Abstract

We report here an angular-dependent polarization-insensitive filter fashioned with a free-standing zero-contrast grating (ZCG), which is implemented on an HfO2/Silicon platform. The spectral characteristics are investigated by rigorous coupled-wave analysis method and measured on angular-resolved micro-reflectance system. The proposed ZCG structure experimentally shows that the polarization-insensitive resonances occur at 595nm for the incidence angle θ of 12.8° and 500nm for the incidence angle θ of 14.2°. When the incident light is normal to the grating surface, the ZCG device generates yellow and red colors for p- and s-polarization, respectively. The experimental results are in good agreement with the simulations, which indicate that the free-standing ZCG device is promising for polarization-insensitive filter and polarization-controlled tunable color filter.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Angle- and polarization-dependent spectral characteristics of circular grating filters

Wei Wang, Gangyi Zhu, Qifa Liu, Xin Li, Tongliang Sa, Xiaojing Fang, Hongbo Zhu, and Yongjin Wang
Opt. Express 24(10) 11033-11042 (2016)

Reflection color filters of the three primary colors with wide viewing angles using common-thickness silicon subwavelength gratings

Yoshiaki Kanamori, Toshikazu Ozaki, and Kazuhiro Hane
Opt. Express 22(21) 25663-25672 (2014)

Multiline resonant filters fashioned with different periodic subwavelength gratings

Xumin Gao, Zheng Shi, Xin Li, Hongbo Zhu, and Yongjin Wang
Opt. Lett. 39(23) 6660-6663 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt. 32(14), 2606–2613 (1993).
    [Crossref] [PubMed]
  2. Z. S. Liu, S. Tibuleac, D. Shin, P. P. Young, and R. Magnusson, “High-efficiency guided-mode resonance filter,” Opt. Lett. 23(19), 1556–1558 (1998).
    [Crossref] [PubMed]
  3. W. Liu, Z. Lai, H. Guo, and Y. Liu, “Guided-mode resonance filters with shallow grating,” Opt. Lett. 35(6), 865–867 (2010).
    [Crossref] [PubMed]
  4. S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
    [Crossref]
  5. S. A. J. Moghaddas, M. Shahabadi, and M. M. Taheri, “Guided mode resonance sensor with enhanced surface sensitivity using coupled cross-stacked gratings,” IEEE Sens. J. 14(4), 1216–1222 (2014).
    [Crossref]
  6. M. J. Uddin and R. Magnusson, “Highly efficient color filter array using resonant Si3N4 gratings,” Opt. Express 21(10), 12495–12506 (2013).
    [Crossref] [PubMed]
  7. Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014, 1–17 (2014).
    [Crossref]
  8. K. J. Lee, J. Giese, L. Ajayi, R. Magnusson, and E. Johnson, “Resonant grating polarizers made with silicon nitride, titanium dioxide, and silicon: design, fabrication, and characterization,” Opt. Express 22(8), 9271–9281 (2014).
    [Crossref] [PubMed]
  9. G. Zheng, J. Cong, L. Xu, and W. Su, “Compact polarizers with single layer high-index contrast gratings,” Infrared Phys. Technol. 67, 408–412 (2014).
    [Crossref]
  10. M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
    [Crossref] [PubMed]
  11. Y. Qin, Y. Yu, J. Zou, M. Ye, L. Xiang, and X. Zhang, “Silicon based polarization insensitive filter for WDM-PDM signal processing,” Opt. Express 21(22), 25727–25733 (2013).
    [Crossref] [PubMed]
  12. J. Li, J. Mu, B. Wang, W. Ding, J. Liu, H. Guo, W. Li, C. Gu, and Z. Li, “Direct laser writing of symmetry-broken spiral tapers for polarization-insensitive three-dimensional plasmonic focusing,” Laser Photonics Rev. 8(4), 602–609 (2014).
  13. D. W. Peters, R. R. Boye, J. R. Wendt, R. A. Kellogg, S. A. Kemme, T. R. Carter, and S. Samora, “Demonstration of polarization-independent resonant subwavelength grating filter arrays,” Opt. Lett. 35(19), 3201–3203 (2010).
    [Crossref] [PubMed]
  14. B. Xu, D. Zhang, Y. Wang, Y. Huang, and Q. Wang, “Design and characteristics of polarization-insensitive resonant gratings for color filtering,” J. Mod. Opt. 60(21), 1961–1966 (2013).
    [Crossref]
  15. G. Niederer, W. Nakagawa, H. Herzig, and H. Thiele, “Design and characterization of a tunable polarization-independent resonant grating filter,” Opt. Express 13(6), 2196–2200 (2005).
    [Crossref] [PubMed]
  16. S. Hernandez, O. G. Lafaye, A. L. Fehrembach, S. Bonnefont, P. Arguel, F. L. Dupuy, and A. Sentenac, “High performance bi-dimensional resonant grating filter at 850 nm under high oblique incidence of 60°,” Appl. Phys. Lett. 92(13), 131112 (2008).
    [Crossref]
  17. M. R. Saleem, D. Zheng, B. Bai, P. Stenberg, M. Kuittinen, S. Honkanen, and J. Turunen, “Replicable one-dimensional non-polarizing guided mode resonance gratings under normal incidence,” Opt. Express 20(15), 16974–16980 (2012).
    [Crossref]
  18. M. R. Saleem, S. Honkanen, and J. Turunen, “Non-polarizing single layer inorganic and double layer organic-inorganic one-dimensional guided mode resonance filters,” Proc. SPIE 8613, 86130C (2013).
  19. H. X. Hui, G. Ke, S. T. Yu, and W. D. Min, “Polarization-independent guided-mode resonance filters under oblique incidence,” Chin. Phys. Lett. 27(7), 074211 (2010).
    [Crossref]
  20. C. J. C. Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
    [Crossref]
  21. R. Magnusson, “Wideband reflectors with zero-contrast gratings,” Opt. Lett. 39(15), 4337–4340 (2014).
    [Crossref] [PubMed]
  22. M. Shokooh-Saremi and R. Magnusson, “Properties of two-dimensional resonant reflectors with zero-contrast gratings,” Opt. Lett. 39(24), 6958–6961 (2014).
    [Crossref] [PubMed]
  23. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [Crossref]
  24. X. Gao, Z. Shi, X. Li, H. Zhu, and Y. Wang, “Multiline resonant filters fashioned with different periodic subwavelength gratings,” Opt. Lett. 39(23), 6660–6663 (2014).
    [Crossref] [PubMed]
  25. Y. Wang, X. Gao, Z. Shi, L. Chen, M. L. Garcia, N. A. Hueting, M. Cryan, X. Li, M. Zhang, and H. Zhu, “Guided-mode resonant HfO2 grating at visible wavelength range,” IEEE Photon. J. 6(2), 2200407 (2014).
  26. Y. Ding and R. Magnusson, “Doubly resonant single-layer bandpass optical filters,” Opt. Lett. 29(10), 1135–1137 (2004).
    [Crossref] [PubMed]
  27. D. Gerace and L. C. Andreani, “Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5 Pt 2), 056603 (2004).
    [Crossref] [PubMed]
  28. K. Hirayama, E. N. Glytsis, and T. K. Gaylord, “Rigorous electromagnetic analysis of diffraction by finite-number-of-periods gratings,” J. Opt. Soc. Am. A 14(4), 907–917 (1997).
    [Crossref]
  29. S. Daskalakis, P. S. Eldridge, G. Christmann, E. Trichas, R. Murray, E. Iliopoulos, E. Monroy, N. T. Pelekanos, J. J. Baumberg, and P. G. Savvidis, “All-dielectric GaN microcavity: strong coupling and lasing at room temperature,” Appl. Phys. Lett. 102(10), 101113 (2013).
    [Crossref]

2014 (10)

S. A. J. Moghaddas, M. Shahabadi, and M. M. Taheri, “Guided mode resonance sensor with enhanced surface sensitivity using coupled cross-stacked gratings,” IEEE Sens. J. 14(4), 1216–1222 (2014).
[Crossref]

Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014, 1–17 (2014).
[Crossref]

G. Zheng, J. Cong, L. Xu, and W. Su, “Compact polarizers with single layer high-index contrast gratings,” Infrared Phys. Technol. 67, 408–412 (2014).
[Crossref]

J. Li, J. Mu, B. Wang, W. Ding, J. Liu, H. Guo, W. Li, C. Gu, and Z. Li, “Direct laser writing of symmetry-broken spiral tapers for polarization-insensitive three-dimensional plasmonic focusing,” Laser Photonics Rev. 8(4), 602–609 (2014).

Y. Wang, X. Gao, Z. Shi, L. Chen, M. L. Garcia, N. A. Hueting, M. Cryan, X. Li, M. Zhang, and H. Zhu, “Guided-mode resonant HfO2 grating at visible wavelength range,” IEEE Photon. J. 6(2), 2200407 (2014).

K. J. Lee, J. Giese, L. Ajayi, R. Magnusson, and E. Johnson, “Resonant grating polarizers made with silicon nitride, titanium dioxide, and silicon: design, fabrication, and characterization,” Opt. Express 22(8), 9271–9281 (2014).
[Crossref] [PubMed]

M. J. Uddin, T. Khaleque, and R. Magnusson, “Guided-mode resonant polarization-controlled tunable color filters,” Opt. Express 22(10), 12307–12315 (2014).
[Crossref] [PubMed]

R. Magnusson, “Wideband reflectors with zero-contrast gratings,” Opt. Lett. 39(15), 4337–4340 (2014).
[Crossref] [PubMed]

X. Gao, Z. Shi, X. Li, H. Zhu, and Y. Wang, “Multiline resonant filters fashioned with different periodic subwavelength gratings,” Opt. Lett. 39(23), 6660–6663 (2014).
[Crossref] [PubMed]

M. Shokooh-Saremi and R. Magnusson, “Properties of two-dimensional resonant reflectors with zero-contrast gratings,” Opt. Lett. 39(24), 6958–6961 (2014).
[Crossref] [PubMed]

2013 (5)

M. J. Uddin and R. Magnusson, “Highly efficient color filter array using resonant Si3N4 gratings,” Opt. Express 21(10), 12495–12506 (2013).
[Crossref] [PubMed]

Y. Qin, Y. Yu, J. Zou, M. Ye, L. Xiang, and X. Zhang, “Silicon based polarization insensitive filter for WDM-PDM signal processing,” Opt. Express 21(22), 25727–25733 (2013).
[Crossref] [PubMed]

S. Daskalakis, P. S. Eldridge, G. Christmann, E. Trichas, R. Murray, E. Iliopoulos, E. Monroy, N. T. Pelekanos, J. J. Baumberg, and P. G. Savvidis, “All-dielectric GaN microcavity: strong coupling and lasing at room temperature,” Appl. Phys. Lett. 102(10), 101113 (2013).
[Crossref]

B. Xu, D. Zhang, Y. Wang, Y. Huang, and Q. Wang, “Design and characteristics of polarization-insensitive resonant gratings for color filtering,” J. Mod. Opt. 60(21), 1961–1966 (2013).
[Crossref]

M. R. Saleem, S. Honkanen, and J. Turunen, “Non-polarizing single layer inorganic and double layer organic-inorganic one-dimensional guided mode resonance filters,” Proc. SPIE 8613, 86130C (2013).

2012 (3)

S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
[Crossref]

C. J. C. Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

M. R. Saleem, D. Zheng, B. Bai, P. Stenberg, M. Kuittinen, S. Honkanen, and J. Turunen, “Replicable one-dimensional non-polarizing guided mode resonance gratings under normal incidence,” Opt. Express 20(15), 16974–16980 (2012).
[Crossref]

2010 (3)

2008 (1)

S. Hernandez, O. G. Lafaye, A. L. Fehrembach, S. Bonnefont, P. Arguel, F. L. Dupuy, and A. Sentenac, “High performance bi-dimensional resonant grating filter at 850 nm under high oblique incidence of 60°,” Appl. Phys. Lett. 92(13), 131112 (2008).
[Crossref]

2005 (1)

2004 (2)

Y. Ding and R. Magnusson, “Doubly resonant single-layer bandpass optical filters,” Opt. Lett. 29(10), 1135–1137 (2004).
[Crossref] [PubMed]

D. Gerace and L. C. Andreani, “Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5 Pt 2), 056603 (2004).
[Crossref] [PubMed]

1998 (1)

1997 (1)

1993 (1)

1981 (1)

Ajayi, L.

Andreani, L. C.

D. Gerace and L. C. Andreani, “Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5 Pt 2), 056603 (2004).
[Crossref] [PubMed]

Arguel, P.

S. Hernandez, O. G. Lafaye, A. L. Fehrembach, S. Bonnefont, P. Arguel, F. L. Dupuy, and A. Sentenac, “High performance bi-dimensional resonant grating filter at 850 nm under high oblique incidence of 60°,” Appl. Phys. Lett. 92(13), 131112 (2008).
[Crossref]

Bai, B.

Baumberg, J. J.

S. Daskalakis, P. S. Eldridge, G. Christmann, E. Trichas, R. Murray, E. Iliopoulos, E. Monroy, N. T. Pelekanos, J. J. Baumberg, and P. G. Savvidis, “All-dielectric GaN microcavity: strong coupling and lasing at room temperature,” Appl. Phys. Lett. 102(10), 101113 (2013).
[Crossref]

Bonnefont, S.

S. Hernandez, O. G. Lafaye, A. L. Fehrembach, S. Bonnefont, P. Arguel, F. L. Dupuy, and A. Sentenac, “High performance bi-dimensional resonant grating filter at 850 nm under high oblique incidence of 60°,” Appl. Phys. Lett. 92(13), 131112 (2008).
[Crossref]

Boye, R. R.

Carter, T. R.

Chen, L.

Y. Wang, X. Gao, Z. Shi, L. Chen, M. L. Garcia, N. A. Hueting, M. Cryan, X. Li, M. Zhang, and H. Zhu, “Guided-mode resonant HfO2 grating at visible wavelength range,” IEEE Photon. J. 6(2), 2200407 (2014).

Chen, Q.

Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014, 1–17 (2014).
[Crossref]

Christmann, G.

S. Daskalakis, P. S. Eldridge, G. Christmann, E. Trichas, R. Murray, E. Iliopoulos, E. Monroy, N. T. Pelekanos, J. J. Baumberg, and P. G. Savvidis, “All-dielectric GaN microcavity: strong coupling and lasing at room temperature,” Appl. Phys. Lett. 102(10), 101113 (2013).
[Crossref]

Cong, J.

G. Zheng, J. Cong, L. Xu, and W. Su, “Compact polarizers with single layer high-index contrast gratings,” Infrared Phys. Technol. 67, 408–412 (2014).
[Crossref]

Cryan, M.

Y. Wang, X. Gao, Z. Shi, L. Chen, M. L. Garcia, N. A. Hueting, M. Cryan, X. Li, M. Zhang, and H. Zhu, “Guided-mode resonant HfO2 grating at visible wavelength range,” IEEE Photon. J. 6(2), 2200407 (2014).

Daskalakis, S.

S. Daskalakis, P. S. Eldridge, G. Christmann, E. Trichas, R. Murray, E. Iliopoulos, E. Monroy, N. T. Pelekanos, J. J. Baumberg, and P. G. Savvidis, “All-dielectric GaN microcavity: strong coupling and lasing at room temperature,” Appl. Phys. Lett. 102(10), 101113 (2013).
[Crossref]

Ding, W.

J. Li, J. Mu, B. Wang, W. Ding, J. Liu, H. Guo, W. Li, C. Gu, and Z. Li, “Direct laser writing of symmetry-broken spiral tapers for polarization-insensitive three-dimensional plasmonic focusing,” Laser Photonics Rev. 8(4), 602–609 (2014).

Ding, Y.

Dupuy, F. L.

S. Hernandez, O. G. Lafaye, A. L. Fehrembach, S. Bonnefont, P. Arguel, F. L. Dupuy, and A. Sentenac, “High performance bi-dimensional resonant grating filter at 850 nm under high oblique incidence of 60°,” Appl. Phys. Lett. 92(13), 131112 (2008).
[Crossref]

Eldridge, P. S.

S. Daskalakis, P. S. Eldridge, G. Christmann, E. Trichas, R. Murray, E. Iliopoulos, E. Monroy, N. T. Pelekanos, J. J. Baumberg, and P. G. Savvidis, “All-dielectric GaN microcavity: strong coupling and lasing at room temperature,” Appl. Phys. Lett. 102(10), 101113 (2013).
[Crossref]

Fehrembach, A. L.

S. Hernandez, O. G. Lafaye, A. L. Fehrembach, S. Bonnefont, P. Arguel, F. L. Dupuy, and A. Sentenac, “High performance bi-dimensional resonant grating filter at 850 nm under high oblique incidence of 60°,” Appl. Phys. Lett. 92(13), 131112 (2008).
[Crossref]

Foland, S.

S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
[Crossref]

Gao, X.

Y. Wang, X. Gao, Z. Shi, L. Chen, M. L. Garcia, N. A. Hueting, M. Cryan, X. Li, M. Zhang, and H. Zhu, “Guided-mode resonant HfO2 grating at visible wavelength range,” IEEE Photon. J. 6(2), 2200407 (2014).

X. Gao, Z. Shi, X. Li, H. Zhu, and Y. Wang, “Multiline resonant filters fashioned with different periodic subwavelength gratings,” Opt. Lett. 39(23), 6660–6663 (2014).
[Crossref] [PubMed]

Garcia, M. L.

Y. Wang, X. Gao, Z. Shi, L. Chen, M. L. Garcia, N. A. Hueting, M. Cryan, X. Li, M. Zhang, and H. Zhu, “Guided-mode resonant HfO2 grating at visible wavelength range,” IEEE Photon. J. 6(2), 2200407 (2014).

Gaylord, T. K.

Gerace, D.

D. Gerace and L. C. Andreani, “Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5 Pt 2), 056603 (2004).
[Crossref] [PubMed]

Giese, J.

Glytsis, E. N.

Gu, C.

J. Li, J. Mu, B. Wang, W. Ding, J. Liu, H. Guo, W. Li, C. Gu, and Z. Li, “Direct laser writing of symmetry-broken spiral tapers for polarization-insensitive three-dimensional plasmonic focusing,” Laser Photonics Rev. 8(4), 602–609 (2014).

Guo, H.

J. Li, J. Mu, B. Wang, W. Ding, J. Liu, H. Guo, W. Li, C. Gu, and Z. Li, “Direct laser writing of symmetry-broken spiral tapers for polarization-insensitive three-dimensional plasmonic focusing,” Laser Photonics Rev. 8(4), 602–609 (2014).

W. Liu, Z. Lai, H. Guo, and Y. Liu, “Guided-mode resonance filters with shallow grating,” Opt. Lett. 35(6), 865–867 (2010).
[Crossref] [PubMed]

Hasnain, C. J. C.

C. J. C. Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

Hernandez, S.

S. Hernandez, O. G. Lafaye, A. L. Fehrembach, S. Bonnefont, P. Arguel, F. L. Dupuy, and A. Sentenac, “High performance bi-dimensional resonant grating filter at 850 nm under high oblique incidence of 60°,” Appl. Phys. Lett. 92(13), 131112 (2008).
[Crossref]

Herzig, H.

Hirayama, K.

Honkanen, S.

M. R. Saleem, S. Honkanen, and J. Turunen, “Non-polarizing single layer inorganic and double layer organic-inorganic one-dimensional guided mode resonance filters,” Proc. SPIE 8613, 86130C (2013).

M. R. Saleem, D. Zheng, B. Bai, P. Stenberg, M. Kuittinen, S. Honkanen, and J. Turunen, “Replicable one-dimensional non-polarizing guided mode resonance gratings under normal incidence,” Opt. Express 20(15), 16974–16980 (2012).
[Crossref]

Huang, Y.

B. Xu, D. Zhang, Y. Wang, Y. Huang, and Q. Wang, “Design and characteristics of polarization-insensitive resonant gratings for color filtering,” J. Mod. Opt. 60(21), 1961–1966 (2013).
[Crossref]

Hueting, N. A.

Y. Wang, X. Gao, Z. Shi, L. Chen, M. L. Garcia, N. A. Hueting, M. Cryan, X. Li, M. Zhang, and H. Zhu, “Guided-mode resonant HfO2 grating at visible wavelength range,” IEEE Photon. J. 6(2), 2200407 (2014).

Hui, H. X.

H. X. Hui, G. Ke, S. T. Yu, and W. D. Min, “Polarization-independent guided-mode resonance filters under oblique incidence,” Chin. Phys. Lett. 27(7), 074211 (2010).
[Crossref]

Iliopoulos, E.

S. Daskalakis, P. S. Eldridge, G. Christmann, E. Trichas, R. Murray, E. Iliopoulos, E. Monroy, N. T. Pelekanos, J. J. Baumberg, and P. G. Savvidis, “All-dielectric GaN microcavity: strong coupling and lasing at room temperature,” Appl. Phys. Lett. 102(10), 101113 (2013).
[Crossref]

Johnson, E.

Ke, G.

H. X. Hui, G. Ke, S. T. Yu, and W. D. Min, “Polarization-independent guided-mode resonance filters under oblique incidence,” Chin. Phys. Lett. 27(7), 074211 (2010).
[Crossref]

Kellogg, R. A.

Kemme, S. A.

Khaleque, T.

Kuittinen, M.

Lafaye, O. G.

S. Hernandez, O. G. Lafaye, A. L. Fehrembach, S. Bonnefont, P. Arguel, F. L. Dupuy, and A. Sentenac, “High performance bi-dimensional resonant grating filter at 850 nm under high oblique incidence of 60°,” Appl. Phys. Lett. 92(13), 131112 (2008).
[Crossref]

Lai, Z.

Lee, J.-B.

S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
[Crossref]

Lee, K. J.

Li, J.

J. Li, J. Mu, B. Wang, W. Ding, J. Liu, H. Guo, W. Li, C. Gu, and Z. Li, “Direct laser writing of symmetry-broken spiral tapers for polarization-insensitive three-dimensional plasmonic focusing,” Laser Photonics Rev. 8(4), 602–609 (2014).

Li, W.

J. Li, J. Mu, B. Wang, W. Ding, J. Liu, H. Guo, W. Li, C. Gu, and Z. Li, “Direct laser writing of symmetry-broken spiral tapers for polarization-insensitive three-dimensional plasmonic focusing,” Laser Photonics Rev. 8(4), 602–609 (2014).

Li, X.

Y. Wang, X. Gao, Z. Shi, L. Chen, M. L. Garcia, N. A. Hueting, M. Cryan, X. Li, M. Zhang, and H. Zhu, “Guided-mode resonant HfO2 grating at visible wavelength range,” IEEE Photon. J. 6(2), 2200407 (2014).

X. Gao, Z. Shi, X. Li, H. Zhu, and Y. Wang, “Multiline resonant filters fashioned with different periodic subwavelength gratings,” Opt. Lett. 39(23), 6660–6663 (2014).
[Crossref] [PubMed]

Li, Z.

J. Li, J. Mu, B. Wang, W. Ding, J. Liu, H. Guo, W. Li, C. Gu, and Z. Li, “Direct laser writing of symmetry-broken spiral tapers for polarization-insensitive three-dimensional plasmonic focusing,” Laser Photonics Rev. 8(4), 602–609 (2014).

Liu, J.

J. Li, J. Mu, B. Wang, W. Ding, J. Liu, H. Guo, W. Li, C. Gu, and Z. Li, “Direct laser writing of symmetry-broken spiral tapers for polarization-insensitive three-dimensional plasmonic focusing,” Laser Photonics Rev. 8(4), 602–609 (2014).

Liu, W.

Liu, Y.

Liu, Z. S.

Magnusson, R.

Min, W. D.

H. X. Hui, G. Ke, S. T. Yu, and W. D. Min, “Polarization-independent guided-mode resonance filters under oblique incidence,” Chin. Phys. Lett. 27(7), 074211 (2010).
[Crossref]

Moghaddas, S. A. J.

S. A. J. Moghaddas, M. Shahabadi, and M. M. Taheri, “Guided mode resonance sensor with enhanced surface sensitivity using coupled cross-stacked gratings,” IEEE Sens. J. 14(4), 1216–1222 (2014).
[Crossref]

Moharam, M. G.

Monroy, E.

S. Daskalakis, P. S. Eldridge, G. Christmann, E. Trichas, R. Murray, E. Iliopoulos, E. Monroy, N. T. Pelekanos, J. J. Baumberg, and P. G. Savvidis, “All-dielectric GaN microcavity: strong coupling and lasing at room temperature,” Appl. Phys. Lett. 102(10), 101113 (2013).
[Crossref]

Mu, J.

J. Li, J. Mu, B. Wang, W. Ding, J. Liu, H. Guo, W. Li, C. Gu, and Z. Li, “Direct laser writing of symmetry-broken spiral tapers for polarization-insensitive three-dimensional plasmonic focusing,” Laser Photonics Rev. 8(4), 602–609 (2014).

Murray, R.

S. Daskalakis, P. S. Eldridge, G. Christmann, E. Trichas, R. Murray, E. Iliopoulos, E. Monroy, N. T. Pelekanos, J. J. Baumberg, and P. G. Savvidis, “All-dielectric GaN microcavity: strong coupling and lasing at room temperature,” Appl. Phys. Lett. 102(10), 101113 (2013).
[Crossref]

Nakagawa, W.

Nguyen, H.

S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
[Crossref]

Niederer, G.

Pelekanos, N. T.

S. Daskalakis, P. S. Eldridge, G. Christmann, E. Trichas, R. Murray, E. Iliopoulos, E. Monroy, N. T. Pelekanos, J. J. Baumberg, and P. G. Savvidis, “All-dielectric GaN microcavity: strong coupling and lasing at room temperature,” Appl. Phys. Lett. 102(10), 101113 (2013).
[Crossref]

Peters, D. W.

Qin, Y.

Saleem, M. R.

M. R. Saleem, S. Honkanen, and J. Turunen, “Non-polarizing single layer inorganic and double layer organic-inorganic one-dimensional guided mode resonance filters,” Proc. SPIE 8613, 86130C (2013).

M. R. Saleem, D. Zheng, B. Bai, P. Stenberg, M. Kuittinen, S. Honkanen, and J. Turunen, “Replicable one-dimensional non-polarizing guided mode resonance gratings under normal incidence,” Opt. Express 20(15), 16974–16980 (2012).
[Crossref]

Samora, S.

Savvidis, P. G.

S. Daskalakis, P. S. Eldridge, G. Christmann, E. Trichas, R. Murray, E. Iliopoulos, E. Monroy, N. T. Pelekanos, J. J. Baumberg, and P. G. Savvidis, “All-dielectric GaN microcavity: strong coupling and lasing at room temperature,” Appl. Phys. Lett. 102(10), 101113 (2013).
[Crossref]

Sentenac, A.

S. Hernandez, O. G. Lafaye, A. L. Fehrembach, S. Bonnefont, P. Arguel, F. L. Dupuy, and A. Sentenac, “High performance bi-dimensional resonant grating filter at 850 nm under high oblique incidence of 60°,” Appl. Phys. Lett. 92(13), 131112 (2008).
[Crossref]

Shahabadi, M.

S. A. J. Moghaddas, M. Shahabadi, and M. M. Taheri, “Guided mode resonance sensor with enhanced surface sensitivity using coupled cross-stacked gratings,” IEEE Sens. J. 14(4), 1216–1222 (2014).
[Crossref]

Shi, Z.

Y. Wang, X. Gao, Z. Shi, L. Chen, M. L. Garcia, N. A. Hueting, M. Cryan, X. Li, M. Zhang, and H. Zhu, “Guided-mode resonant HfO2 grating at visible wavelength range,” IEEE Photon. J. 6(2), 2200407 (2014).

X. Gao, Z. Shi, X. Li, H. Zhu, and Y. Wang, “Multiline resonant filters fashioned with different periodic subwavelength gratings,” Opt. Lett. 39(23), 6660–6663 (2014).
[Crossref] [PubMed]

Shin, D.

Shokooh-Saremi, M.

Song, S.

Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014, 1–17 (2014).
[Crossref]

Stenberg, P.

Su, W.

G. Zheng, J. Cong, L. Xu, and W. Su, “Compact polarizers with single layer high-index contrast gratings,” Infrared Phys. Technol. 67, 408–412 (2014).
[Crossref]

Swedlove, B.

S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
[Crossref]

Taheri, M. M.

S. A. J. Moghaddas, M. Shahabadi, and M. M. Taheri, “Guided mode resonance sensor with enhanced surface sensitivity using coupled cross-stacked gratings,” IEEE Sens. J. 14(4), 1216–1222 (2014).
[Crossref]

Thiele, H.

Tibuleac, S.

Trichas, E.

S. Daskalakis, P. S. Eldridge, G. Christmann, E. Trichas, R. Murray, E. Iliopoulos, E. Monroy, N. T. Pelekanos, J. J. Baumberg, and P. G. Savvidis, “All-dielectric GaN microcavity: strong coupling and lasing at room temperature,” Appl. Phys. Lett. 102(10), 101113 (2013).
[Crossref]

Turunen, J.

M. R. Saleem, S. Honkanen, and J. Turunen, “Non-polarizing single layer inorganic and double layer organic-inorganic one-dimensional guided mode resonance filters,” Proc. SPIE 8613, 86130C (2013).

M. R. Saleem, D. Zheng, B. Bai, P. Stenberg, M. Kuittinen, S. Honkanen, and J. Turunen, “Replicable one-dimensional non-polarizing guided mode resonance gratings under normal incidence,” Opt. Express 20(15), 16974–16980 (2012).
[Crossref]

Uddin, M. J.

Wang, B.

J. Li, J. Mu, B. Wang, W. Ding, J. Liu, H. Guo, W. Li, C. Gu, and Z. Li, “Direct laser writing of symmetry-broken spiral tapers for polarization-insensitive three-dimensional plasmonic focusing,” Laser Photonics Rev. 8(4), 602–609 (2014).

Wang, Q.

B. Xu, D. Zhang, Y. Wang, Y. Huang, and Q. Wang, “Design and characteristics of polarization-insensitive resonant gratings for color filtering,” J. Mod. Opt. 60(21), 1961–1966 (2013).
[Crossref]

Wang, S. S.

Wang, Y.

X. Gao, Z. Shi, X. Li, H. Zhu, and Y. Wang, “Multiline resonant filters fashioned with different periodic subwavelength gratings,” Opt. Lett. 39(23), 6660–6663 (2014).
[Crossref] [PubMed]

Y. Wang, X. Gao, Z. Shi, L. Chen, M. L. Garcia, N. A. Hueting, M. Cryan, X. Li, M. Zhang, and H. Zhu, “Guided-mode resonant HfO2 grating at visible wavelength range,” IEEE Photon. J. 6(2), 2200407 (2014).

B. Xu, D. Zhang, Y. Wang, Y. Huang, and Q. Wang, “Design and characteristics of polarization-insensitive resonant gratings for color filtering,” J. Mod. Opt. 60(21), 1961–1966 (2013).
[Crossref]

Wen, L.

Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014, 1–17 (2014).
[Crossref]

Wendt, J. R.

Xiang, L.

Xu, B.

B. Xu, D. Zhang, Y. Wang, Y. Huang, and Q. Wang, “Design and characteristics of polarization-insensitive resonant gratings for color filtering,” J. Mod. Opt. 60(21), 1961–1966 (2013).
[Crossref]

Xu, L.

G. Zheng, J. Cong, L. Xu, and W. Su, “Compact polarizers with single layer high-index contrast gratings,” Infrared Phys. Technol. 67, 408–412 (2014).
[Crossref]

Yang, W.

C. J. C. Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

Ye, M.

Young, P. P.

Yu, S. T.

H. X. Hui, G. Ke, S. T. Yu, and W. D. Min, “Polarization-independent guided-mode resonance filters under oblique incidence,” Chin. Phys. Lett. 27(7), 074211 (2010).
[Crossref]

Yu, Y.

Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014, 1–17 (2014).
[Crossref]

Y. Qin, Y. Yu, J. Zou, M. Ye, L. Xiang, and X. Zhang, “Silicon based polarization insensitive filter for WDM-PDM signal processing,” Opt. Express 21(22), 25727–25733 (2013).
[Crossref] [PubMed]

Zhang, D.

B. Xu, D. Zhang, Y. Wang, Y. Huang, and Q. Wang, “Design and characteristics of polarization-insensitive resonant gratings for color filtering,” J. Mod. Opt. 60(21), 1961–1966 (2013).
[Crossref]

Zhang, M.

Y. Wang, X. Gao, Z. Shi, L. Chen, M. L. Garcia, N. A. Hueting, M. Cryan, X. Li, M. Zhang, and H. Zhu, “Guided-mode resonant HfO2 grating at visible wavelength range,” IEEE Photon. J. 6(2), 2200407 (2014).

Zhang, X.

Zheng, D.

Zheng, G.

G. Zheng, J. Cong, L. Xu, and W. Su, “Compact polarizers with single layer high-index contrast gratings,” Infrared Phys. Technol. 67, 408–412 (2014).
[Crossref]

Zhu, H.

Y. Wang, X. Gao, Z. Shi, L. Chen, M. L. Garcia, N. A. Hueting, M. Cryan, X. Li, M. Zhang, and H. Zhu, “Guided-mode resonant HfO2 grating at visible wavelength range,” IEEE Photon. J. 6(2), 2200407 (2014).

X. Gao, Z. Shi, X. Li, H. Zhu, and Y. Wang, “Multiline resonant filters fashioned with different periodic subwavelength gratings,” Opt. Lett. 39(23), 6660–6663 (2014).
[Crossref] [PubMed]

Zou, J.

Adv. Opt. Photonics (1)

C. J. C. Hasnain and W. Yang, “High-contrast gratings for integrated optoelectronics,” Adv. Opt. Photonics 4(3), 379–440 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. Hernandez, O. G. Lafaye, A. L. Fehrembach, S. Bonnefont, P. Arguel, F. L. Dupuy, and A. Sentenac, “High performance bi-dimensional resonant grating filter at 850 nm under high oblique incidence of 60°,” Appl. Phys. Lett. 92(13), 131112 (2008).
[Crossref]

S. Daskalakis, P. S. Eldridge, G. Christmann, E. Trichas, R. Murray, E. Iliopoulos, E. Monroy, N. T. Pelekanos, J. J. Baumberg, and P. G. Savvidis, “All-dielectric GaN microcavity: strong coupling and lasing at room temperature,” Appl. Phys. Lett. 102(10), 101113 (2013).
[Crossref]

Chin. Phys. Lett. (1)

H. X. Hui, G. Ke, S. T. Yu, and W. D. Min, “Polarization-independent guided-mode resonance filters under oblique incidence,” Chin. Phys. Lett. 27(7), 074211 (2010).
[Crossref]

IEEE Photon. J. (1)

Y. Wang, X. Gao, Z. Shi, L. Chen, M. L. Garcia, N. A. Hueting, M. Cryan, X. Li, M. Zhang, and H. Zhu, “Guided-mode resonant HfO2 grating at visible wavelength range,” IEEE Photon. J. 6(2), 2200407 (2014).

IEEE Sens. J. (1)

S. A. J. Moghaddas, M. Shahabadi, and M. M. Taheri, “Guided mode resonance sensor with enhanced surface sensitivity using coupled cross-stacked gratings,” IEEE Sens. J. 14(4), 1216–1222 (2014).
[Crossref]

Infrared Phys. Technol. (1)

G. Zheng, J. Cong, L. Xu, and W. Su, “Compact polarizers with single layer high-index contrast gratings,” Infrared Phys. Technol. 67, 408–412 (2014).
[Crossref]

J. Microelectromech. Syst. (1)

S. Foland, B. Swedlove, H. Nguyen, and J.-B. Lee, “One-dimensional nanograting-based guided-mode resonance pressure sensor,” J. Microelectromech. Syst. 21(5), 1117–1123 (2012).
[Crossref]

J. Mod. Opt. (1)

B. Xu, D. Zhang, Y. Wang, Y. Huang, and Q. Wang, “Design and characteristics of polarization-insensitive resonant gratings for color filtering,” J. Mod. Opt. 60(21), 1961–1966 (2013).
[Crossref]

J. Nanomater. (1)

Y. Yu, L. Wen, S. Song, and Q. Chen, “Transmissive/reflective structural color filters: theory and applications,” J. Nanomater. 2014, 1–17 (2014).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Laser Photonics Rev. (1)

J. Li, J. Mu, B. Wang, W. Ding, J. Liu, H. Guo, W. Li, C. Gu, and Z. Li, “Direct laser writing of symmetry-broken spiral tapers for polarization-insensitive three-dimensional plasmonic focusing,” Laser Photonics Rev. 8(4), 602–609 (2014).

Opt. Express (6)

Opt. Lett. (7)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

D. Gerace and L. C. Andreani, “Gap maps and intrinsic diffraction losses in one-dimensional photonic crystal slabs,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(5 Pt 2), 056603 (2004).
[Crossref] [PubMed]

Proc. SPIE (1)

M. R. Saleem, S. Honkanen, and J. Turunen, “Non-polarizing single layer inorganic and double layer organic-inorganic one-dimensional guided mode resonance filters,” Proc. SPIE 8613, 86130C (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic structure of the free-standing ZCG filter, where tg is the grating thickness, tm is the HfO2 film thickness, Λ is the grating period and w is the grating width.
Fig. 2
Fig. 2 (a) SEM image of the fabricated polarization-insensitive ZCG filter, with the magnification of the grating line inset; (b) and (c) AFM images of the grating structural profile.
Fig. 3
Fig. 3 Simulation results of angular-resolved reflectance for the linear HfO2 ZCG filter with Λ = 400nm, η = 0.5, and tg = 70nm under different polarization angles: (a) ϕ = 0° (s-polarization); (b) ϕ = 30°; (c) ϕ = 60°; (d) ϕ = 90° (p-polarization).
Fig. 4
Fig. 4 Reflectance spectra with different polarization angle ϕ under incident angle: (a) θ = θp1 = 7.8°, (b) θ = θp2 = 12.1°, (c) normal incidence θ = 0°.
Fig. 5
Fig. 5 (a) Simulated, (b) measured angular-resolved reflectance for the linear HfO2 GMRF under polarization angle ϕ of 45°; reflectance spectrum under incident angles: (c) θp1 and θp1’, (d) θp2 and θp2’
Fig. 6
Fig. 6 Measured angular-resolved reflectance for the fabricated HfO2 ZCG filter with different polarization angle (a) ϕ = 0°; (b) ϕ = 30°; (c) ϕ = 60°; (d) ϕ = 90°.
Fig. 7
Fig. 7 Measured reflectance spectrum under different incident angles (a) θ = θp1’ = 12.8°, (b) θ = θp2’ = 14.2°, (c) normal incidence θ = 0°.

Metrics