Abstract

We propose a simple method of measuring polymerization-shrinkage evolution during curing in photopolymer. The real-time spectral fringe analysis of a broadband beam transmitted through a Fabry-Pérot etalon supported by a photopolymer film provides the shrinkage evolution during curing. For the proof-of-principle demonstration a blue-sensitized nanoparticle-polymer composite material is used. It is shown that the measured shrinkage dynamics are well correlated with the photo-calorimetric conversion dynamics of monomer to polymer. We also discuss a discrepancy in steady-state shrinkage between our proposed and holographic Bragg-angle detuning measurements.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Shrinkage during holographic recording in photopolymer films determined by holographic interferometry

Mohesh Moothanchery, Viswanath Bavigadda, Vincent Toal, and Izabela Naydenova
Appl. Opt. 52(35) 8519-8527 (2013)

Holographic nanoparticle-polymer composites based on radical-mediated thiol-yne photopolymerizations: characterization and shift-multiplexed holographic digital data page storage

Ken Mitsube, Yuki Nishimura, Kohta Nagaya, Shingo Takayama, and Yasuo Tomita
Opt. Mater. Express 4(5) 982-996 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. H. Stevenson, M. L. Armstrong, P. J. O’Connor, and D. F. Tipton, “Advances in photopolymer films for display holography,” Proc. SPIE 2333, 60–70 (1995).
  2. H. Akbari, I. Naydenova, and S. Martin, “Using acrylamide-based photopolymers for fabrication of holographic optical elements in solar energy applications,” Appl. Opt. 53, 1343–1353 (2014).
    [Crossref] [PubMed]
  3. G. P. Crawford, “‘Electrically switchable Bragg gratings,” Opt. Photonics News 14(4), 54–59 (2003).
    [Crossref]
  4. K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, eds., Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010), Chap. 6.
    [Crossref]
  5. V. A. Vdovin, A. L. Lonin, and S. N. Mensov, “Optical waveguide synthesis in photopolymers,” Techn. Phys. 46, 853–857 (2001).
    [Crossref]
  6. M.-E. Baylor, B. W. Cerjan, C. R. Pfiefer, R. W. Boyne, C. L. Couch, N. B. Cramer, C. N. Bowman, and R. R. McLeod, “Monolithic integration of optical waveguide and fluidic channel structures in a thiol-ene/methacrylate photopolymer,” Opt. Mater. Express 2, 1548–1555 (2012).
    [Crossref]
  7. H. Li, J. P. Ryle, and J. T. Sheridan, “Self-written waveguides in a dry acrylamide/polyvinyl alcohol photopolymer material,” Appl. Opt. 53, 8086–8094 (2014).
    [Crossref]
  8. A. Rupp, J. Hehmann, R. Matull, and K. Ibel, “Neutron diffraction from photoinduced gratings in a PMMA matrix,” Phys. Rev. Lett. 64, 301–304 (1990).
    [Crossref] [PubMed]
  9. M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellaban, R.A. Rupp, M. Bicher, I. Drevenšek-Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett. 105, 123904 (2010).
    [Crossref] [PubMed]
  10. R. Fujii, J. Guo, J. Klepp, C. Pruner, M. Fally, and Y. Tomita, “Nanoparticle polymer composite volume gratings incorporating chain transfer agents for holography and slow-neutron optics,” Opt. Lett. 39, 3453–3456 (2014).
    [Crossref] [PubMed]
  11. F. C. Eichmiller, “Polymer shrinkage tensometer,” U.S. Patent 6,871,550 B2 (March29, 2005).
  12. H. Lu, J. W. Stansbury, S. H. Dickens, F. C. Eichmiller, and C. N. Bowman, “Probing the origins and control of shrinkage stress in dental resin composites. II. Novel method of simultaneous measurement of polymerization shrinkage stress and conversion,” J. Biomed. Mater. Res., Part B  71B, 206–213 (2004).
    [Crossref]
  13. H. Lu, J. W. Stansbury, and C. N. Bowman, “Towards the elucidation of shrinkage stress development and relaxation in dental composites,” Dent. Mater. 20, 979–986 (2004).
    [Crossref] [PubMed]
  14. H. Yu, S. G. Mhaisalkar, and E. H. Wong, “Observations of gelation and vitrification of a thermosetting resin during the evolution of polymerization shrinkage,” Macromol. Rapid Commun. 26, 1483–1487 (2005).
    [Crossref]
  15. N. B. Cramer, C. L. Couch, K. M. Schreck, J. A. Carioscia, J. E. Boulden, J. W. Stansbury, and C. N. Bowman, “Investigation of thiol-ene and thiol-ene-methacrylate based resins as dental restorative materials,” Dent. Mater. 26, 21–28 (2010).
    [Crossref]
  16. T. Y. Lee, J. Carioscia, Z. Smith, and C. N. Bowman, “Thiol-allyl ether-methacrylate ternary systems. Evolution mechanism of polymerization-induced shrinkage stress and mechanical properties,” Macromolecules 40, 1473–1479 (2007).
    [Crossref]
  17. H. Y. Park, C. J. Kloxin, A. S. Abuelyaman, J. D. Oxman, and C. N. Bowman, “Stress relaxation via addition-fragmentation chain transfer in high Tg, high conversion methacrylate-based systems,” Macromolecules 45, 5640–5646 (2012).
    [Crossref] [PubMed]
  18. N. Demoli, A. Knežević, Z. Tarle, A. Meniga, J. Šutalo, and G. Pichler, “Digital interferometry for measuring of the resin composite thickness variation during blue light polymerization,” Opt. Commun. 231, 45–51 (2004).
    [Crossref]
  19. G. Arenas, S. Noriega, C. Vallo, and R. Duchowicz, “Polymerization shrinkage of a dental resin composite determined by a fiber optic Fizeau interferometer,” Opt. Commun. 271, 581–586 (2007).
    [Crossref]
  20. S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, M. Álvarez, E. Fernandez, and A. Beléndez, “Real-time interferometric characterization of a polyvinyl alcohol based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46, 7506–7512 (2007).
    [Crossref] [PubMed]
  21. M. Moothanchery, V. Bavigadda, V. Toal, and I. Naydenova, “Shrinkage during holographic recording in photopolymer films determined by holographic interferometry,” Appl. Opt. 52, 8519–8527 (2013).
    [Crossref]
  22. J. T. Gallo and C. M. Verber, “Model for the effects of material shrinkage on volume holograms,” Appl. Opt. 33, 6797–6804 (1994).
    [Crossref] [PubMed]
  23. D. A. Waldman, H.-Y. S. Li, and M. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).
  24. L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
    [Crossref]
  25. M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording in photopolymerizable nanoparticle-(thiol-ene) polymer composites at 404nm,” J. Appl. Phys. 117, 053105 (2015).
    [Crossref]
  26. R. L. Toullec, P. Loubeyre, and J.-P. Pinceaux, “Refractive-index measurements of dense helium up to 16 GPa at T=298 K: Analysis of its thermodynamic and electronic properties,” Phys. Rev. B 40, 2368–2378 (1989).
    [Crossref]
  27. N. Peyghambarian, S. W. Koch, and A. Mystrowicz, Introduction to Semiconductor Optics, (Prentice-Hall, 1993), Chap. 3.
  28. L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
    [Crossref]

2015 (1)

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording in photopolymerizable nanoparticle-(thiol-ene) polymer composites at 404nm,” J. Appl. Phys. 117, 053105 (2015).
[Crossref]

2014 (3)

2013 (1)

2012 (2)

M.-E. Baylor, B. W. Cerjan, C. R. Pfiefer, R. W. Boyne, C. L. Couch, N. B. Cramer, C. N. Bowman, and R. R. McLeod, “Monolithic integration of optical waveguide and fluidic channel structures in a thiol-ene/methacrylate photopolymer,” Opt. Mater. Express 2, 1548–1555 (2012).
[Crossref]

H. Y. Park, C. J. Kloxin, A. S. Abuelyaman, J. D. Oxman, and C. N. Bowman, “Stress relaxation via addition-fragmentation chain transfer in high Tg, high conversion methacrylate-based systems,” Macromolecules 45, 5640–5646 (2012).
[Crossref] [PubMed]

2010 (2)

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellaban, R.A. Rupp, M. Bicher, I. Drevenšek-Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett. 105, 123904 (2010).
[Crossref] [PubMed]

N. B. Cramer, C. L. Couch, K. M. Schreck, J. A. Carioscia, J. E. Boulden, J. W. Stansbury, and C. N. Bowman, “Investigation of thiol-ene and thiol-ene-methacrylate based resins as dental restorative materials,” Dent. Mater. 26, 21–28 (2010).
[Crossref]

2007 (3)

T. Y. Lee, J. Carioscia, Z. Smith, and C. N. Bowman, “Thiol-allyl ether-methacrylate ternary systems. Evolution mechanism of polymerization-induced shrinkage stress and mechanical properties,” Macromolecules 40, 1473–1479 (2007).
[Crossref]

G. Arenas, S. Noriega, C. Vallo, and R. Duchowicz, “Polymerization shrinkage of a dental resin composite determined by a fiber optic Fizeau interferometer,” Opt. Commun. 271, 581–586 (2007).
[Crossref]

S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, M. Álvarez, E. Fernandez, and A. Beléndez, “Real-time interferometric characterization of a polyvinyl alcohol based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46, 7506–7512 (2007).
[Crossref] [PubMed]

2005 (1)

H. Yu, S. G. Mhaisalkar, and E. H. Wong, “Observations of gelation and vitrification of a thermosetting resin during the evolution of polymerization shrinkage,” Macromol. Rapid Commun. 26, 1483–1487 (2005).
[Crossref]

2004 (3)

N. Demoli, A. Knežević, Z. Tarle, A. Meniga, J. Šutalo, and G. Pichler, “Digital interferometry for measuring of the resin composite thickness variation during blue light polymerization,” Opt. Commun. 231, 45–51 (2004).
[Crossref]

H. Lu, J. W. Stansbury, S. H. Dickens, F. C. Eichmiller, and C. N. Bowman, “Probing the origins and control of shrinkage stress in dental resin composites. II. Novel method of simultaneous measurement of polymerization shrinkage stress and conversion,” J. Biomed. Mater. Res., Part B  71B, 206–213 (2004).
[Crossref]

H. Lu, J. W. Stansbury, and C. N. Bowman, “Towards the elucidation of shrinkage stress development and relaxation in dental composites,” Dent. Mater. 20, 979–986 (2004).
[Crossref] [PubMed]

2003 (2)

G. P. Crawford, “‘Electrically switchable Bragg gratings,” Opt. Photonics News 14(4), 54–59 (2003).
[Crossref]

L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
[Crossref]

2001 (1)

V. A. Vdovin, A. L. Lonin, and S. N. Mensov, “Optical waveguide synthesis in photopolymers,” Techn. Phys. 46, 853–857 (2001).
[Crossref]

1998 (1)

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[Crossref]

1997 (1)

D. A. Waldman, H.-Y. S. Li, and M. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

1995 (1)

S. H. Stevenson, M. L. Armstrong, P. J. O’Connor, and D. F. Tipton, “Advances in photopolymer films for display holography,” Proc. SPIE 2333, 60–70 (1995).

1994 (1)

1990 (1)

A. Rupp, J. Hehmann, R. Matull, and K. Ibel, “Neutron diffraction from photoinduced gratings in a PMMA matrix,” Phys. Rev. Lett. 64, 301–304 (1990).
[Crossref] [PubMed]

1989 (1)

R. L. Toullec, P. Loubeyre, and J.-P. Pinceaux, “Refractive-index measurements of dense helium up to 16 GPa at T=298 K: Analysis of its thermodynamic and electronic properties,” Phys. Rev. B 40, 2368–2378 (1989).
[Crossref]

Abuelyaman, A. S.

H. Y. Park, C. J. Kloxin, A. S. Abuelyaman, J. D. Oxman, and C. N. Bowman, “Stress relaxation via addition-fragmentation chain transfer in high Tg, high conversion methacrylate-based systems,” Macromolecules 45, 5640–5646 (2012).
[Crossref] [PubMed]

Akbari, H.

Álvarez, M.

Arenas, G.

G. Arenas, S. Noriega, C. Vallo, and R. Duchowicz, “Polymerization shrinkage of a dental resin composite determined by a fiber optic Fizeau interferometer,” Opt. Commun. 271, 581–586 (2007).
[Crossref]

Armstrong, M. L.

S. H. Stevenson, M. L. Armstrong, P. J. O’Connor, and D. F. Tipton, “Advances in photopolymer films for display holography,” Proc. SPIE 2333, 60–70 (1995).

Bair, H.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[Crossref]

Bavigadda, V.

Baylor, M.-E.

Beléndez, A.

Bicher, M.

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellaban, R.A. Rupp, M. Bicher, I. Drevenšek-Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett. 105, 123904 (2010).
[Crossref] [PubMed]

Boulden, J. E.

N. B. Cramer, C. L. Couch, K. M. Schreck, J. A. Carioscia, J. E. Boulden, J. W. Stansbury, and C. N. Bowman, “Investigation of thiol-ene and thiol-ene-methacrylate based resins as dental restorative materials,” Dent. Mater. 26, 21–28 (2010).
[Crossref]

Bowman, C. N.

H. Y. Park, C. J. Kloxin, A. S. Abuelyaman, J. D. Oxman, and C. N. Bowman, “Stress relaxation via addition-fragmentation chain transfer in high Tg, high conversion methacrylate-based systems,” Macromolecules 45, 5640–5646 (2012).
[Crossref] [PubMed]

M.-E. Baylor, B. W. Cerjan, C. R. Pfiefer, R. W. Boyne, C. L. Couch, N. B. Cramer, C. N. Bowman, and R. R. McLeod, “Monolithic integration of optical waveguide and fluidic channel structures in a thiol-ene/methacrylate photopolymer,” Opt. Mater. Express 2, 1548–1555 (2012).
[Crossref]

N. B. Cramer, C. L. Couch, K. M. Schreck, J. A. Carioscia, J. E. Boulden, J. W. Stansbury, and C. N. Bowman, “Investigation of thiol-ene and thiol-ene-methacrylate based resins as dental restorative materials,” Dent. Mater. 26, 21–28 (2010).
[Crossref]

T. Y. Lee, J. Carioscia, Z. Smith, and C. N. Bowman, “Thiol-allyl ether-methacrylate ternary systems. Evolution mechanism of polymerization-induced shrinkage stress and mechanical properties,” Macromolecules 40, 1473–1479 (2007).
[Crossref]

H. Lu, J. W. Stansbury, S. H. Dickens, F. C. Eichmiller, and C. N. Bowman, “Probing the origins and control of shrinkage stress in dental resin composites. II. Novel method of simultaneous measurement of polymerization shrinkage stress and conversion,” J. Biomed. Mater. Res., Part B  71B, 206–213 (2004).
[Crossref]

H. Lu, J. W. Stansbury, and C. N. Bowman, “Towards the elucidation of shrinkage stress development and relaxation in dental composites,” Dent. Mater. 20, 979–986 (2004).
[Crossref] [PubMed]

Boyd, C.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[Crossref]

Boyne, R. W.

Brandelik, D.M.

L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
[Crossref]

Bunning, T.J.

L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
[Crossref]

Carioscia, J.

T. Y. Lee, J. Carioscia, Z. Smith, and C. N. Bowman, “Thiol-allyl ether-methacrylate ternary systems. Evolution mechanism of polymerization-induced shrinkage stress and mechanical properties,” Macromolecules 40, 1473–1479 (2007).
[Crossref]

Carioscia, J. A.

N. B. Cramer, C. L. Couch, K. M. Schreck, J. A. Carioscia, J. E. Boulden, J. W. Stansbury, and C. N. Bowman, “Investigation of thiol-ene and thiol-ene-methacrylate based resins as dental restorative materials,” Dent. Mater. 26, 21–28 (2010).
[Crossref]

Cerjan, B. W.

Chandra, S.

L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
[Crossref]

Couch, C. L.

M.-E. Baylor, B. W. Cerjan, C. R. Pfiefer, R. W. Boyne, C. L. Couch, N. B. Cramer, C. N. Bowman, and R. R. McLeod, “Monolithic integration of optical waveguide and fluidic channel structures in a thiol-ene/methacrylate photopolymer,” Opt. Mater. Express 2, 1548–1555 (2012).
[Crossref]

N. B. Cramer, C. L. Couch, K. M. Schreck, J. A. Carioscia, J. E. Boulden, J. W. Stansbury, and C. N. Bowman, “Investigation of thiol-ene and thiol-ene-methacrylate based resins as dental restorative materials,” Dent. Mater. 26, 21–28 (2010).
[Crossref]

Cramer, N. B.

M.-E. Baylor, B. W. Cerjan, C. R. Pfiefer, R. W. Boyne, C. L. Couch, N. B. Cramer, C. N. Bowman, and R. R. McLeod, “Monolithic integration of optical waveguide and fluidic channel structures in a thiol-ene/methacrylate photopolymer,” Opt. Mater. Express 2, 1548–1555 (2012).
[Crossref]

N. B. Cramer, C. L. Couch, K. M. Schreck, J. A. Carioscia, J. E. Boulden, J. W. Stansbury, and C. N. Bowman, “Investigation of thiol-ene and thiol-ene-methacrylate based resins as dental restorative materials,” Dent. Mater. 26, 21–28 (2010).
[Crossref]

Crawford, G. P.

G. P. Crawford, “‘Electrically switchable Bragg gratings,” Opt. Photonics News 14(4), 54–59 (2003).
[Crossref]

Demoli, N.

N. Demoli, A. Knežević, Z. Tarle, A. Meniga, J. Šutalo, and G. Pichler, “Digital interferometry for measuring of the resin composite thickness variation during blue light polymerization,” Opt. Commun. 231, 45–51 (2004).
[Crossref]

Dhar, L.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[Crossref]

Dickens, S. H.

H. Lu, J. W. Stansbury, S. H. Dickens, F. C. Eichmiller, and C. N. Bowman, “Probing the origins and control of shrinkage stress in dental resin composites. II. Novel method of simultaneous measurement of polymerization shrinkage stress and conversion,” J. Biomed. Mater. Res., Part B  71B, 206–213 (2004).
[Crossref]

Drevenšek-Olenik, I.

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellaban, R.A. Rupp, M. Bicher, I. Drevenšek-Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett. 105, 123904 (2010).
[Crossref] [PubMed]

Duchowicz, R.

G. Arenas, S. Noriega, C. Vallo, and R. Duchowicz, “Polymerization shrinkage of a dental resin composite determined by a fiber optic Fizeau interferometer,” Opt. Commun. 271, 581–586 (2007).
[Crossref]

Eckerlebe, H.

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellaban, R.A. Rupp, M. Bicher, I. Drevenšek-Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett. 105, 123904 (2010).
[Crossref] [PubMed]

Eichmiller, F. C.

H. Lu, J. W. Stansbury, S. H. Dickens, F. C. Eichmiller, and C. N. Bowman, “Probing the origins and control of shrinkage stress in dental resin composites. II. Novel method of simultaneous measurement of polymerization shrinkage stress and conversion,” J. Biomed. Mater. Res., Part B  71B, 206–213 (2004).
[Crossref]

F. C. Eichmiller, “Polymer shrinkage tensometer,” U.S. Patent 6,871,550 B2 (March29, 2005).

Ellaban, M. A.

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellaban, R.A. Rupp, M. Bicher, I. Drevenšek-Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett. 105, 123904 (2010).
[Crossref] [PubMed]

Fally, M.

R. Fujii, J. Guo, J. Klepp, C. Pruner, M. Fally, and Y. Tomita, “Nanoparticle polymer composite volume gratings incorporating chain transfer agents for holography and slow-neutron optics,” Opt. Lett. 39, 3453–3456 (2014).
[Crossref] [PubMed]

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellaban, R.A. Rupp, M. Bicher, I. Drevenšek-Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett. 105, 123904 (2010).
[Crossref] [PubMed]

Fernandez, E.

Fujii, R.

Gallego, S.

Gallo, J. T.

Guo, J.

Hehmann, J.

A. Rupp, J. Hehmann, R. Matull, and K. Ibel, “Neutron diffraction from photoinduced gratings in a PMMA matrix,” Phys. Rev. Lett. 64, 301–304 (1990).
[Crossref] [PubMed]

Horner, M.

D. A. Waldman, H.-Y. S. Li, and M. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

Ibel, K.

A. Rupp, J. Hehmann, R. Matull, and K. Ibel, “Neutron diffraction from photoinduced gratings in a PMMA matrix,” Phys. Rev. Lett. 64, 301–304 (1990).
[Crossref] [PubMed]

Kawana, M.

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording in photopolymerizable nanoparticle-(thiol-ene) polymer composites at 404nm,” J. Appl. Phys. 117, 053105 (2015).
[Crossref]

Klepp, J.

R. Fujii, J. Guo, J. Klepp, C. Pruner, M. Fally, and Y. Tomita, “Nanoparticle polymer composite volume gratings incorporating chain transfer agents for holography and slow-neutron optics,” Opt. Lett. 39, 3453–3456 (2014).
[Crossref] [PubMed]

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellaban, R.A. Rupp, M. Bicher, I. Drevenšek-Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett. 105, 123904 (2010).
[Crossref] [PubMed]

Kloxin, C. J.

H. Y. Park, C. J. Kloxin, A. S. Abuelyaman, J. D. Oxman, and C. N. Bowman, “Stress relaxation via addition-fragmentation chain transfer in high Tg, high conversion methacrylate-based systems,” Macromolecules 45, 5640–5646 (2012).
[Crossref] [PubMed]

Kneževic, A.

N. Demoli, A. Knežević, Z. Tarle, A. Meniga, J. Šutalo, and G. Pichler, “Digital interferometry for measuring of the resin composite thickness variation during blue light polymerization,” Opt. Commun. 231, 45–51 (2004).
[Crossref]

Koch, S. W.

N. Peyghambarian, S. W. Koch, and A. Mystrowicz, Introduction to Semiconductor Optics, (Prentice-Hall, 1993), Chap. 3.

Kohlbrecher, J.

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellaban, R.A. Rupp, M. Bicher, I. Drevenšek-Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett. 105, 123904 (2010).
[Crossref] [PubMed]

Lee, T. Y.

T. Y. Lee, J. Carioscia, Z. Smith, and C. N. Bowman, “Thiol-allyl ether-methacrylate ternary systems. Evolution mechanism of polymerization-induced shrinkage stress and mechanical properties,” Macromolecules 40, 1473–1479 (2007).
[Crossref]

Lemmel, H.

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellaban, R.A. Rupp, M. Bicher, I. Drevenšek-Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett. 105, 123904 (2010).
[Crossref] [PubMed]

Li, H.

Li, H.-Y. S.

D. A. Waldman, H.-Y. S. Li, and M. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

Lonin, A. L.

V. A. Vdovin, A. L. Lonin, and S. N. Mensov, “Optical waveguide synthesis in photopolymers,” Techn. Phys. 46, 853–857 (2001).
[Crossref]

Loubeyre, P.

R. L. Toullec, P. Loubeyre, and J.-P. Pinceaux, “Refractive-index measurements of dense helium up to 16 GPa at T=298 K: Analysis of its thermodynamic and electronic properties,” Phys. Rev. B 40, 2368–2378 (1989).
[Crossref]

Lu, H.

H. Lu, J. W. Stansbury, S. H. Dickens, F. C. Eichmiller, and C. N. Bowman, “Probing the origins and control of shrinkage stress in dental resin composites. II. Novel method of simultaneous measurement of polymerization shrinkage stress and conversion,” J. Biomed. Mater. Res., Part B  71B, 206–213 (2004).
[Crossref]

H. Lu, J. W. Stansbury, and C. N. Bowman, “Towards the elucidation of shrinkage stress development and relaxation in dental composites,” Dent. Mater. 20, 979–986 (2004).
[Crossref] [PubMed]

Márquez, A.

Martin, S.

Matull, R.

A. Rupp, J. Hehmann, R. Matull, and K. Ibel, “Neutron diffraction from photoinduced gratings in a PMMA matrix,” Phys. Rev. Lett. 64, 301–304 (1990).
[Crossref] [PubMed]

McLeod, R. R.

Méndez, D.

Meniga, A.

N. Demoli, A. Knežević, Z. Tarle, A. Meniga, J. Šutalo, and G. Pichler, “Digital interferometry for measuring of the resin composite thickness variation during blue light polymerization,” Opt. Commun. 231, 45–51 (2004).
[Crossref]

Mensov, S. N.

V. A. Vdovin, A. L. Lonin, and S. N. Mensov, “Optical waveguide synthesis in photopolymers,” Techn. Phys. 46, 853–857 (2001).
[Crossref]

Mhaisalkar, S. G.

H. Yu, S. G. Mhaisalkar, and E. H. Wong, “Observations of gelation and vitrification of a thermosetting resin during the evolution of polymerization shrinkage,” Macromol. Rapid Commun. 26, 1483–1487 (2005).
[Crossref]

Moothanchery, M.

Mystrowicz, A.

N. Peyghambarian, S. W. Koch, and A. Mystrowicz, Introduction to Semiconductor Optics, (Prentice-Hall, 1993), Chap. 3.

Nakamura, T.

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellaban, R.A. Rupp, M. Bicher, I. Drevenšek-Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett. 105, 123904 (2010).
[Crossref] [PubMed]

Natarajan, L.V.

L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
[Crossref]

Naydenova, I.

Neipp, C.

Noriega, S.

G. Arenas, S. Noriega, C. Vallo, and R. Duchowicz, “Polymerization shrinkage of a dental resin composite determined by a fiber optic Fizeau interferometer,” Opt. Commun. 271, 581–586 (2007).
[Crossref]

O’Connor, P. J.

S. H. Stevenson, M. L. Armstrong, P. J. O’Connor, and D. F. Tipton, “Advances in photopolymer films for display holography,” Proc. SPIE 2333, 60–70 (1995).

Ortuño, M.

Oxman, J. D.

H. Y. Park, C. J. Kloxin, A. S. Abuelyaman, J. D. Oxman, and C. N. Bowman, “Stress relaxation via addition-fragmentation chain transfer in high Tg, high conversion methacrylate-based systems,” Macromolecules 45, 5640–5646 (2012).
[Crossref] [PubMed]

Park, H. Y.

H. Y. Park, C. J. Kloxin, A. S. Abuelyaman, J. D. Oxman, and C. N. Bowman, “Stress relaxation via addition-fragmentation chain transfer in high Tg, high conversion methacrylate-based systems,” Macromolecules 45, 5640–5646 (2012).
[Crossref] [PubMed]

Peyghambarian, N.

N. Peyghambarian, S. W. Koch, and A. Mystrowicz, Introduction to Semiconductor Optics, (Prentice-Hall, 1993), Chap. 3.

Pfiefer, C. R.

Pichler, G.

N. Demoli, A. Knežević, Z. Tarle, A. Meniga, J. Šutalo, and G. Pichler, “Digital interferometry for measuring of the resin composite thickness variation during blue light polymerization,” Opt. Commun. 231, 45–51 (2004).
[Crossref]

Pinceaux, J.-P.

R. L. Toullec, P. Loubeyre, and J.-P. Pinceaux, “Refractive-index measurements of dense helium up to 16 GPa at T=298 K: Analysis of its thermodynamic and electronic properties,” Phys. Rev. B 40, 2368–2378 (1989).
[Crossref]

Pruner, C.

R. Fujii, J. Guo, J. Klepp, C. Pruner, M. Fally, and Y. Tomita, “Nanoparticle polymer composite volume gratings incorporating chain transfer agents for holography and slow-neutron optics,” Opt. Lett. 39, 3453–3456 (2014).
[Crossref] [PubMed]

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellaban, R.A. Rupp, M. Bicher, I. Drevenšek-Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett. 105, 123904 (2010).
[Crossref] [PubMed]

Rauch, H.

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellaban, R.A. Rupp, M. Bicher, I. Drevenšek-Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett. 105, 123904 (2010).
[Crossref] [PubMed]

Rupp, A.

A. Rupp, J. Hehmann, R. Matull, and K. Ibel, “Neutron diffraction from photoinduced gratings in a PMMA matrix,” Phys. Rev. Lett. 64, 301–304 (1990).
[Crossref] [PubMed]

Rupp, R.A.

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellaban, R.A. Rupp, M. Bicher, I. Drevenšek-Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett. 105, 123904 (2010).
[Crossref] [PubMed]

Ryle, J. P.

Schilling, M.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[Crossref]

Schones, M. G.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[Crossref]

Schreck, K. M.

N. B. Cramer, C. L. Couch, K. M. Schreck, J. A. Carioscia, J. E. Boulden, J. W. Stansbury, and C. N. Bowman, “Investigation of thiol-ene and thiol-ene-methacrylate based resins as dental restorative materials,” Dent. Mater. 26, 21–28 (2010).
[Crossref]

Shepherd, C.K.

L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
[Crossref]

Sheridan, J. T.

Smith, Z.

T. Y. Lee, J. Carioscia, Z. Smith, and C. N. Bowman, “Thiol-allyl ether-methacrylate ternary systems. Evolution mechanism of polymerization-induced shrinkage stress and mechanical properties,” Macromolecules 40, 1473–1479 (2007).
[Crossref]

Stansbury, J. W.

N. B. Cramer, C. L. Couch, K. M. Schreck, J. A. Carioscia, J. E. Boulden, J. W. Stansbury, and C. N. Bowman, “Investigation of thiol-ene and thiol-ene-methacrylate based resins as dental restorative materials,” Dent. Mater. 26, 21–28 (2010).
[Crossref]

H. Lu, J. W. Stansbury, and C. N. Bowman, “Towards the elucidation of shrinkage stress development and relaxation in dental composites,” Dent. Mater. 20, 979–986 (2004).
[Crossref] [PubMed]

H. Lu, J. W. Stansbury, S. H. Dickens, F. C. Eichmiller, and C. N. Bowman, “Probing the origins and control of shrinkage stress in dental resin composites. II. Novel method of simultaneous measurement of polymerization shrinkage stress and conversion,” J. Biomed. Mater. Res., Part B  71B, 206–213 (2004).
[Crossref]

Stevenson, S. H.

S. H. Stevenson, M. L. Armstrong, P. J. O’Connor, and D. F. Tipton, “Advances in photopolymer films for display holography,” Proc. SPIE 2333, 60–70 (1995).

Šutalo, J.

N. Demoli, A. Knežević, Z. Tarle, A. Meniga, J. Šutalo, and G. Pichler, “Digital interferometry for measuring of the resin composite thickness variation during blue light polymerization,” Opt. Commun. 231, 45–51 (2004).
[Crossref]

Sutherland, R.L.

L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
[Crossref]

Takahashi, J.

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording in photopolymerizable nanoparticle-(thiol-ene) polymer composites at 404nm,” J. Appl. Phys. 117, 053105 (2015).
[Crossref]

Tarle, Z.

N. Demoli, A. Knežević, Z. Tarle, A. Meniga, J. Šutalo, and G. Pichler, “Digital interferometry for measuring of the resin composite thickness variation during blue light polymerization,” Opt. Commun. 231, 45–51 (2004).
[Crossref]

Tipton, D. F.

S. H. Stevenson, M. L. Armstrong, P. J. O’Connor, and D. F. Tipton, “Advances in photopolymer films for display holography,” Proc. SPIE 2333, 60–70 (1995).

Toal, V.

Tomita, Y.

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording in photopolymerizable nanoparticle-(thiol-ene) polymer composites at 404nm,” J. Appl. Phys. 117, 053105 (2015).
[Crossref]

R. Fujii, J. Guo, J. Klepp, C. Pruner, M. Fally, and Y. Tomita, “Nanoparticle polymer composite volume gratings incorporating chain transfer agents for holography and slow-neutron optics,” Opt. Lett. 39, 3453–3456 (2014).
[Crossref] [PubMed]

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellaban, R.A. Rupp, M. Bicher, I. Drevenšek-Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett. 105, 123904 (2010).
[Crossref] [PubMed]

Tomlin, D.

L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
[Crossref]

Tondiglia, V.P.

L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
[Crossref]

Toullec, R. L.

R. L. Toullec, P. Loubeyre, and J.-P. Pinceaux, “Refractive-index measurements of dense helium up to 16 GPa at T=298 K: Analysis of its thermodynamic and electronic properties,” Phys. Rev. B 40, 2368–2378 (1989).
[Crossref]

Vallo, C.

G. Arenas, S. Noriega, C. Vallo, and R. Duchowicz, “Polymerization shrinkage of a dental resin composite determined by a fiber optic Fizeau interferometer,” Opt. Commun. 271, 581–586 (2007).
[Crossref]

Vdovin, V. A.

V. A. Vdovin, A. L. Lonin, and S. N. Mensov, “Optical waveguide synthesis in photopolymers,” Techn. Phys. 46, 853–857 (2001).
[Crossref]

Verber, C. M.

Waldman, D. A.

D. A. Waldman, H.-Y. S. Li, and M. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

Wong, E. H.

H. Yu, S. G. Mhaisalkar, and E. H. Wong, “Observations of gelation and vitrification of a thermosetting resin during the evolution of polymerization shrinkage,” Macromol. Rapid Commun. 26, 1483–1487 (2005).
[Crossref]

Wysocki, T. L.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[Crossref]

Yasui, S.

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording in photopolymerizable nanoparticle-(thiol-ene) polymer composites at 404nm,” J. Appl. Phys. 117, 053105 (2015).
[Crossref]

Yu, H.

H. Yu, S. G. Mhaisalkar, and E. H. Wong, “Observations of gelation and vitrification of a thermosetting resin during the evolution of polymerization shrinkage,” Macromol. Rapid Commun. 26, 1483–1487 (2005).
[Crossref]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73, 1337–1339 (1998).
[Crossref]

Chem. Mater. (1)

L.V. Natarajan, C.K. Shepherd, D.M. Brandelik, R.L. Sutherland, S. Chandra, V.P. Tondiglia, D. Tomlin, and T.J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflaction gratings based on thol-ene photopolymerization,” Chem. Mater. 15, 2477–2484 (2003).
[Crossref]

Dent. Mater. (2)

N. B. Cramer, C. L. Couch, K. M. Schreck, J. A. Carioscia, J. E. Boulden, J. W. Stansbury, and C. N. Bowman, “Investigation of thiol-ene and thiol-ene-methacrylate based resins as dental restorative materials,” Dent. Mater. 26, 21–28 (2010).
[Crossref]

H. Lu, J. W. Stansbury, and C. N. Bowman, “Towards the elucidation of shrinkage stress development and relaxation in dental composites,” Dent. Mater. 20, 979–986 (2004).
[Crossref] [PubMed]

J. Appl. Phys. (1)

M. Kawana, J. Takahashi, S. Yasui, and Y. Tomita, “Characterization of volume holographic recording in photopolymerizable nanoparticle-(thiol-ene) polymer composites at 404nm,” J. Appl. Phys. 117, 053105 (2015).
[Crossref]

J. Biomed. Mater. Res. (1)

H. Lu, J. W. Stansbury, S. H. Dickens, F. C. Eichmiller, and C. N. Bowman, “Probing the origins and control of shrinkage stress in dental resin composites. II. Novel method of simultaneous measurement of polymerization shrinkage stress and conversion,” J. Biomed. Mater. Res., Part B  71B, 206–213 (2004).
[Crossref]

J. Imaging Sci. Technol. (1)

D. A. Waldman, H.-Y. S. Li, and M. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497–514 (1997).

Macromol. Rapid Commun. (1)

H. Yu, S. G. Mhaisalkar, and E. H. Wong, “Observations of gelation and vitrification of a thermosetting resin during the evolution of polymerization shrinkage,” Macromol. Rapid Commun. 26, 1483–1487 (2005).
[Crossref]

Macromolecules (2)

T. Y. Lee, J. Carioscia, Z. Smith, and C. N. Bowman, “Thiol-allyl ether-methacrylate ternary systems. Evolution mechanism of polymerization-induced shrinkage stress and mechanical properties,” Macromolecules 40, 1473–1479 (2007).
[Crossref]

H. Y. Park, C. J. Kloxin, A. S. Abuelyaman, J. D. Oxman, and C. N. Bowman, “Stress relaxation via addition-fragmentation chain transfer in high Tg, high conversion methacrylate-based systems,” Macromolecules 45, 5640–5646 (2012).
[Crossref] [PubMed]

Opt. Commun. (2)

N. Demoli, A. Knežević, Z. Tarle, A. Meniga, J. Šutalo, and G. Pichler, “Digital interferometry for measuring of the resin composite thickness variation during blue light polymerization,” Opt. Commun. 231, 45–51 (2004).
[Crossref]

G. Arenas, S. Noriega, C. Vallo, and R. Duchowicz, “Polymerization shrinkage of a dental resin composite determined by a fiber optic Fizeau interferometer,” Opt. Commun. 271, 581–586 (2007).
[Crossref]

Opt. Lett. (1)

Opt. Mater. Express (1)

Opt. Photonics News (1)

G. P. Crawford, “‘Electrically switchable Bragg gratings,” Opt. Photonics News 14(4), 54–59 (2003).
[Crossref]

Phys. Rev. B (1)

R. L. Toullec, P. Loubeyre, and J.-P. Pinceaux, “Refractive-index measurements of dense helium up to 16 GPa at T=298 K: Analysis of its thermodynamic and electronic properties,” Phys. Rev. B 40, 2368–2378 (1989).
[Crossref]

Phys. Rev. Lett. (2)

A. Rupp, J. Hehmann, R. Matull, and K. Ibel, “Neutron diffraction from photoinduced gratings in a PMMA matrix,” Phys. Rev. Lett. 64, 301–304 (1990).
[Crossref] [PubMed]

M. Fally, J. Klepp, Y. Tomita, T. Nakamura, C. Pruner, M. A. Ellaban, R.A. Rupp, M. Bicher, I. Drevenšek-Olenik, J. Kohlbrecher, H. Eckerlebe, H. Lemmel, and H. Rauch, “Neutron optical beam splitter from holographically structured nanoparticle-polymer composites,” Phys. Rev. Lett. 105, 123904 (2010).
[Crossref] [PubMed]

Proc. SPIE (1)

S. H. Stevenson, M. L. Armstrong, P. J. O’Connor, and D. F. Tipton, “Advances in photopolymer films for display holography,” Proc. SPIE 2333, 60–70 (1995).

Techn. Phys. (1)

V. A. Vdovin, A. L. Lonin, and S. N. Mensov, “Optical waveguide synthesis in photopolymers,” Techn. Phys. 46, 853–857 (2001).
[Crossref]

Other (3)

K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, eds., Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010), Chap. 6.
[Crossref]

F. C. Eichmiller, “Polymer shrinkage tensometer,” U.S. Patent 6,871,550 B2 (March29, 2005).

N. Peyghambarian, S. W. Koch, and A. Mystrowicz, Introduction to Semiconductor Optics, (Prentice-Hall, 1993), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Optical setup of white-light interference measurement (above), and a method of making a sample cell (below).
Fig. 2
Fig. 2 Transmitted spectrographs (a) before and (b) after calibration of the background level at t.
Fig. 3
Fig. 3 Shrinkage vs. curing time at different curing intensities for thiol-ene based NPC films doped with the 1 wt.% photoinitiator. Measured initial and final thicknesses (in μm) at t = (0 s, 900 s) by our spectral interferometer were (17.978, 17.228), (19.530, 18.736), (16.530, 15.847), (17.296, 16.574) and (16.899, 16.213) at the curing intensities of 1, 2, 3, 4 and 5 mW/cm2, respectively.
Fig. 4
Fig. 4 Normalized conversion α/αf (dotted curve) and shrinkage σ/σf (solid curve) vs. curing time for a thiol-ene based NPC film doped with the 1 wt.% photoinitiator. The inset is the portion of the figure in the early curing time duration.
Fig. 5
Fig. 5 (a) Shrinkage vs. curing time for thiol-ene based NPC films doped with different concentrations of the photoinitiator. Measured initial and final thicknesses (in μm) at t = (0 s, 900 s) by our spectral interferometer were (17.384, 16.675), (16.306, 15.653), (18.612, 17.901), (18.025, 17.283) and (16.899, 16.213) at the photoinitiator concentrations of 0.1, 0.3, 0.5, 0.7 and 1.0 wt.%, respectively. (b) Dependence of σf taken from Fig. 5(a) on concentration of the photoinitiator (○). Measured values for σf by the holographic Bragg-angle detuning method (•) and calibrated values for σf taken from Fig. 5(a) (□) are also plotted. Solid lines are a guide to the eye.
Fig. 6
Fig. 6 Normalized shrinkage and diffraction efficiency vs. curing/recording time for thiol-ene based NPC films at photoinitiator concentrations of (a) 0.1, (b) 0.3, (c) 0.5, (d) 0.7 and (e) 1.0 wt.%.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

M = Δ N λ 2 λ 2 λ 1 ,
d ( t ) = Δ N λ 1 λ 2 2 n ( λ 2 λ 1 ) ,

Metrics