinez-Ríos, A.

D. E. Ceballos-Herrera, I. Torres-Gómez, A. Martinez-Ríos, L. García, and J. J. Sanchez-Mondragón, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

Miao, Y.

Mortimore, D.

D. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol. 6(7), 1217–1224 (1988).
[Crossref]

Nalawade, S. M.

S. M. Nalawade, S. S. Harnol, and H. V. Thakur, “Temperature and strain independent modal interferometric torsion sensor using photonic crystal fiber,” IEEE Sens. J. 12(8), 2614–2615 (2012).
[Crossref]

Rao, Y. J.

Y. P. Wang and Y. J. Rao, “Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously,” Electron. Lett. 40(3), 164–166 (2004).
[Crossref]

Roy, P.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[Crossref]

Ruan, J.

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

Russell, P. S. J.

Sanchez-Mondragón, J. J.

D. E. Ceballos-Herrera, I. Torres-Gómez, A. Martinez-Ríos, L. García, and J. J. Sanchez-Mondragón, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

Santos, J. L.

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[Crossref]

O. Frazão, S. O. Silva, J. M. Baptista, J. L. Santos, G. Statkiewicz-Barabach, W. Urbanczyk, and J. Wojcik, “Simultaneous measurement of multiparameters using a Sagnac interferometer with polarization maintaining side-hole fiber,” Appl. Opt. 47(27), 4841–4848 (2008).
[Crossref] [PubMed]

Schuster, K.

Shen, C. Y.

C. Y. Shen, Y. Zhang, W. J. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

Shum, P.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Shum, P. P.

Silva, R. M.

Silva, S. O.

Song, B.

Statkiewicz-Barabach, G.

Sun, Q.

Tam, H. Y.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

Thakur, H. V.

S. M. Nalawade, S. S. Harnol, and H. V. Thakur, “Temperature and strain independent modal interferometric torsion sensor using photonic crystal fiber,” IEEE Sens. J. 12(8), 2614–2615 (2012).
[Crossref]

Torres-Gómez, I.

D. E. Ceballos-Herrera, I. Torres-Gómez, A. Martinez-Ríos, L. García, and J. J. Sanchez-Mondragón, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

Urbanczyk, W.

Wang, L. A.

Wang, L. W.

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Wang, M.

Wang, Y. P.

Y. P. Wang and Y. J. Rao, “Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously,” Electron. Lett. 40(3), 164–166 (2004).
[Crossref]

Weiss, T.

Wo, J.

Wojcik, J.

Wong, G. K. L.

Wu, J.

Xi, X.

Xuan, H.

Xue, X. L.

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

Yin, L. M.

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

Yiping, W.

Zhang, H.

B. Song, Y. Miao, W. Lin, H. Zhang, J. Wu, and B. Liu, “Multi-mode interferometer-based twist sensor with low temperature sensitivity employing square coreless fibers,” Opt. Express 21(22), 26806–26811 (2013).
[Crossref] [PubMed]

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

Zhang, J.

Zhang, L.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photon. Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

Zhang, M.

Zhang, W. G.

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

Zhang, Y.

C. Y. Shen, Y. Zhang, W. J. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

Zhang, Y. F.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer,” IEEE Photon. Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Zhou, K.

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photon. Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

Zhou, W. J.

C. Y. Shen, Y. Zhang, W. J. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

Zou, H.

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

Zu, P.

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer,” IEEE Photon. Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113 (2007).
[Crossref]

C. Y. Shen, Y. Zhang, W. J. Zhou, and J. Albert, “Au-coated tilted fiber Bragg grating twist sensor based on surface plasmon resonance,” Appl. Phys. Lett. 104(7), 071106 (2014).
[Crossref]

Electron. Lett. (1)

Y. P. Wang and Y. J. Rao, “Long period fibre grating torsion sensor measuring twist rate and determining twist direction simultaneously,” Electron. Lett. 40(3), 164–166 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (5)

X. Chen, K. Zhou, L. Zhang, and I. Bennion, “In-fiber twist sensor based on a fiber Bragg grating with 81° tilted structure,” IEEE Photon. Technol. Lett. 18(24), 2596–2598 (2006).
[Crossref]

O. Frazão, C. Jesus, J. M. Baptista, J. L. Santos, and P. Roy, “Fiber-optic interferometric torsion sensor based on a two-LP-mode operation in birefringent fiber,” IEEE Photon. Technol. Lett. 21(17), 1277–1279 (2009).
[Crossref]

W. G. Chen, S. Q. Lou, L. W. Wang, H. Zou, W. L. Lu, and S. S. Jian, “Highly sensitive torsion sensor based on sagnac interferometer using side-leakage photonic crystal fiber,” IEEE Photon. Technol. Lett. 23(21), 1639–1641 (2011).
[Crossref]

H. M. Kim, T. H. Kim, B. Kim, and Y. Chung, “Temperature-insensitive torsion sensor with enhanced sensitivity by use of a highly birefringent photonic crystal fiber,” IEEE Photon. Technol. Lett. 22(20), 1539–1541 (2010).
[Crossref]

P. Zu, C. C. Chan, Y. X. Jin, T. X. Gong, Y. F. Zhang, L. H. Chen, and X. Y. Dong, “A temperature-insensitive twist sensor by using low-birefringence photonic-crystal-fiber-based sagnac interferometer,” IEEE Photon. Technol. Lett. 23(13), 920–922 (2011).
[Crossref]

IEEE Sens. J. (2)

S. M. Nalawade, S. S. Harnol, and H. V. Thakur, “Temperature and strain independent modal interferometric torsion sensor using photonic crystal fiber,” IEEE Sens. J. 12(8), 2614–2615 (2012).
[Crossref]

D. E. Ceballos-Herrera, I. Torres-Gómez, A. Martinez-Ríos, L. García, and J. J. Sanchez-Mondragón, “Torsion sensing characteristics of mechanically induced long-period holey fiber gratings,” IEEE Sens. J. 10(7), 1200–1205 (2010).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

J. Ruan, W. G. Zhang, H. Zhang, L. M. Yin, X. L. Li, P. C. Geng, and X. L. Xue, “Temperature and twist characteristics of cascaded long-period fiber gratings written in polarization-maintaining fibers,” J. Opt. 14(10), 105403 (2012).
[Crossref]

Opt. Express (6)

Opt. Lett. (3)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic experiment setup of the SI-based twist sensing system. Inset: Enlarged view of sensor head (left) and microscopic cross sectional image of the PM-ECF (right).
Fig. 2
Fig. 2 (a). Reflection spectrum of the SI-based PM-ECF with no twist applied. (b) Reflection spectral evolution of the SI-based PM-ECF when the twist angle ranges from −120 degrees to 120 degrees.
Fig. 3
Fig. 3 Wavelength shift as functions of the twist rate for (a) Dip a, (b) Dip b, (c) Dip c, and (d) Dip d, respectively.
Fig. 4
Fig. 4 Temperature dependences of the wavelength shift for the four interference spectral dips.
Fig. 5
Fig. 5 (a). Interference spectra of the PM-ECF before and after HF acid etching; (b) Operation wavelength shift of Dip c as a functions of twist angle for the PM-ECF before and after HF acid etching.

Tables (2)

Tables Icon

Table 1 A comparison of the twist sensitivity between our work with other related reports

Tables Icon

Table 2 A comparison of the twist sensitivities at 1310nm for different settings of core/cladding refractive index and core ellipticity.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ n s = g s τ n s , Δ n f = g f τ n f
δ λ = λ τ ( g s n s g f n f ) / ( B λ B λ )
δ λ i = k T i Δ T + k τ i Δ τ , ( i = a , d )
k T = λ B λ B λ ( B T + B L L T ) , K τ = λ B λ B λ ( g s n s g f n f )
( Δ T Δ τ ) = 1 D ( k τ d k τ a k T d k T a ) ( Δ λ a Δ λ d )
CW case :     ( Δ T Δ τ ) = 1 4.9008 ( 18.6 10.68 0.29 0.43 ) ( Δ λ a Δ λ d ) ACW case :   ( Δ T Δ τ ) = 1 1.7432 ( 14.73 15.83 0.29 0.43 ) ( Δ λ a Δ λ d )
d δ λ d τ = λ ( g s n s g f n f ) / B 0

Metrics