Abstract

We present modeling on the millimeter (mm)-wave modulation of vertical-cavity surface-emitting laser (VCSEL) with a transverse coupled cavity (TCC). We show that strong slow-light feedback can induce 300% boosting of the modulation bandwidth of the TCC-VCSEL. Also, the strong lateral feedback can induce resonance modulation over passbands centered on frequencies as high as 3.8 times the VCSEL bandwidth. The slow-light feedback is modeled by a time-delay rate equation model that takes into account the multiple round trips as well as the optical loss and phase delay in each round trip in the feedback cavity.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Greatly enhanced modulation response of injection-locked multimode VCSELs

Devang Parekh, Xiaoxue Zhao, Werner Hofmann, Markus C. Amann, Luis A. Zenteno, and Connie J. Chang-Hasnain
Opt. Express 16(26) 21582-21586 (2008)

Bandwidth improvement for slow light using amplification characteristics of cascaded vertical-cavity surface-emitting lasers

Y.-N. Ma, B. Luo, L.-S. Yan, W. Pan, X. H. Zou, J. P. Zhao, N. Q. Li, and X. K. Liu
Opt. Lett. 38(3) 308-310 (2013)

Theoretical investigations on the polarization performances of current-modulated VCSELs subject to weak optical feedback

Xiao-Fa Wang, Guang-Qiong Xia, and Zheng-Mao Wu
J. Opt. Soc. Am. B 26(1) 160-168 (2009)

References

  • View by:
  • |
  • |
  • |

  1. K. Iga, “Vertical-cavity surface-emitting laser: Its conception and evolution,” Jpn. J. Appl. Phys. 47(11R), 1–10 (2008).
    [Crossref]
  2. F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24(12), 4502–4513 (2006).
    [Crossref]
  3. J. W. Scott, B. J. Thibeault, C. J. Mahon, L. A. Coldren, and F. H. Peters, “High modulation efficiency of intracavity contacted vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 65(12), 1483–1485 (1994).
    [Crossref]
  4. A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850 nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95(13), 031101 (2009).
    [Crossref]
  5. N. Suzuki, T. Anan, H. Hatakeyama, K. Fukatsu, K. Yashiki, K. Tokutome, T. Akagawa, and M. Tsuji, “High speed 1.1-μm-range InGaAs-based VCSELs,” IEICE Trans. Electron. E92-C(7), 942–950 (2009).
    [Crossref]
  6. P. Westbergh, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
    [Crossref]
  7. A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1552–1567 (2011).
    [Crossref]
  8. X. Zhao, D. Parekh, E. K. Lau, H. K. Sung, M. C. Wu, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Novel cascaded injection-locked 1.55-μm VCSELs with 66 GHz modulation bandwidth,” Opt. Express 15(22), 14810–14816 (2007).
    [Crossref] [PubMed]
  9. S. Lee, D. Parekh, T. Shindo, W. Yang, P. Guo, D. Takahashi, N. Nishiyama, C. J. Chang-Hasnain, and S. Arai, “Bandwidth enhancement of injection-locked distributed reflector lasers with wire like active regions,” Opt. Express 18(16), 16370–16378 (2010).
    [Crossref] [PubMed]
  10. R. Gordon, A. P. Heberle, and J. R. A. Cleaver, “Transverse mode locking in microcavity lasers,” Appl. Phys. Lett. 81(24), 4523–4525 (2002).
    [Crossref]
  11. C. Chen and K. D. Choquette, “Analog and digital functionalities of coupled cavity surface emitting lasers,” J. Lightwave Technol. 28(7), 1003–1010 (2010).
    [Crossref]
  12. A. Paraskevopoulos, H. J. Hansel, W. D. Motzow, H. Klein et. al, “Ultra-high-bandwidth (>35 GHz) electrooptically-modulated VCSEL,” OFC/NFOES 2006, Anaheim, PDP22 (2006).
  13. H. Dalir and F. Koyama, “Modulation bandwidth enhancement of VCSELs with lateral optical feedback of slow light,” in Proceedings of IEEE International Semiconductor Laser Conference (IEEE, 2010), 83–84.
    [Crossref]
  14. H. Dalir and F. Koyamad, “Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light,” IEICE Electron. Express 8(13), 1075–1081 (2011).
    [Crossref]
  15. H. Dalir and F. Koyama, “29 GHz directly modulated 980 nm vertical-cavity surface emitting lasers with bow-tie shape transverse coupled cavity,” Appl. Phys. Lett. 103(9), 091109 (2013).
    [Crossref]
  16. H. Dalir and F. Koyama, “High speed operation of bow-tie-shaped oxide aperture VCSELs with photon-photon resonance,” Appl. Phys. Express 7(2), 022102 (2014).
    [Crossref]
  17. H. Dalir, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “High frequency modulation of transverse-coupled- cavity VCSELs for radio over fiber applications,” IEEE Photon. Technol. Lett. 26(3), 281–284 (2014).
    [Crossref]
  18. H. Dalir, M. Ahmed, A. Bakry, and F. Koyama, “Compact electro-absorption modulator integrated with vertical-cavity surface-emitting laser for highly efficient millimeter-wave modulation,” Appl. Phys. Lett. 105(8), 081113 (2014).
    [Crossref]
  19. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
    [Crossref]
  20. M. Ahmed, A. Bakry, R. Altuwirqi, M. S. Alghamdi, and F. Koyama, “Enhancing modulation bandwidth of semiconductor lasers beyond 50 GHz by strong optical feedback for use in mm-wave radio over fiber links,” Jpn. J. Appl. Phys. 52(12), 124103 (2013).
    [Crossref]
  21. M. Ahmed and M. Yamada, “An infinite order perturbation approach to gain calculation in injection semiconductor lasers,” J. Appl. Phys. 84(6), 3004–3015 (1998).
    [Crossref]
  22. I. Montrosset and P. Bardella, “Laser dynamics providing enhanced modulation bandwidth,” Proc. SPIE 9134, 91340H (2014).
  23. M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
    [Crossref]
  24. U. Feiste, “Optimization of modulation bandwidth in DBR lasers with detuned Bragg reflectors,” IEEE J. Quantum Electron. 34(12), 2371–2379 (1998).
    [Crossref]
  25. P. Bardella and I. Montrosset, “A new design procedure for DBR lasers exploiting the photon–photon resonance to achieve extended modulation bandwidth,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502408 (2013).
    [Crossref]
  26. O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. StAlnacke, and L. Backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33(6), 488–489 (1997).
    [Crossref]

2014 (4)

H. Dalir and F. Koyama, “High speed operation of bow-tie-shaped oxide aperture VCSELs with photon-photon resonance,” Appl. Phys. Express 7(2), 022102 (2014).
[Crossref]

H. Dalir, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “High frequency modulation of transverse-coupled- cavity VCSELs for radio over fiber applications,” IEEE Photon. Technol. Lett. 26(3), 281–284 (2014).
[Crossref]

H. Dalir, M. Ahmed, A. Bakry, and F. Koyama, “Compact electro-absorption modulator integrated with vertical-cavity surface-emitting laser for highly efficient millimeter-wave modulation,” Appl. Phys. Lett. 105(8), 081113 (2014).
[Crossref]

I. Montrosset and P. Bardella, “Laser dynamics providing enhanced modulation bandwidth,” Proc. SPIE 9134, 91340H (2014).

2013 (3)

M. Ahmed, A. Bakry, R. Altuwirqi, M. S. Alghamdi, and F. Koyama, “Enhancing modulation bandwidth of semiconductor lasers beyond 50 GHz by strong optical feedback for use in mm-wave radio over fiber links,” Jpn. J. Appl. Phys. 52(12), 124103 (2013).
[Crossref]

P. Bardella and I. Montrosset, “A new design procedure for DBR lasers exploiting the photon–photon resonance to achieve extended modulation bandwidth,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502408 (2013).
[Crossref]

H. Dalir and F. Koyama, “29 GHz directly modulated 980 nm vertical-cavity surface emitting lasers with bow-tie shape transverse coupled cavity,” Appl. Phys. Lett. 103(9), 091109 (2013).
[Crossref]

2012 (1)

P. Westbergh, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

2011 (2)

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1552–1567 (2011).
[Crossref]

H. Dalir and F. Koyamad, “Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light,” IEICE Electron. Express 8(13), 1075–1081 (2011).
[Crossref]

2010 (2)

2009 (2)

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850 nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95(13), 031101 (2009).
[Crossref]

N. Suzuki, T. Anan, H. Hatakeyama, K. Fukatsu, K. Yashiki, K. Tokutome, T. Akagawa, and M. Tsuji, “High speed 1.1-μm-range InGaAs-based VCSELs,” IEICE Trans. Electron. E92-C(7), 942–950 (2009).
[Crossref]

2008 (1)

K. Iga, “Vertical-cavity surface-emitting laser: Its conception and evolution,” Jpn. J. Appl. Phys. 47(11R), 1–10 (2008).
[Crossref]

2007 (2)

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

X. Zhao, D. Parekh, E. K. Lau, H. K. Sung, M. C. Wu, W. Hofmann, M. C. Amann, and C. J. Chang-Hasnain, “Novel cascaded injection-locked 1.55-μm VCSELs with 66 GHz modulation bandwidth,” Opt. Express 15(22), 14810–14816 (2007).
[Crossref] [PubMed]

2006 (1)

2002 (1)

R. Gordon, A. P. Heberle, and J. R. A. Cleaver, “Transverse mode locking in microcavity lasers,” Appl. Phys. Lett. 81(24), 4523–4525 (2002).
[Crossref]

1998 (2)

U. Feiste, “Optimization of modulation bandwidth in DBR lasers with detuned Bragg reflectors,” IEEE J. Quantum Electron. 34(12), 2371–2379 (1998).
[Crossref]

M. Ahmed and M. Yamada, “An infinite order perturbation approach to gain calculation in injection semiconductor lasers,” J. Appl. Phys. 84(6), 3004–3015 (1998).
[Crossref]

1997 (1)

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. StAlnacke, and L. Backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33(6), 488–489 (1997).
[Crossref]

1994 (1)

J. W. Scott, B. J. Thibeault, C. J. Mahon, L. A. Coldren, and F. H. Peters, “High modulation efficiency of intracavity contacted vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 65(12), 1483–1485 (1994).
[Crossref]

1980 (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Ahmed, M.

H. Dalir, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “High frequency modulation of transverse-coupled- cavity VCSELs for radio over fiber applications,” IEEE Photon. Technol. Lett. 26(3), 281–284 (2014).
[Crossref]

H. Dalir, M. Ahmed, A. Bakry, and F. Koyama, “Compact electro-absorption modulator integrated with vertical-cavity surface-emitting laser for highly efficient millimeter-wave modulation,” Appl. Phys. Lett. 105(8), 081113 (2014).
[Crossref]

M. Ahmed, A. Bakry, R. Altuwirqi, M. S. Alghamdi, and F. Koyama, “Enhancing modulation bandwidth of semiconductor lasers beyond 50 GHz by strong optical feedback for use in mm-wave radio over fiber links,” Jpn. J. Appl. Phys. 52(12), 124103 (2013).
[Crossref]

M. Ahmed and M. Yamada, “An infinite order perturbation approach to gain calculation in injection semiconductor lasers,” J. Appl. Phys. 84(6), 3004–3015 (1998).
[Crossref]

Akagawa, T.

N. Suzuki, T. Anan, H. Hatakeyama, K. Fukatsu, K. Yashiki, K. Tokutome, T. Akagawa, and M. Tsuji, “High speed 1.1-μm-range InGaAs-based VCSELs,” IEICE Trans. Electron. E92-C(7), 942–950 (2009).
[Crossref]

Alghamdi, M. S.

M. Ahmed, A. Bakry, R. Altuwirqi, M. S. Alghamdi, and F. Koyama, “Enhancing modulation bandwidth of semiconductor lasers beyond 50 GHz by strong optical feedback for use in mm-wave radio over fiber links,” Jpn. J. Appl. Phys. 52(12), 124103 (2013).
[Crossref]

Altuwirqi, R.

M. Ahmed, A. Bakry, R. Altuwirqi, M. S. Alghamdi, and F. Koyama, “Enhancing modulation bandwidth of semiconductor lasers beyond 50 GHz by strong optical feedback for use in mm-wave radio over fiber links,” Jpn. J. Appl. Phys. 52(12), 124103 (2013).
[Crossref]

Amann, M. C.

Anan, T.

N. Suzuki, T. Anan, H. Hatakeyama, K. Fukatsu, K. Yashiki, K. Tokutome, T. Akagawa, and M. Tsuji, “High speed 1.1-μm-range InGaAs-based VCSELs,” IEICE Trans. Electron. E92-C(7), 942–950 (2009).
[Crossref]

Arai, S.

Backbom, L.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. StAlnacke, and L. Backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33(6), 488–489 (1997).
[Crossref]

Bakry, A.

H. Dalir, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “High frequency modulation of transverse-coupled- cavity VCSELs for radio over fiber applications,” IEEE Photon. Technol. Lett. 26(3), 281–284 (2014).
[Crossref]

H. Dalir, M. Ahmed, A. Bakry, and F. Koyama, “Compact electro-absorption modulator integrated with vertical-cavity surface-emitting laser for highly efficient millimeter-wave modulation,” Appl. Phys. Lett. 105(8), 081113 (2014).
[Crossref]

M. Ahmed, A. Bakry, R. Altuwirqi, M. S. Alghamdi, and F. Koyama, “Enhancing modulation bandwidth of semiconductor lasers beyond 50 GHz by strong optical feedback for use in mm-wave radio over fiber links,” Jpn. J. Appl. Phys. 52(12), 124103 (2013).
[Crossref]

Bandelow, U.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Bardella, P.

I. Montrosset and P. Bardella, “Laser dynamics providing enhanced modulation bandwidth,” Proc. SPIE 9134, 91340H (2014).

P. Bardella and I. Montrosset, “A new design procedure for DBR lasers exploiting the photon–photon resonance to achieve extended modulation bandwidth,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502408 (2013).
[Crossref]

Bimberg, D.

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850 nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95(13), 031101 (2009).
[Crossref]

Blokhin, S. A.

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850 nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95(13), 031101 (2009).
[Crossref]

Chang-Hasnain, C. J.

Chen, C.

Choquette, K. D.

Cleaver, J. R. A.

R. Gordon, A. P. Heberle, and J. R. A. Cleaver, “Transverse mode locking in microcavity lasers,” Appl. Phys. Lett. 81(24), 4523–4525 (2002).
[Crossref]

Coldren, L. A.

J. W. Scott, B. J. Thibeault, C. J. Mahon, L. A. Coldren, and F. H. Peters, “High modulation efficiency of intracavity contacted vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 65(12), 1483–1485 (1994).
[Crossref]

Dalir, H.

H. Dalir, M. Ahmed, A. Bakry, and F. Koyama, “Compact electro-absorption modulator integrated with vertical-cavity surface-emitting laser for highly efficient millimeter-wave modulation,” Appl. Phys. Lett. 105(8), 081113 (2014).
[Crossref]

H. Dalir and F. Koyama, “High speed operation of bow-tie-shaped oxide aperture VCSELs with photon-photon resonance,” Appl. Phys. Express 7(2), 022102 (2014).
[Crossref]

H. Dalir, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “High frequency modulation of transverse-coupled- cavity VCSELs for radio over fiber applications,” IEEE Photon. Technol. Lett. 26(3), 281–284 (2014).
[Crossref]

H. Dalir and F. Koyama, “29 GHz directly modulated 980 nm vertical-cavity surface emitting lasers with bow-tie shape transverse coupled cavity,” Appl. Phys. Lett. 103(9), 091109 (2013).
[Crossref]

H. Dalir and F. Koyamad, “Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light,” IEICE Electron. Express 8(13), 1075–1081 (2011).
[Crossref]

Feiste, U.

U. Feiste, “Optimization of modulation bandwidth in DBR lasers with detuned Bragg reflectors,” IEEE J. Quantum Electron. 34(12), 2371–2379 (1998).
[Crossref]

Fiol, G.

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850 nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95(13), 031101 (2009).
[Crossref]

Fukatsu, K.

N. Suzuki, T. Anan, H. Hatakeyama, K. Fukatsu, K. Yashiki, K. Tokutome, T. Akagawa, and M. Tsuji, “High speed 1.1-μm-range InGaAs-based VCSELs,” IEICE Trans. Electron. E92-C(7), 942–950 (2009).
[Crossref]

Glitzky, A.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Gordon, R.

R. Gordon, A. P. Heberle, and J. R. A. Cleaver, “Transverse mode locking in microcavity lasers,” Appl. Phys. Lett. 81(24), 4523–4525 (2002).
[Crossref]

Guo, P.

Hatakeyama, H.

N. Suzuki, T. Anan, H. Hatakeyama, K. Fukatsu, K. Yashiki, K. Tokutome, T. Akagawa, and M. Tsuji, “High speed 1.1-μm-range InGaAs-based VCSELs,” IEICE Trans. Electron. E92-C(7), 942–950 (2009).
[Crossref]

Heberle, A. P.

R. Gordon, A. P. Heberle, and J. R. A. Cleaver, “Transverse mode locking in microcavity lasers,” Appl. Phys. Lett. 81(24), 4523–4525 (2002).
[Crossref]

Hofmann, W.

Iga, K.

K. Iga, “Vertical-cavity surface-emitting laser: Its conception and evolution,” Jpn. J. Appl. Phys. 47(11R), 1–10 (2008).
[Crossref]

Kjebon, O.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. StAlnacke, and L. Backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33(6), 488–489 (1997).
[Crossref]

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Koyama, F.

H. Dalir, M. Ahmed, A. Bakry, and F. Koyama, “Compact electro-absorption modulator integrated with vertical-cavity surface-emitting laser for highly efficient millimeter-wave modulation,” Appl. Phys. Lett. 105(8), 081113 (2014).
[Crossref]

H. Dalir and F. Koyama, “High speed operation of bow-tie-shaped oxide aperture VCSELs with photon-photon resonance,” Appl. Phys. Express 7(2), 022102 (2014).
[Crossref]

H. Dalir, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “High frequency modulation of transverse-coupled- cavity VCSELs for radio over fiber applications,” IEEE Photon. Technol. Lett. 26(3), 281–284 (2014).
[Crossref]

H. Dalir and F. Koyama, “29 GHz directly modulated 980 nm vertical-cavity surface emitting lasers with bow-tie shape transverse coupled cavity,” Appl. Phys. Lett. 103(9), 091109 (2013).
[Crossref]

M. Ahmed, A. Bakry, R. Altuwirqi, M. S. Alghamdi, and F. Koyama, “Enhancing modulation bandwidth of semiconductor lasers beyond 50 GHz by strong optical feedback for use in mm-wave radio over fiber links,” Jpn. J. Appl. Phys. 52(12), 124103 (2013).
[Crossref]

F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24(12), 4502–4513 (2006).
[Crossref]

Koyamad, F.

H. Dalir and F. Koyamad, “Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light,” IEICE Electron. Express 8(13), 1075–1081 (2011).
[Crossref]

Kreissl, J.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

Larsson, A.

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1552–1567 (2011).
[Crossref]

Lau, E. K.

Ledentsov, N. N.

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850 nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95(13), 031101 (2009).
[Crossref]

Lee, S.

Lott, J. A.

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850 nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95(13), 031101 (2009).
[Crossref]

Lourdudoss, S.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. StAlnacke, and L. Backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33(6), 488–489 (1997).
[Crossref]

Mahon, C. J.

J. W. Scott, B. J. Thibeault, C. J. Mahon, L. A. Coldren, and F. H. Peters, “High modulation efficiency of intracavity contacted vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 65(12), 1483–1485 (1994).
[Crossref]

Matsutani, A.

H. Dalir, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “High frequency modulation of transverse-coupled- cavity VCSELs for radio over fiber applications,” IEEE Photon. Technol. Lett. 26(3), 281–284 (2014).
[Crossref]

Montrosset, I.

I. Montrosset and P. Bardella, “Laser dynamics providing enhanced modulation bandwidth,” Proc. SPIE 9134, 91340H (2014).

P. Bardella and I. Montrosset, “A new design procedure for DBR lasers exploiting the photon–photon resonance to achieve extended modulation bandwidth,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502408 (2013).
[Crossref]

Mutig, A.

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850 nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95(13), 031101 (2009).
[Crossref]

Nadtochiy, A. M.

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850 nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95(13), 031101 (2009).
[Crossref]

Nilsson, S.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. StAlnacke, and L. Backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33(6), 488–489 (1997).
[Crossref]

Nishiyama, N.

Parekh, D.

Peters, F. H.

J. W. Scott, B. J. Thibeault, C. J. Mahon, L. A. Coldren, and F. H. Peters, “High modulation efficiency of intracavity contacted vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 65(12), 1483–1485 (1994).
[Crossref]

Radziunas, M.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Rehbein, W.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Schatz, R.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. StAlnacke, and L. Backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33(6), 488–489 (1997).
[Crossref]

Scott, J. W.

J. W. Scott, B. J. Thibeault, C. J. Mahon, L. A. Coldren, and F. H. Peters, “High modulation efficiency of intracavity contacted vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 65(12), 1483–1485 (1994).
[Crossref]

Shchukin, V. A.

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850 nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95(13), 031101 (2009).
[Crossref]

Shindo, T.

StAlnacke, B.

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. StAlnacke, and L. Backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33(6), 488–489 (1997).
[Crossref]

Sung, H. K.

Suzuki, N.

N. Suzuki, T. Anan, H. Hatakeyama, K. Fukatsu, K. Yashiki, K. Tokutome, T. Akagawa, and M. Tsuji, “High speed 1.1-μm-range InGaAs-based VCSELs,” IEICE Trans. Electron. E92-C(7), 942–950 (2009).
[Crossref]

Takahashi, D.

Thibeault, B. J.

J. W. Scott, B. J. Thibeault, C. J. Mahon, L. A. Coldren, and F. H. Peters, “High modulation efficiency of intracavity contacted vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 65(12), 1483–1485 (1994).
[Crossref]

Tokutome, K.

N. Suzuki, T. Anan, H. Hatakeyama, K. Fukatsu, K. Yashiki, K. Tokutome, T. Akagawa, and M. Tsuji, “High speed 1.1-μm-range InGaAs-based VCSELs,” IEICE Trans. Electron. E92-C(7), 942–950 (2009).
[Crossref]

Troppenz, U.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Tsuji, M.

N. Suzuki, T. Anan, H. Hatakeyama, K. Fukatsu, K. Yashiki, K. Tokutome, T. Akagawa, and M. Tsuji, “High speed 1.1-μm-range InGaAs-based VCSELs,” IEICE Trans. Electron. E92-C(7), 942–950 (2009).
[Crossref]

Westbergh, P.

P. Westbergh, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

Wolfrum, M.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Wu, M. C.

Yamada, M.

M. Ahmed and M. Yamada, “An infinite order perturbation approach to gain calculation in injection semiconductor lasers,” J. Appl. Phys. 84(6), 3004–3015 (1998).
[Crossref]

Yang, W.

Yashiki, K.

N. Suzuki, T. Anan, H. Hatakeyama, K. Fukatsu, K. Yashiki, K. Tokutome, T. Akagawa, and M. Tsuji, “High speed 1.1-μm-range InGaAs-based VCSELs,” IEICE Trans. Electron. E92-C(7), 942–950 (2009).
[Crossref]

Zhao, X.

Appl. Phys. Express (1)

H. Dalir and F. Koyama, “High speed operation of bow-tie-shaped oxide aperture VCSELs with photon-photon resonance,” Appl. Phys. Express 7(2), 022102 (2014).
[Crossref]

Appl. Phys. Lett. (5)

H. Dalir, M. Ahmed, A. Bakry, and F. Koyama, “Compact electro-absorption modulator integrated with vertical-cavity surface-emitting laser for highly efficient millimeter-wave modulation,” Appl. Phys. Lett. 105(8), 081113 (2014).
[Crossref]

J. W. Scott, B. J. Thibeault, C. J. Mahon, L. A. Coldren, and F. H. Peters, “High modulation efficiency of intracavity contacted vertical cavity surface-emitting lasers,” Appl. Phys. Lett. 65(12), 1483–1485 (1994).
[Crossref]

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850 nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95(13), 031101 (2009).
[Crossref]

R. Gordon, A. P. Heberle, and J. R. A. Cleaver, “Transverse mode locking in microcavity lasers,” Appl. Phys. Lett. 81(24), 4523–4525 (2002).
[Crossref]

H. Dalir and F. Koyama, “29 GHz directly modulated 980 nm vertical-cavity surface emitting lasers with bow-tie shape transverse coupled cavity,” Appl. Phys. Lett. 103(9), 091109 (2013).
[Crossref]

Electron. Lett. (2)

P. Westbergh, “High-speed 850 nm VCSELs with 28 GHz modulation bandwidth operating error-free up to 44 Gbit/s,” Electron. Lett. 48(18), 1145–1147 (2012).
[Crossref]

O. Kjebon, R. Schatz, S. Lourdudoss, S. Nilsson, B. StAlnacke, and L. Backbom, “30 GHz direct modulation bandwidth in detuned loaded InGaAsP DBR lasers at 1.55 μm wavelength,” Electron. Lett. 33(6), 488–489 (1997).
[Crossref]

IEEE J. Quantum Electron. (2)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quantum Electron. 16(3), 347–355 (1980).
[Crossref]

U. Feiste, “Optimization of modulation bandwidth in DBR lasers with detuned Bragg reflectors,” IEEE J. Quantum Electron. 34(12), 2371–2379 (1998).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

P. Bardella and I. Montrosset, “A new design procedure for DBR lasers exploiting the photon–photon resonance to achieve extended modulation bandwidth,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1502408 (2013).
[Crossref]

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17(6), 1552–1567 (2011).
[Crossref]

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. Dalir, A. Matsutani, M. Ahmed, A. Bakry, and F. Koyama, “High frequency modulation of transverse-coupled- cavity VCSELs for radio over fiber applications,” IEEE Photon. Technol. Lett. 26(3), 281–284 (2014).
[Crossref]

IEICE Electron. Express (1)

H. Dalir and F. Koyamad, “Bandwidth enhancement of single-mode VCSEL with lateral optical feedback of slow light,” IEICE Electron. Express 8(13), 1075–1081 (2011).
[Crossref]

IEICE Trans. Electron. (1)

N. Suzuki, T. Anan, H. Hatakeyama, K. Fukatsu, K. Yashiki, K. Tokutome, T. Akagawa, and M. Tsuji, “High speed 1.1-μm-range InGaAs-based VCSELs,” IEICE Trans. Electron. E92-C(7), 942–950 (2009).
[Crossref]

J. Appl. Phys. (1)

M. Ahmed and M. Yamada, “An infinite order perturbation approach to gain calculation in injection semiconductor lasers,” J. Appl. Phys. 84(6), 3004–3015 (1998).
[Crossref]

J. Lightwave Technol. (2)

Jpn. J. Appl. Phys. (2)

M. Ahmed, A. Bakry, R. Altuwirqi, M. S. Alghamdi, and F. Koyama, “Enhancing modulation bandwidth of semiconductor lasers beyond 50 GHz by strong optical feedback for use in mm-wave radio over fiber links,” Jpn. J. Appl. Phys. 52(12), 124103 (2013).
[Crossref]

K. Iga, “Vertical-cavity surface-emitting laser: Its conception and evolution,” Jpn. J. Appl. Phys. 47(11R), 1–10 (2008).
[Crossref]

Opt. Express (2)

Proc. SPIE (1)

I. Montrosset and P. Bardella, “Laser dynamics providing enhanced modulation bandwidth,” Proc. SPIE 9134, 91340H (2014).

Other (2)

A. Paraskevopoulos, H. J. Hansel, W. D. Motzow, H. Klein et. al, “Ultra-high-bandwidth (>35 GHz) electrooptically-modulated VCSEL,” OFC/NFOES 2006, Anaheim, PDP22 (2006).

H. Dalir and F. Koyama, “Modulation bandwidth enhancement of VCSELs with lateral optical feedback of slow light,” in Proceedings of IEEE International Semiconductor Laser Conference (IEEE, 2010), 83–84.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Scheme of (a) slow-light feedback in TCC-VCSEL, and (b) structure of a fabricated TCC-VCSEL.
Fig. 2
Fig. 2 IM responses when LC = 20 μm under different values of η: (a) with CPR, and (b) with PPR. The IM response of the solitary VCSEL (η = 0) is also plotted for comparison.
Fig. 3
Fig. 3 (a) IM responses as a function of m, and (b) variation of 2HD and 3HD with m, when η = 0.78.
Fig. 4
Fig. 4 IM responses of the TCC-VCSEL when (a) LC = 10 μm and (b) LC = 3 μm.
Fig. 5
Fig. 5 Variation of the modulation bandwidth f3dB with the coupling ratio η when (a) LC = 3 μm and (b) LC = 10 μm.

Tables (1)

Tables Icon

Table 1 Definition and numerical values of the VCSEL parametersa

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

dN dt = η i e I N τ s GS
dS dt =[ ΓG 1 τ p + v g W ln| U | ] S+ΓV R sp
dθ dt = 1 2 ( αΓ a V ( N N th ) c n g W ϕ )
G= a V ( N N T ) ( 1εS )
U=1+ η 1η p 1η p e 2p α C L C e j2p β C L C S( tpτ ) S( t ) e jθ( tpτ )jθ( t )

Metrics