Abstract

A 100 MHz fiber Bragg grating (FBG) interrogation system is described and applied to strain and pressure sensing. The approach relies on coherent pulse illumination of the FBG sensor with a broadband short pulse from a femtosecond modelocked erbium fiber laser. After interrogation of the FBG sensor, a long multi-kilometer run of single mode fiber is used for chromatic dispersion to temporally stretch the spectral components of the reflected pulse from the FBG sensor. Dynamic strain or pressure induced spectral shifts in the FBG sensor are detected as a pulsed time domain waveform shift after encoding by the chromatic dispersive line. Signals are recorded using a single 35 GHz photodetector and a 50 G Samples per second, 25 GHz bandwidth, digitizing oscilloscope. Application of this approach to high-speed strain sensing in magnetic materials in pulsed magnetic fields to ~150 T is demonstrated. The FBG wavelength shifts are used to study magnetic field driven magnetostriction effects in LaCoO3. A sub-microsecond temporal shift in the FBG sensor wavelength attached to the sample under first order phase change appears as a fractional length change (strain: ΔL/L<10-4) in the material. A second application used FBG sensing of pressure dynamics to nearly 2 GPa in the thermal ignition of the high explosive PBX-9501 is also demonstrated. Both applications demonstrate the use of this FBG interrogation system in dynamical extreme conditions that would otherwise not be possible using traditional FBG interrogation approaches that are deemed too slow to resolve such events.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Long distance fiber Bragg grating strain sensor interrogation using a high speed Raman-based Fourier domain mode-locked fiber laser with recycled residual Raman pump

Sunduck Kim, Oh-Jang Kwon, Hyeong-Seok Lee, Chang-Seok Kim, and Young-Geun Han
Opt. Express 21(11) 13402-13407 (2013)

Split Hopkinson bar measurement using high-speed full-spectrum fiber Bragg grating interrogation

Frederick Seng, Drew Hackney, Tyler Goode, LeGrand Shumway, Alec Hammond, George Shoemaker, Mark Pankow, Kara Peters, and Stephen Schultz
Appl. Opt. 55(25) 7179-7185 (2016)

Magnetic field sensor based on a dual-frequency optoelectronic oscillator using cascaded magnetostrictive alloy-fiber Bragg grating-Fabry Perot and fiber Bragg grating-Fabry Perot filters

Beilei Wu, Muguang Wang, Yue Dong, Yu Tang, Hongqian Mu, Haisu Li, Bin Yin, Fengping Yan, and Zhen Han
Opt. Express 26(21) 27628-27638 (2018)

References

  • View by:
  • |
  • |
  • |

  1. E. Udd, ed., Fiber Optic Sensors, An Introduction for Engineers and Scientists (John Wiley & Sons Ltd, 1991).
  2. J. M. Lopez-Higuera, ed., Handbook of Optical Fibre Sensing Technology (John Wiley & Sons Ltd, 2002).
  3. E. Udd, “An overview of fiber-optic sensors,” Rev. Sci. Instrum. 66(8), 4015–5030 (1995).
    [Crossref]
  4. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(12), 1898–1918 (2012).
    [Crossref] [PubMed]
  5. G. Rodriguez, R. L. Sandberg, B. M. Lalone, B. Marshall, M. Grover, G. D. Stevens, and E. Udd, “High pressure sensing and dynamics using high speed fiber Bragg grating interrogation systems,” SPIE 9098, 90980C (2014).
  6. R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500(14), 142031 (2014).
    [Crossref]
  7. A. Ravid, E. Shafir, S. Zilberman, G. Berkovic, B. Glam, G. Appelbaum, and A. Fedotov Gefen, “Fibre Bragg grating sensor for shock wave diagnostics,” J. Phys. Conf. Ser. 500(14), 142029 (2014).
    [Crossref]
  8. E. Udd, G. Rodriguez, and R. L. Sandberg, “High speed fiber grating pressure sensors,” SPIE 9098, 90980B (2014).
  9. R. Daou, F. Weickert, M. Nicklas, F. Steglich, A. Haase, and M. Doerr, “High resolution magnetostriction measurements in pulsed magnetic fields using fiber Bragg gratings,” Rev. Sci. Instrum. 81(3), 033909 (2010).
    [Crossref] [PubMed]
  10. Y. Nakazaki and S. Yamashita, “Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing,” Opt. Express 17(10), 8310–8318 (2009).
    [PubMed]
  11. S. Kim, O.-J. Kwon, H.-S. Lee, C.-S. Kim, and Y.-G. Han, “Long distance fiber Bragg grating strain sensor interrogation using a high speed Raman-based Fourier domain mode-locked fiber laser with recycled residual Raman pump,” Opt. Express 21(11), 13402–13407 (2013).
    [Crossref] [PubMed]
  12. H. Xia, C. Wang, S. Blais, and J. Yao, “Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion,” IEEE J. Lightw. Technol. 28(3), 254–261 (2010).
    [Crossref]
  13. M. Lai, D. Karalekas, and J. Botsis, “On the effects of the lateral strains on the fiber Bragg grating response,” Sensors (Basel) 13(2), 2631–2644 (2013).
    [Crossref] [PubMed]
  14. M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
    [Crossref]
  15. Q. Chen, P. Lu, Q. Y. Chen, and P. Liu, “Fiber Bragg gratings and their applications as temperature and humidity sensors,” in Atomic, Molecular and Optical Physics, ed. L.T. Chen (Nova Science Publishers, 2008).
  16. O. V. Mazurin, Handbook of Glass Data, Vol. 1, 75 (Elsevier, 1983).
  17. V. Zapf, M. Jaime, and C. D. Batista, “Bose-Einstein condensation in quantum magnets,” Rev. Mod. Phys. 86(2), 563–614 (2014).
    [Crossref]
  18. M. Jaime, R. Daou, S. A. Crooker, F. Weikert, A. Uchida, A. E. Feiguin, C. D. Batista, H. A. Dabkowska, and B. D. Gaulin, “Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2,” Proc. Natl. Acad. Sci. U.S.A. 109(31), 12404–12407 (2012).
    [Crossref]
  19. M. M. Altarawneh, G.-W. Chern, N. Harrison, C. D. Batista, A. Uchida, M. Jaime, D. G. Rickel, S. A. Crooker, C. H. Mielke, J. B. Betts, J. F. Mitchell, and M. J. R. Hoch, “Cascade of magnetic field induced spin transitions in LaCoO3.,” Phys. Rev. Lett. 109(3), 037201 (2012).
    [Crossref] [PubMed]
  20. R. R. J. Maier, W. N. MacPherson, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “S, McCulloch, and G. Burnell, “Temperature dependence of the stress response of fibre Bragg gratings,” Meas. Sci. Technol. 15(8), 1601–1606 (2004).
    [Crossref]
  21. E. Udd and J. Benterou, “Improvements to high-speed monitoring of events in extreme conditions using fiber Bragg grating sensors,” SPIE 8370, 83700L (2014).
  22. E. Shafir, S. Zilberman, A. Ravid, B. Glam, G. Appelbaum, A. F. Gefen, Y. Saadi, N. Shafir, and G. Berkovic, “Comparison to FBG responses to static and dynamic pressures,” SPIE 9157, 915713 (2014).
  23. C. H. Mielke and B. M. Novac, “Experimental and numerical studies of megagauss magnetic-field generation at LANL-NHMFL,” IEEE Trans. Magn. 38(8), 1739–1749 (2010).
  24. V. V. Platanov, Y. B. Kudasov, M. P. Monakhov, and O. M. Tatsenko, “Magnetically induced phase transitions in LaCoO3 in fields of up to 500 T,” Phys. Solid State 54(2), 279–282 (2012).
    [Crossref]
  25. B. F. Henson, L. Smilowitz, J. J. Romero, B. W. Asay, M. Elert, M. D. Furnish, W. W. Anderson, W. G. Proud, and W. T. Butler, “Modeling thermal ignition and the initial conditions for internal burning in PBX 9501,” AIP Conf. Proc. 1195, 257–262 (2009).
    [Crossref]
  26. L. Smilowitz, B. F. Henson, G. Rodriguez, and M. Richard Sandberg, Holmes, A. Novak, D. Oschwald, and E. Baca, “Following reaction progress from thermal decomposition to ignition and internal burning,” presented at the Fifteenth International Detonation Symposium, San Francisco, California, USA, 13–18 Jul. 2014.
  27. L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
    [Crossref]
  28. L. Smilowitz, B. F. Henson, M. Holmes, A. Novak, D. Oschwald, P. Dolgonos, and B. Qualls, “X-ray transmission movies of spontaneous dynamic events,” Rev. Sci. Instrum. 85(11), 113904 (2014).
    [Crossref] [PubMed]
  29. L. Smilowitz, B. F. Henson, J. J. Romero, and D. Oschwald, “Thermal decomposition of energetic materials viewed via dynamic x-ray radiography,” Appl. Phys. Lett. 104(2), 024107 (2014).
    [Crossref]
  30. J. W. Forbes, F. Garcia, C. M. Tarver, P. A. Urtiew, D. W. Greenwood, and K. S. Vandersall, “Pressure wave measurements during thermal explosion of HMX-based high explosives,” presented at the Twelfth International Detonation Symposium, San Diego, California, USA, 13–16 Aug. 2002.

2014 (9)

G. Rodriguez, R. L. Sandberg, B. M. Lalone, B. Marshall, M. Grover, G. D. Stevens, and E. Udd, “High pressure sensing and dynamics using high speed fiber Bragg grating interrogation systems,” SPIE 9098, 90980C (2014).

R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500(14), 142031 (2014).
[Crossref]

A. Ravid, E. Shafir, S. Zilberman, G. Berkovic, B. Glam, G. Appelbaum, and A. Fedotov Gefen, “Fibre Bragg grating sensor for shock wave diagnostics,” J. Phys. Conf. Ser. 500(14), 142029 (2014).
[Crossref]

E. Udd, G. Rodriguez, and R. L. Sandberg, “High speed fiber grating pressure sensors,” SPIE 9098, 90980B (2014).

V. Zapf, M. Jaime, and C. D. Batista, “Bose-Einstein condensation in quantum magnets,” Rev. Mod. Phys. 86(2), 563–614 (2014).
[Crossref]

E. Udd and J. Benterou, “Improvements to high-speed monitoring of events in extreme conditions using fiber Bragg grating sensors,” SPIE 8370, 83700L (2014).

E. Shafir, S. Zilberman, A. Ravid, B. Glam, G. Appelbaum, A. F. Gefen, Y. Saadi, N. Shafir, and G. Berkovic, “Comparison to FBG responses to static and dynamic pressures,” SPIE 9157, 915713 (2014).

L. Smilowitz, B. F. Henson, M. Holmes, A. Novak, D. Oschwald, P. Dolgonos, and B. Qualls, “X-ray transmission movies of spontaneous dynamic events,” Rev. Sci. Instrum. 85(11), 113904 (2014).
[Crossref] [PubMed]

L. Smilowitz, B. F. Henson, J. J. Romero, and D. Oschwald, “Thermal decomposition of energetic materials viewed via dynamic x-ray radiography,” Appl. Phys. Lett. 104(2), 024107 (2014).
[Crossref]

2013 (2)

2012 (5)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(12), 1898–1918 (2012).
[Crossref] [PubMed]

V. V. Platanov, Y. B. Kudasov, M. P. Monakhov, and O. M. Tatsenko, “Magnetically induced phase transitions in LaCoO3 in fields of up to 500 T,” Phys. Solid State 54(2), 279–282 (2012).
[Crossref]

M. Jaime, R. Daou, S. A. Crooker, F. Weikert, A. Uchida, A. E. Feiguin, C. D. Batista, H. A. Dabkowska, and B. D. Gaulin, “Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2,” Proc. Natl. Acad. Sci. U.S.A. 109(31), 12404–12407 (2012).
[Crossref]

M. M. Altarawneh, G.-W. Chern, N. Harrison, C. D. Batista, A. Uchida, M. Jaime, D. G. Rickel, S. A. Crooker, C. H. Mielke, J. B. Betts, J. F. Mitchell, and M. J. R. Hoch, “Cascade of magnetic field induced spin transitions in LaCoO3.,” Phys. Rev. Lett. 109(3), 037201 (2012).
[Crossref] [PubMed]

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

2010 (3)

C. H. Mielke and B. M. Novac, “Experimental and numerical studies of megagauss magnetic-field generation at LANL-NHMFL,” IEEE Trans. Magn. 38(8), 1739–1749 (2010).

R. Daou, F. Weickert, M. Nicklas, F. Steglich, A. Haase, and M. Doerr, “High resolution magnetostriction measurements in pulsed magnetic fields using fiber Bragg gratings,” Rev. Sci. Instrum. 81(3), 033909 (2010).
[Crossref] [PubMed]

H. Xia, C. Wang, S. Blais, and J. Yao, “Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion,” IEEE J. Lightw. Technol. 28(3), 254–261 (2010).
[Crossref]

2009 (2)

B. F. Henson, L. Smilowitz, J. J. Romero, B. W. Asay, M. Elert, M. D. Furnish, W. W. Anderson, W. G. Proud, and W. T. Butler, “Modeling thermal ignition and the initial conditions for internal burning in PBX 9501,” AIP Conf. Proc. 1195, 257–262 (2009).
[Crossref]

Y. Nakazaki and S. Yamashita, “Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing,” Opt. Express 17(10), 8310–8318 (2009).
[PubMed]

2004 (1)

R. R. J. Maier, W. N. MacPherson, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “S, McCulloch, and G. Burnell, “Temperature dependence of the stress response of fibre Bragg gratings,” Meas. Sci. Technol. 15(8), 1601–1606 (2004).
[Crossref]

1995 (1)

E. Udd, “An overview of fiber-optic sensors,” Rev. Sci. Instrum. 66(8), 4015–5030 (1995).
[Crossref]

1993 (1)

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
[Crossref]

Altarawneh, M. M.

M. M. Altarawneh, G.-W. Chern, N. Harrison, C. D. Batista, A. Uchida, M. Jaime, D. G. Rickel, S. A. Crooker, C. H. Mielke, J. B. Betts, J. F. Mitchell, and M. J. R. Hoch, “Cascade of magnetic field induced spin transitions in LaCoO3.,” Phys. Rev. Lett. 109(3), 037201 (2012).
[Crossref] [PubMed]

Anderson, W. W.

B. F. Henson, L. Smilowitz, J. J. Romero, B. W. Asay, M. Elert, M. D. Furnish, W. W. Anderson, W. G. Proud, and W. T. Butler, “Modeling thermal ignition and the initial conditions for internal burning in PBX 9501,” AIP Conf. Proc. 1195, 257–262 (2009).
[Crossref]

Appelbaum, G.

E. Shafir, S. Zilberman, A. Ravid, B. Glam, G. Appelbaum, A. F. Gefen, Y. Saadi, N. Shafir, and G. Berkovic, “Comparison to FBG responses to static and dynamic pressures,” SPIE 9157, 915713 (2014).

A. Ravid, E. Shafir, S. Zilberman, G. Berkovic, B. Glam, G. Appelbaum, and A. Fedotov Gefen, “Fibre Bragg grating sensor for shock wave diagnostics,” J. Phys. Conf. Ser. 500(14), 142029 (2014).
[Crossref]

Asay, B. W.

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

B. F. Henson, L. Smilowitz, J. J. Romero, B. W. Asay, M. Elert, M. D. Furnish, W. W. Anderson, W. G. Proud, and W. T. Butler, “Modeling thermal ignition and the initial conditions for internal burning in PBX 9501,” AIP Conf. Proc. 1195, 257–262 (2009).
[Crossref]

Bainbridge, J.

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

Barton, J. S.

R. R. J. Maier, W. N. MacPherson, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “S, McCulloch, and G. Burnell, “Temperature dependence of the stress response of fibre Bragg gratings,” Meas. Sci. Technol. 15(8), 1601–1606 (2004).
[Crossref]

Batista, C. D.

V. Zapf, M. Jaime, and C. D. Batista, “Bose-Einstein condensation in quantum magnets,” Rev. Mod. Phys. 86(2), 563–614 (2014).
[Crossref]

M. M. Altarawneh, G.-W. Chern, N. Harrison, C. D. Batista, A. Uchida, M. Jaime, D. G. Rickel, S. A. Crooker, C. H. Mielke, J. B. Betts, J. F. Mitchell, and M. J. R. Hoch, “Cascade of magnetic field induced spin transitions in LaCoO3.,” Phys. Rev. Lett. 109(3), 037201 (2012).
[Crossref] [PubMed]

M. Jaime, R. Daou, S. A. Crooker, F. Weikert, A. Uchida, A. E. Feiguin, C. D. Batista, H. A. Dabkowska, and B. D. Gaulin, “Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2,” Proc. Natl. Acad. Sci. U.S.A. 109(31), 12404–12407 (2012).
[Crossref]

Benterou, J.

E. Udd and J. Benterou, “Improvements to high-speed monitoring of events in extreme conditions using fiber Bragg grating sensors,” SPIE 8370, 83700L (2014).

Berkovic, G.

E. Shafir, S. Zilberman, A. Ravid, B. Glam, G. Appelbaum, A. F. Gefen, Y. Saadi, N. Shafir, and G. Berkovic, “Comparison to FBG responses to static and dynamic pressures,” SPIE 9157, 915713 (2014).

A. Ravid, E. Shafir, S. Zilberman, G. Berkovic, B. Glam, G. Appelbaum, and A. Fedotov Gefen, “Fibre Bragg grating sensor for shock wave diagnostics,” J. Phys. Conf. Ser. 500(14), 142029 (2014).
[Crossref]

Betts, J. B.

M. M. Altarawneh, G.-W. Chern, N. Harrison, C. D. Batista, A. Uchida, M. Jaime, D. G. Rickel, S. A. Crooker, C. H. Mielke, J. B. Betts, J. F. Mitchell, and M. J. R. Hoch, “Cascade of magnetic field induced spin transitions in LaCoO3.,” Phys. Rev. Lett. 109(3), 037201 (2012).
[Crossref] [PubMed]

Blais, S.

H. Xia, C. Wang, S. Blais, and J. Yao, “Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion,” IEEE J. Lightw. Technol. 28(3), 254–261 (2010).
[Crossref]

Botsis, J.

M. Lai, D. Karalekas, and J. Botsis, “On the effects of the lateral strains on the fiber Bragg grating response,” Sensors (Basel) 13(2), 2631–2644 (2013).
[Crossref] [PubMed]

Burnell, G.

R. R. J. Maier, W. N. MacPherson, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “S, McCulloch, and G. Burnell, “Temperature dependence of the stress response of fibre Bragg gratings,” Meas. Sci. Technol. 15(8), 1601–1606 (2004).
[Crossref]

Butler, W. T.

B. F. Henson, L. Smilowitz, J. J. Romero, B. W. Asay, M. Elert, M. D. Furnish, W. W. Anderson, W. G. Proud, and W. T. Butler, “Modeling thermal ignition and the initial conditions for internal burning in PBX 9501,” AIP Conf. Proc. 1195, 257–262 (2009).
[Crossref]

Chern, G.-W.

M. M. Altarawneh, G.-W. Chern, N. Harrison, C. D. Batista, A. Uchida, M. Jaime, D. G. Rickel, S. A. Crooker, C. H. Mielke, J. B. Betts, J. F. Mitchell, and M. J. R. Hoch, “Cascade of magnetic field induced spin transitions in LaCoO3.,” Phys. Rev. Lett. 109(3), 037201 (2012).
[Crossref] [PubMed]

Chow, Y. T.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
[Crossref]

Crooker, S. A.

M. Jaime, R. Daou, S. A. Crooker, F. Weikert, A. Uchida, A. E. Feiguin, C. D. Batista, H. A. Dabkowska, and B. D. Gaulin, “Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2,” Proc. Natl. Acad. Sci. U.S.A. 109(31), 12404–12407 (2012).
[Crossref]

M. M. Altarawneh, G.-W. Chern, N. Harrison, C. D. Batista, A. Uchida, M. Jaime, D. G. Rickel, S. A. Crooker, C. H. Mielke, J. B. Betts, J. F. Mitchell, and M. J. R. Hoch, “Cascade of magnetic field induced spin transitions in LaCoO3.,” Phys. Rev. Lett. 109(3), 037201 (2012).
[Crossref] [PubMed]

Dabkowska, H. A.

M. Jaime, R. Daou, S. A. Crooker, F. Weikert, A. Uchida, A. E. Feiguin, C. D. Batista, H. A. Dabkowska, and B. D. Gaulin, “Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2,” Proc. Natl. Acad. Sci. U.S.A. 109(31), 12404–12407 (2012).
[Crossref]

Dakin, J. P.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
[Crossref]

Daou, R.

M. Jaime, R. Daou, S. A. Crooker, F. Weikert, A. Uchida, A. E. Feiguin, C. D. Batista, H. A. Dabkowska, and B. D. Gaulin, “Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2,” Proc. Natl. Acad. Sci. U.S.A. 109(31), 12404–12407 (2012).
[Crossref]

R. Daou, F. Weickert, M. Nicklas, F. Steglich, A. Haase, and M. Doerr, “High resolution magnetostriction measurements in pulsed magnetic fields using fiber Bragg gratings,” Rev. Sci. Instrum. 81(3), 033909 (2010).
[Crossref] [PubMed]

Dattelbaum, D. M.

R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500(14), 142031 (2014).
[Crossref]

Doerr, M.

R. Daou, F. Weickert, M. Nicklas, F. Steglich, A. Haase, and M. Doerr, “High resolution magnetostriction measurements in pulsed magnetic fields using fiber Bragg gratings,” Rev. Sci. Instrum. 81(3), 033909 (2010).
[Crossref] [PubMed]

Dolgonos, P.

L. Smilowitz, B. F. Henson, M. Holmes, A. Novak, D. Oschwald, P. Dolgonos, and B. Qualls, “X-ray transmission movies of spontaneous dynamic events,” Rev. Sci. Instrum. 85(11), 113904 (2014).
[Crossref] [PubMed]

Elert, M.

B. F. Henson, L. Smilowitz, J. J. Romero, B. W. Asay, M. Elert, M. D. Furnish, W. W. Anderson, W. G. Proud, and W. T. Butler, “Modeling thermal ignition and the initial conditions for internal burning in PBX 9501,” AIP Conf. Proc. 1195, 257–262 (2009).
[Crossref]

Espinoza, C.

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

Fedotov Gefen, A.

A. Ravid, E. Shafir, S. Zilberman, G. Berkovic, B. Glam, G. Appelbaum, and A. Fedotov Gefen, “Fibre Bragg grating sensor for shock wave diagnostics,” J. Phys. Conf. Ser. 500(14), 142029 (2014).
[Crossref]

Feiguin, A. E.

M. Jaime, R. Daou, S. A. Crooker, F. Weikert, A. Uchida, A. E. Feiguin, C. D. Batista, H. A. Dabkowska, and B. D. Gaulin, “Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2,” Proc. Natl. Acad. Sci. U.S.A. 109(31), 12404–12407 (2012).
[Crossref]

Furnish, M. D.

B. F. Henson, L. Smilowitz, J. J. Romero, B. W. Asay, M. Elert, M. D. Furnish, W. W. Anderson, W. G. Proud, and W. T. Butler, “Modeling thermal ignition and the initial conditions for internal burning in PBX 9501,” AIP Conf. Proc. 1195, 257–262 (2009).
[Crossref]

Gaulin, B. D.

M. Jaime, R. Daou, S. A. Crooker, F. Weikert, A. Uchida, A. E. Feiguin, C. D. Batista, H. A. Dabkowska, and B. D. Gaulin, “Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2,” Proc. Natl. Acad. Sci. U.S.A. 109(31), 12404–12407 (2012).
[Crossref]

Gefen, A. F.

E. Shafir, S. Zilberman, A. Ravid, B. Glam, G. Appelbaum, A. F. Gefen, Y. Saadi, N. Shafir, and G. Berkovic, “Comparison to FBG responses to static and dynamic pressures,” SPIE 9157, 915713 (2014).

Gibson, L. L.

R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500(14), 142031 (2014).
[Crossref]

Glam, B.

A. Ravid, E. Shafir, S. Zilberman, G. Berkovic, B. Glam, G. Appelbaum, and A. Fedotov Gefen, “Fibre Bragg grating sensor for shock wave diagnostics,” J. Phys. Conf. Ser. 500(14), 142029 (2014).
[Crossref]

E. Shafir, S. Zilberman, A. Ravid, B. Glam, G. Appelbaum, A. F. Gefen, Y. Saadi, N. Shafir, and G. Berkovic, “Comparison to FBG responses to static and dynamic pressures,” SPIE 9157, 915713 (2014).

Grim, G.

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

Grover, M.

G. Rodriguez, R. L. Sandberg, B. M. Lalone, B. Marshall, M. Grover, G. D. Stevens, and E. Udd, “High pressure sensing and dynamics using high speed fiber Bragg grating interrogation systems,” SPIE 9098, 90980C (2014).

R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500(14), 142031 (2014).
[Crossref]

Haase, A.

R. Daou, F. Weickert, M. Nicklas, F. Steglich, A. Haase, and M. Doerr, “High resolution magnetostriction measurements in pulsed magnetic fields using fiber Bragg gratings,” Rev. Sci. Instrum. 81(3), 033909 (2010).
[Crossref] [PubMed]

Han, Y.-G.

Harrison, N.

M. M. Altarawneh, G.-W. Chern, N. Harrison, C. D. Batista, A. Uchida, M. Jaime, D. G. Rickel, S. A. Crooker, C. H. Mielke, J. B. Betts, J. F. Mitchell, and M. J. R. Hoch, “Cascade of magnetic field induced spin transitions in LaCoO3.,” Phys. Rev. Lett. 109(3), 037201 (2012).
[Crossref] [PubMed]

Henson, B. F.

L. Smilowitz, B. F. Henson, J. J. Romero, and D. Oschwald, “Thermal decomposition of energetic materials viewed via dynamic x-ray radiography,” Appl. Phys. Lett. 104(2), 024107 (2014).
[Crossref]

L. Smilowitz, B. F. Henson, M. Holmes, A. Novak, D. Oschwald, P. Dolgonos, and B. Qualls, “X-ray transmission movies of spontaneous dynamic events,” Rev. Sci. Instrum. 85(11), 113904 (2014).
[Crossref] [PubMed]

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

B. F. Henson, L. Smilowitz, J. J. Romero, B. W. Asay, M. Elert, M. D. Furnish, W. W. Anderson, W. G. Proud, and W. T. Butler, “Modeling thermal ignition and the initial conditions for internal burning in PBX 9501,” AIP Conf. Proc. 1195, 257–262 (2009).
[Crossref]

Hoch, M. J. R.

M. M. Altarawneh, G.-W. Chern, N. Harrison, C. D. Batista, A. Uchida, M. Jaime, D. G. Rickel, S. A. Crooker, C. H. Mielke, J. B. Betts, J. F. Mitchell, and M. J. R. Hoch, “Cascade of magnetic field induced spin transitions in LaCoO3.,” Phys. Rev. Lett. 109(3), 037201 (2012).
[Crossref] [PubMed]

Hogan, G.

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

Holmes, M.

L. Smilowitz, B. F. Henson, M. Holmes, A. Novak, D. Oschwald, P. Dolgonos, and B. Qualls, “X-ray transmission movies of spontaneous dynamic events,” Rev. Sci. Instrum. 85(11), 113904 (2014).
[Crossref] [PubMed]

Jaime, M.

V. Zapf, M. Jaime, and C. D. Batista, “Bose-Einstein condensation in quantum magnets,” Rev. Mod. Phys. 86(2), 563–614 (2014).
[Crossref]

M. Jaime, R. Daou, S. A. Crooker, F. Weikert, A. Uchida, A. E. Feiguin, C. D. Batista, H. A. Dabkowska, and B. D. Gaulin, “Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2,” Proc. Natl. Acad. Sci. U.S.A. 109(31), 12404–12407 (2012).
[Crossref]

M. M. Altarawneh, G.-W. Chern, N. Harrison, C. D. Batista, A. Uchida, M. Jaime, D. G. Rickel, S. A. Crooker, C. H. Mielke, J. B. Betts, J. F. Mitchell, and M. J. R. Hoch, “Cascade of magnetic field induced spin transitions in LaCoO3.,” Phys. Rev. Lett. 109(3), 037201 (2012).
[Crossref] [PubMed]

Jones, J. D. C.

R. R. J. Maier, W. N. MacPherson, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “S, McCulloch, and G. Burnell, “Temperature dependence of the stress response of fibre Bragg gratings,” Meas. Sci. Technol. 15(8), 1601–1606 (2004).
[Crossref]

Karalekas, D.

M. Lai, D. Karalekas, and J. Botsis, “On the effects of the lateral strains on the fiber Bragg grating response,” Sensors (Basel) 13(2), 2631–2644 (2013).
[Crossref] [PubMed]

Kim, C.-S.

Kim, S.

Kudasov, Y. B.

V. V. Platanov, Y. B. Kudasov, M. P. Monakhov, and O. M. Tatsenko, “Magnetically induced phase transitions in LaCoO3 in fields of up to 500 T,” Phys. Solid State 54(2), 279–282 (2012).
[Crossref]

Kwiatkowski, K.

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

Kwon, O.-J.

Lai, M.

M. Lai, D. Karalekas, and J. Botsis, “On the effects of the lateral strains on the fiber Bragg grating response,” Sensors (Basel) 13(2), 2631–2644 (2013).
[Crossref] [PubMed]

Lalone, B. M.

R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500(14), 142031 (2014).
[Crossref]

G. Rodriguez, R. L. Sandberg, B. M. Lalone, B. Marshall, M. Grover, G. D. Stevens, and E. Udd, “High pressure sensing and dynamics using high speed fiber Bragg grating interrogation systems,” SPIE 9098, 90980C (2014).

Lee, H.-S.

Lewis, D.

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

MacPherson, W. N.

R. R. J. Maier, W. N. MacPherson, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “S, McCulloch, and G. Burnell, “Temperature dependence of the stress response of fibre Bragg gratings,” Meas. Sci. Technol. 15(8), 1601–1606 (2004).
[Crossref]

Maier, R. R. J.

R. R. J. Maier, W. N. MacPherson, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “S, McCulloch, and G. Burnell, “Temperature dependence of the stress response of fibre Bragg gratings,” Meas. Sci. Technol. 15(8), 1601–1606 (2004).
[Crossref]

Mariam, F.

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

Marr-Lyon, M.

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

Marshall, B.

G. Rodriguez, R. L. Sandberg, B. M. Lalone, B. Marshall, M. Grover, G. D. Stevens, and E. Udd, “High pressure sensing and dynamics using high speed fiber Bragg grating interrogation systems,” SPIE 9098, 90980C (2014).

McCulloch, S.

R. R. J. Maier, W. N. MacPherson, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “S, McCulloch, and G. Burnell, “Temperature dependence of the stress response of fibre Bragg gratings,” Meas. Sci. Technol. 15(8), 1601–1606 (2004).
[Crossref]

McNeil, W.

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

Merrill, F. E.

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

Mielke, C. H.

M. M. Altarawneh, G.-W. Chern, N. Harrison, C. D. Batista, A. Uchida, M. Jaime, D. G. Rickel, S. A. Crooker, C. H. Mielke, J. B. Betts, J. F. Mitchell, and M. J. R. Hoch, “Cascade of magnetic field induced spin transitions in LaCoO3.,” Phys. Rev. Lett. 109(3), 037201 (2012).
[Crossref] [PubMed]

C. H. Mielke and B. M. Novac, “Experimental and numerical studies of megagauss magnetic-field generation at LANL-NHMFL,” IEEE Trans. Magn. 38(8), 1739–1749 (2010).

Mihailov, S. J.

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(12), 1898–1918 (2012).
[Crossref] [PubMed]

Mitchell, J. F.

M. M. Altarawneh, G.-W. Chern, N. Harrison, C. D. Batista, A. Uchida, M. Jaime, D. G. Rickel, S. A. Crooker, C. H. Mielke, J. B. Betts, J. F. Mitchell, and M. J. R. Hoch, “Cascade of magnetic field induced spin transitions in LaCoO3.,” Phys. Rev. Lett. 109(3), 037201 (2012).
[Crossref] [PubMed]

Monakhov, M. P.

V. V. Platanov, Y. B. Kudasov, M. P. Monakhov, and O. M. Tatsenko, “Magnetically induced phase transitions in LaCoO3 in fields of up to 500 T,” Phys. Solid State 54(2), 279–282 (2012).
[Crossref]

Morris, C. L.

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

Murray, M. M.

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

Nakazaki, Y.

Nedrow, P.

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

Nicklas, M.

R. Daou, F. Weickert, M. Nicklas, F. Steglich, A. Haase, and M. Doerr, “High resolution magnetostriction measurements in pulsed magnetic fields using fiber Bragg gratings,” Rev. Sci. Instrum. 81(3), 033909 (2010).
[Crossref] [PubMed]

Novac, B. M.

C. H. Mielke and B. M. Novac, “Experimental and numerical studies of megagauss magnetic-field generation at LANL-NHMFL,” IEEE Trans. Magn. 38(8), 1739–1749 (2010).

Novak, A.

L. Smilowitz, B. F. Henson, M. Holmes, A. Novak, D. Oschwald, P. Dolgonos, and B. Qualls, “X-ray transmission movies of spontaneous dynamic events,” Rev. Sci. Instrum. 85(11), 113904 (2014).
[Crossref] [PubMed]

Oschwald, D.

L. Smilowitz, B. F. Henson, M. Holmes, A. Novak, D. Oschwald, P. Dolgonos, and B. Qualls, “X-ray transmission movies of spontaneous dynamic events,” Rev. Sci. Instrum. 85(11), 113904 (2014).
[Crossref] [PubMed]

L. Smilowitz, B. F. Henson, J. J. Romero, and D. Oschwald, “Thermal decomposition of energetic materials viewed via dynamic x-ray radiography,” Appl. Phys. Lett. 104(2), 024107 (2014).
[Crossref]

Platanov, V. V.

V. V. Platanov, Y. B. Kudasov, M. P. Monakhov, and O. M. Tatsenko, “Magnetically induced phase transitions in LaCoO3 in fields of up to 500 T,” Phys. Solid State 54(2), 279–282 (2012).
[Crossref]

Proud, W. G.

B. F. Henson, L. Smilowitz, J. J. Romero, B. W. Asay, M. Elert, M. D. Furnish, W. W. Anderson, W. G. Proud, and W. T. Butler, “Modeling thermal ignition and the initial conditions for internal burning in PBX 9501,” AIP Conf. Proc. 1195, 257–262 (2009).
[Crossref]

Qualls, B.

L. Smilowitz, B. F. Henson, M. Holmes, A. Novak, D. Oschwald, P. Dolgonos, and B. Qualls, “X-ray transmission movies of spontaneous dynamic events,” Rev. Sci. Instrum. 85(11), 113904 (2014).
[Crossref] [PubMed]

Ravid, A.

A. Ravid, E. Shafir, S. Zilberman, G. Berkovic, B. Glam, G. Appelbaum, and A. Fedotov Gefen, “Fibre Bragg grating sensor for shock wave diagnostics,” J. Phys. Conf. Ser. 500(14), 142029 (2014).
[Crossref]

E. Shafir, S. Zilberman, A. Ravid, B. Glam, G. Appelbaum, A. F. Gefen, Y. Saadi, N. Shafir, and G. Berkovic, “Comparison to FBG responses to static and dynamic pressures,” SPIE 9157, 915713 (2014).

Reekie, L.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
[Crossref]

Rickel, D. G.

M. M. Altarawneh, G.-W. Chern, N. Harrison, C. D. Batista, A. Uchida, M. Jaime, D. G. Rickel, S. A. Crooker, C. H. Mielke, J. B. Betts, J. F. Mitchell, and M. J. R. Hoch, “Cascade of magnetic field induced spin transitions in LaCoO3.,” Phys. Rev. Lett. 109(3), 037201 (2012).
[Crossref] [PubMed]

Rightley, P.

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

Rodriguez, G.

G. Rodriguez, R. L. Sandberg, B. M. Lalone, B. Marshall, M. Grover, G. D. Stevens, and E. Udd, “High pressure sensing and dynamics using high speed fiber Bragg grating interrogation systems,” SPIE 9098, 90980C (2014).

R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500(14), 142031 (2014).
[Crossref]

E. Udd, G. Rodriguez, and R. L. Sandberg, “High speed fiber grating pressure sensors,” SPIE 9098, 90980B (2014).

Romero, J. J.

L. Smilowitz, B. F. Henson, J. J. Romero, and D. Oschwald, “Thermal decomposition of energetic materials viewed via dynamic x-ray radiography,” Appl. Phys. Lett. 104(2), 024107 (2014).
[Crossref]

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

B. F. Henson, L. Smilowitz, J. J. Romero, B. W. Asay, M. Elert, M. D. Furnish, W. W. Anderson, W. G. Proud, and W. T. Butler, “Modeling thermal ignition and the initial conditions for internal burning in PBX 9501,” AIP Conf. Proc. 1195, 257–262 (2009).
[Crossref]

Saadi, Y.

E. Shafir, S. Zilberman, A. Ravid, B. Glam, G. Appelbaum, A. F. Gefen, Y. Saadi, N. Shafir, and G. Berkovic, “Comparison to FBG responses to static and dynamic pressures,” SPIE 9157, 915713 (2014).

Sandberg, R. L.

G. Rodriguez, R. L. Sandberg, B. M. Lalone, B. Marshall, M. Grover, G. D. Stevens, and E. Udd, “High pressure sensing and dynamics using high speed fiber Bragg grating interrogation systems,” SPIE 9098, 90980C (2014).

E. Udd, G. Rodriguez, and R. L. Sandberg, “High speed fiber grating pressure sensors,” SPIE 9098, 90980B (2014).

R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500(14), 142031 (2014).
[Crossref]

Saunders, A.

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

Schwartz, C. L.

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

Shafir, E.

A. Ravid, E. Shafir, S. Zilberman, G. Berkovic, B. Glam, G. Appelbaum, and A. Fedotov Gefen, “Fibre Bragg grating sensor for shock wave diagnostics,” J. Phys. Conf. Ser. 500(14), 142029 (2014).
[Crossref]

E. Shafir, S. Zilberman, A. Ravid, B. Glam, G. Appelbaum, A. F. Gefen, Y. Saadi, N. Shafir, and G. Berkovic, “Comparison to FBG responses to static and dynamic pressures,” SPIE 9157, 915713 (2014).

Shafir, N.

E. Shafir, S. Zilberman, A. Ravid, B. Glam, G. Appelbaum, A. F. Gefen, Y. Saadi, N. Shafir, and G. Berkovic, “Comparison to FBG responses to static and dynamic pressures,” SPIE 9157, 915713 (2014).

Smilowitz, L.

L. Smilowitz, B. F. Henson, M. Holmes, A. Novak, D. Oschwald, P. Dolgonos, and B. Qualls, “X-ray transmission movies of spontaneous dynamic events,” Rev. Sci. Instrum. 85(11), 113904 (2014).
[Crossref] [PubMed]

L. Smilowitz, B. F. Henson, J. J. Romero, and D. Oschwald, “Thermal decomposition of energetic materials viewed via dynamic x-ray radiography,” Appl. Phys. Lett. 104(2), 024107 (2014).
[Crossref]

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

B. F. Henson, L. Smilowitz, J. J. Romero, B. W. Asay, M. Elert, M. D. Furnish, W. W. Anderson, W. G. Proud, and W. T. Butler, “Modeling thermal ignition and the initial conditions for internal burning in PBX 9501,” AIP Conf. Proc. 1195, 257–262 (2009).
[Crossref]

Steglich, F.

R. Daou, F. Weickert, M. Nicklas, F. Steglich, A. Haase, and M. Doerr, “High resolution magnetostriction measurements in pulsed magnetic fields using fiber Bragg gratings,” Rev. Sci. Instrum. 81(3), 033909 (2010).
[Crossref] [PubMed]

Stevens, G. D.

R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500(14), 142031 (2014).
[Crossref]

G. Rodriguez, R. L. Sandberg, B. M. Lalone, B. Marshall, M. Grover, G. D. Stevens, and E. Udd, “High pressure sensing and dynamics using high speed fiber Bragg grating interrogation systems,” SPIE 9098, 90980C (2014).

Tatsenko, O. M.

V. V. Platanov, Y. B. Kudasov, M. P. Monakhov, and O. M. Tatsenko, “Magnetically induced phase transitions in LaCoO3 in fields of up to 500 T,” Phys. Solid State 54(2), 279–282 (2012).
[Crossref]

Thompson, T. N.

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

Uchida, A.

M. M. Altarawneh, G.-W. Chern, N. Harrison, C. D. Batista, A. Uchida, M. Jaime, D. G. Rickel, S. A. Crooker, C. H. Mielke, J. B. Betts, J. F. Mitchell, and M. J. R. Hoch, “Cascade of magnetic field induced spin transitions in LaCoO3.,” Phys. Rev. Lett. 109(3), 037201 (2012).
[Crossref] [PubMed]

M. Jaime, R. Daou, S. A. Crooker, F. Weikert, A. Uchida, A. E. Feiguin, C. D. Batista, H. A. Dabkowska, and B. D. Gaulin, “Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2,” Proc. Natl. Acad. Sci. U.S.A. 109(31), 12404–12407 (2012).
[Crossref]

Udd, E.

E. Udd and J. Benterou, “Improvements to high-speed monitoring of events in extreme conditions using fiber Bragg grating sensors,” SPIE 8370, 83700L (2014).

G. Rodriguez, R. L. Sandberg, B. M. Lalone, B. Marshall, M. Grover, G. D. Stevens, and E. Udd, “High pressure sensing and dynamics using high speed fiber Bragg grating interrogation systems,” SPIE 9098, 90980C (2014).

R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500(14), 142031 (2014).
[Crossref]

E. Udd, G. Rodriguez, and R. L. Sandberg, “High speed fiber grating pressure sensors,” SPIE 9098, 90980B (2014).

E. Udd, “An overview of fiber-optic sensors,” Rev. Sci. Instrum. 66(8), 4015–5030 (1995).
[Crossref]

Wang, C.

H. Xia, C. Wang, S. Blais, and J. Yao, “Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion,” IEEE J. Lightw. Technol. 28(3), 254–261 (2010).
[Crossref]

Weickert, F.

R. Daou, F. Weickert, M. Nicklas, F. Steglich, A. Haase, and M. Doerr, “High resolution magnetostriction measurements in pulsed magnetic fields using fiber Bragg gratings,” Rev. Sci. Instrum. 81(3), 033909 (2010).
[Crossref] [PubMed]

Weikert, F.

M. Jaime, R. Daou, S. A. Crooker, F. Weikert, A. Uchida, A. E. Feiguin, C. D. Batista, H. A. Dabkowska, and B. D. Gaulin, “Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2,” Proc. Natl. Acad. Sci. U.S.A. 109(31), 12404–12407 (2012).
[Crossref]

Xia, H.

H. Xia, C. Wang, S. Blais, and J. Yao, “Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion,” IEEE J. Lightw. Technol. 28(3), 254–261 (2010).
[Crossref]

Xu, M. G.

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
[Crossref]

Yamashita, S.

Yao, J.

H. Xia, C. Wang, S. Blais, and J. Yao, “Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion,” IEEE J. Lightw. Technol. 28(3), 254–261 (2010).
[Crossref]

Zapf, V.

V. Zapf, M. Jaime, and C. D. Batista, “Bose-Einstein condensation in quantum magnets,” Rev. Mod. Phys. 86(2), 563–614 (2014).
[Crossref]

Zilberman, S.

E. Shafir, S. Zilberman, A. Ravid, B. Glam, G. Appelbaum, A. F. Gefen, Y. Saadi, N. Shafir, and G. Berkovic, “Comparison to FBG responses to static and dynamic pressures,” SPIE 9157, 915713 (2014).

A. Ravid, E. Shafir, S. Zilberman, G. Berkovic, B. Glam, G. Appelbaum, and A. Fedotov Gefen, “Fibre Bragg grating sensor for shock wave diagnostics,” J. Phys. Conf. Ser. 500(14), 142029 (2014).
[Crossref]

AIP Conf. Proc. (1)

B. F. Henson, L. Smilowitz, J. J. Romero, B. W. Asay, M. Elert, M. D. Furnish, W. W. Anderson, W. G. Proud, and W. T. Butler, “Modeling thermal ignition and the initial conditions for internal burning in PBX 9501,” AIP Conf. Proc. 1195, 257–262 (2009).
[Crossref]

Appl. Phys. Lett. (1)

L. Smilowitz, B. F. Henson, J. J. Romero, and D. Oschwald, “Thermal decomposition of energetic materials viewed via dynamic x-ray radiography,” Appl. Phys. Lett. 104(2), 024107 (2014).
[Crossref]

Electron. Lett. (1)

M. G. Xu, L. Reekie, Y. T. Chow, and J. P. Dakin, “Optical in-fibre grating high pressure sensor,” Electron. Lett. 29(4), 398–399 (1993).
[Crossref]

IEEE J. Lightw. Technol. (1)

H. Xia, C. Wang, S. Blais, and J. Yao, “Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion,” IEEE J. Lightw. Technol. 28(3), 254–261 (2010).
[Crossref]

IEEE Trans. Magn. (1)

C. H. Mielke and B. M. Novac, “Experimental and numerical studies of megagauss magnetic-field generation at LANL-NHMFL,” IEEE Trans. Magn. 38(8), 1739–1749 (2010).

J. Appl. Phys. (1)

L. Smilowitz, B. F. Henson, J. J. Romero, B. W. Asay, A. Saunders, F. E. Merrill, C. L. Morris, K. Kwiatkowski, G. Grim, F. Mariam, C. L. Schwartz, G. Hogan, P. Nedrow, M. M. Murray, T. N. Thompson, C. Espinoza, D. Lewis, J. Bainbridge, W. McNeil, P. Rightley, and M. Marr-Lyon, “The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning,” J. Appl. Phys. 111(10), 103516 (2012).
[Crossref]

J. Phys. Conf. Ser. (2)

R. L. Sandberg, G. Rodriguez, L. L. Gibson, D. M. Dattelbaum, G. D. Stevens, M. Grover, B. M. Lalone, and E. Udd, “Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions,” J. Phys. Conf. Ser. 500(14), 142031 (2014).
[Crossref]

A. Ravid, E. Shafir, S. Zilberman, G. Berkovic, B. Glam, G. Appelbaum, and A. Fedotov Gefen, “Fibre Bragg grating sensor for shock wave diagnostics,” J. Phys. Conf. Ser. 500(14), 142029 (2014).
[Crossref]

Meas. Sci. Technol. (1)

R. R. J. Maier, W. N. MacPherson, J. S. Barton, J. D. C. Jones, S. McCulloch, and G. Burnell, “S, McCulloch, and G. Burnell, “Temperature dependence of the stress response of fibre Bragg gratings,” Meas. Sci. Technol. 15(8), 1601–1606 (2004).
[Crossref]

Opt. Express (2)

Phys. Rev. Lett. (1)

M. M. Altarawneh, G.-W. Chern, N. Harrison, C. D. Batista, A. Uchida, M. Jaime, D. G. Rickel, S. A. Crooker, C. H. Mielke, J. B. Betts, J. F. Mitchell, and M. J. R. Hoch, “Cascade of magnetic field induced spin transitions in LaCoO3.,” Phys. Rev. Lett. 109(3), 037201 (2012).
[Crossref] [PubMed]

Phys. Solid State (1)

V. V. Platanov, Y. B. Kudasov, M. P. Monakhov, and O. M. Tatsenko, “Magnetically induced phase transitions in LaCoO3 in fields of up to 500 T,” Phys. Solid State 54(2), 279–282 (2012).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

M. Jaime, R. Daou, S. A. Crooker, F. Weikert, A. Uchida, A. E. Feiguin, C. D. Batista, H. A. Dabkowska, and B. D. Gaulin, “Magnetostriction and magnetic texture to 100.75 Tesla in frustrated SrCu2(BO3)2,” Proc. Natl. Acad. Sci. U.S.A. 109(31), 12404–12407 (2012).
[Crossref]

Rev. Mod. Phys. (1)

V. Zapf, M. Jaime, and C. D. Batista, “Bose-Einstein condensation in quantum magnets,” Rev. Mod. Phys. 86(2), 563–614 (2014).
[Crossref]

Rev. Sci. Instrum. (3)

R. Daou, F. Weickert, M. Nicklas, F. Steglich, A. Haase, and M. Doerr, “High resolution magnetostriction measurements in pulsed magnetic fields using fiber Bragg gratings,” Rev. Sci. Instrum. 81(3), 033909 (2010).
[Crossref] [PubMed]

E. Udd, “An overview of fiber-optic sensors,” Rev. Sci. Instrum. 66(8), 4015–5030 (1995).
[Crossref]

L. Smilowitz, B. F. Henson, M. Holmes, A. Novak, D. Oschwald, P. Dolgonos, and B. Qualls, “X-ray transmission movies of spontaneous dynamic events,” Rev. Sci. Instrum. 85(11), 113904 (2014).
[Crossref] [PubMed]

Sensors (Basel) (2)

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(12), 1898–1918 (2012).
[Crossref] [PubMed]

M. Lai, D. Karalekas, and J. Botsis, “On the effects of the lateral strains on the fiber Bragg grating response,” Sensors (Basel) 13(2), 2631–2644 (2013).
[Crossref] [PubMed]

SPIE (4)

G. Rodriguez, R. L. Sandberg, B. M. Lalone, B. Marshall, M. Grover, G. D. Stevens, and E. Udd, “High pressure sensing and dynamics using high speed fiber Bragg grating interrogation systems,” SPIE 9098, 90980C (2014).

E. Udd, G. Rodriguez, and R. L. Sandberg, “High speed fiber grating pressure sensors,” SPIE 9098, 90980B (2014).

E. Udd and J. Benterou, “Improvements to high-speed monitoring of events in extreme conditions using fiber Bragg grating sensors,” SPIE 8370, 83700L (2014).

E. Shafir, S. Zilberman, A. Ravid, B. Glam, G. Appelbaum, A. F. Gefen, Y. Saadi, N. Shafir, and G. Berkovic, “Comparison to FBG responses to static and dynamic pressures,” SPIE 9157, 915713 (2014).

Other (6)

L. Smilowitz, B. F. Henson, G. Rodriguez, and M. Richard Sandberg, Holmes, A. Novak, D. Oschwald, and E. Baca, “Following reaction progress from thermal decomposition to ignition and internal burning,” presented at the Fifteenth International Detonation Symposium, San Francisco, California, USA, 13–18 Jul. 2014.

J. W. Forbes, F. Garcia, C. M. Tarver, P. A. Urtiew, D. W. Greenwood, and K. S. Vandersall, “Pressure wave measurements during thermal explosion of HMX-based high explosives,” presented at the Twelfth International Detonation Symposium, San Diego, California, USA, 13–16 Aug. 2002.

E. Udd, ed., Fiber Optic Sensors, An Introduction for Engineers and Scientists (John Wiley & Sons Ltd, 1991).

J. M. Lopez-Higuera, ed., Handbook of Optical Fibre Sensing Technology (John Wiley & Sons Ltd, 2002).

Q. Chen, P. Lu, Q. Y. Chen, and P. Liu, “Fiber Bragg gratings and their applications as temperature and humidity sensors,” in Atomic, Molecular and Optical Physics, ed. L.T. Chen (Nova Science Publishers, 2008).

O. V. Mazurin, Handbook of Glass Data, Vol. 1, 75 (Elsevier, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 A typical 1550-nm 1-mm long uniform fiber Bragg grating (a) return signal amplitude and (b) intensity spectrum is shown as recorded by the OBR (optical backscatter reflectometer). An illustration of the coherent pulse FBG interrogation system is shown in (c).
Fig. 2
Fig. 2 A very short 100 ns segment of the oscilloscope recorded FBG and laser clock temporal waveforms are shown in (a). A zoomed in line-symbol plot of a single FBG waveform is shown in (b). The top axis in (b) is the wavelength mapped axis after conversion using the chromatic dispersion constant for a fiber spool length of 60 km.
Fig. 3
Fig. 3 Example plots of processed coherent time domain FBG waveform data from a pulsed magnetic field (150 T) driven magnetostriction strain experiment on the 2-mm long magnetic perovskite LaCoO3 system followed by launch an acoustic wave after elongation of the sample. We show a time-time plot of the 1555 nm 1-mm FBG sensor versus for 50.036 km of dispersion. The left ordinate axis is a window of 6.5 ns within one laser clock period time slice (10 ns), and the abscissa axis is the event time beginning from the trigger of the NHMFL single-turn capacitor bank and has not been time corrected for the various delays in the signal and trigger paths. Conversion of the left ordinate time axis of into FBG wavelength shift yields a λ-shift (Δλ vs. t) time plot as shown in the right ordinate axis labels. A positive shift to longer wavelength indicates that the strain resulted in elongation of the sensor/sample combination. A mean FBG wavelength shift of over Δ λ ¯ + 4 nm is observed.
Fig. 4
Fig. 4 Photograph of the NHMFL single-turn coil pulsed field facility is shown in (a). Current (4.5 MA) from the capacitor bank is delivered to a target coil (shown in (b)) using a triangular shaped pair of parallel plate OHFC copper conductors that serve as the supply and return current transmission lines. Millimeter sized experiment samples are loaded onto a wooden dowel with a magnetic field B-dot sensor and 1-mm long FBG sensor as shown in (c). (d) Magnetic field waveform for the NHMFL single-turn system as measured by the in-situ B-dot probe.
Fig. 5
Fig. 5 After a zero time correction to the FBG data time axis, a zoomed in plot of processed coherent time domain FBG waveform data and the main 6 μs quarter cycle time window where magnetic field is strongest and before field reversal occurs is shown in (a) for the LaCoO3 experiment of Fig. 3. A plot after converting to magnetostriction strain (ΔL/L) versus magnetic field allows identification of the magnetic spin induced phase transitions observed (indicated with black arrows) is shown in (b). The magnetic pulse duration period of interest is 6 μs with the upswept portion of the field in red and the down swept part in blue. The irreversibility of the measurement is seen as the upsweep and downsweep portions are not mimicked.
Fig. 6
Fig. 6 (a) Schematics, and (b) photograph, showing the relative sizes and location of the aluminum case and encased high explosive pellets. In (b), the midplane section between two pellet halves is shown to expose the placement locations of the array of thermocouples and a pair of IR pyrometer optical fibers originating from the center. The illustration in (c) shows the relative placement locations of all the diagnostics: FBG, thermocouples, pyrometer fibers, and x-ray flash radiography.
Fig. 7
Fig. 7 A plot of the FBG wavelength shift (Δλ) versus time for thermally heated PBX 9501 before ignition is shown in (a). The initial wavelength of the FBG was λ=1555.1 nm, and the corresponding temperature is given on the right ordinate labeled axis using a wavelength shift to temperature conversion constant of 11 pm/°C. The FBG data in (a) is, for a period during the heating phase, disrupted by the β→δ material phase change that results in volume expansion and stress effects on the FBG response after t = 2200 sec. In (b), a plot of the thermocouple data for heated PBX 9501 (taken from Ref [29].) is shown. The dashed plot in (b) represents the aluminum case temperature history, and the solid line is the temperature measured at the center of the PBX 9501 cylinder. Best agreement between the FBG and thermocouple data is before the phase change period and well after the phase change recovery time when self-heating of the explosive begins to produce thermal runaway in excess of 205° C.
Fig. 8
Fig. 8 Plot of the processed coherent time domain FBG waveform data, from a thermal ignition experiment, in the PBX 9501 explosive. The 1-mm-long FBG grating center wavelength was 1559.9 nm before heating (room temperature). Just before thermal runaway, the FBG center wavelength was 1563.7 nm.
Fig. 9
Fig. 9 The plots in panels (a) thru (c) are small 10 ns time slice windows of the coherent pulse FBG time domain waveform for a thermal ignition experiment in PBX 9501. In each panel the FBG (blue trace) and laser clock (red trace) are shown. Conversion to wavelength and λ-shift is done by using the corresponding measured time shift, dispersion fiber length (33.068 km), and dispersion coefficient (0.0167 ns/(nm-km)) for the fiber. The traces in each panel are the (a) room temperature – i.e., preheat phase, (b) early heat phase at t≈-410 μs, and (c) pressurization phase t≈-45 μs in a PBX 9501 thermal ignition experiment. The final panel (d) is the pressure history profile for the entire data set from the FBG time domain waveform of Fig. 8. A monotonic increase in pressure dominates the FBG response between 70 μs ≤ t ≤-43.6 μs.
Fig. 10
Fig. 10 A data set of five FBG measured thermal ignition pressure measurements in PBX 9501 is shown. Differences in the pressure profiles are attributed to variability in the initial position of the ignition flash point, flow, and from FBG sensor response.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ λ B λ B = ( 1 n 2 2 ( p 12 v ( p 11 + p 12 ) ) ) ε z + ( α ( T ) + 1 n d n d T ) Δ T ,
ε z = ( 1 2 v E ) P,
Δ λ B λ B = ( 1 n 2 2 ( p 12 + B ( p 11 + p 12 ) ) ) ( 1 2 v E ) P + ( α ( T ) + 1 n d n d T ) Δ T

Metrics