Abstract

We have fabricated the surface plasmon (SP) coupled GaN-based nanorod LEDs with Ag nanoparticles (Nps), and demonstrate the enhancement of the optical modulation bandwidth by SPs. Compared with the LED without Ag Nps, the optical modulation bandwidth of the LED with Ag Nps increases by a factor of ~2 at 57 A/cm2. The photoluminescence (PL) and electroluminescence (EL) experimental results are consistent with each other, and both suggest the effective coupling between quantum wells (QWs) and SPs. Furthermore, the current dependent modulation frequency characteristics show that the QW-SP coupling can increase the modulation bandwidth, especially for LEDs with high intrinsic internal quantum efficiency (IQE). These findings will help to open a new solution to design the ultrafast LED light source for the application of the visible light communication.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancing the spontaneous emission rate by modulating carrier distribution in GaN-based surface plasmon light-emitting diodes

Shichao Zhu, Zhiguo Yu, Lei Liu, Chao Yang, Haicheng Cao, Xin Xi, Jinmin Li, and Lixia Zhao
Opt. Express 25(9) 9617-9627 (2017)

Modulation behaviors of surface plasmon coupled light-emitting diode

Chun-Han Lin, Chia-Ying Su, Erwin Zhu, Yu-Feng Yao, Chieh Hsieh, Charng-Gan Tu, Hao-Tsung Chen, Yean-Woei Kiang, and C. C. Yang
Opt. Express 23(6) 8150-8161 (2015)

Surface plasmon-enhanced nanoporous GaN-based green light-emitting diodes with Al2O3 passivation layer

Zhi-Guo Yu, Li-Xia Zhao, Xue-Cheng Wei, Xue-Jiao Sun, Ping-Bo An, Shi-Chao Zhu, Lei Liu, Li-Xin Tian, Feng Zhang, Hong-Xi Lu, Jun-Xi Wang, Yi-Ping Zeng, and Jin-Min Li
Opt. Express 22(S6) A1596-A1603 (2014)

References

  • View by:
  • |
  • |
  • |

  1. Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmissions with white colored LED for wireless home links,” 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications. PIMRC. 2, 1325–1329 (2000).
    [Crossref]
  2. Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” 12th IEEE International Symposium on Personal Indoor and Mobile Radio Communications. PIMRC. 2, F-81-F-85 (2001).
    [Crossref]
  3. T. Komine and M. Nakagawa, “Integrated system of white LED visible-light communication and power-line communication,” IEEE Trans. Consum. Electron. 49(1), 71–79 (2003).
    [Crossref]
  4. J. Vucic, C. Kottke, S. Nerreter, K. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol. 28(24), 3512 (2010).
  5. H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
    [Crossref]
  6. H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
    [Crossref]
  7. J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29(2), 158–160 (2008).
    [Crossref]
  8. R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes,” Appl. Phys. Lett. 102(9), 091103 (2013).
    [Crossref]
  9. R. Windisch, A. Knobloch, M. Kuijk, C. Rooman, B. Dutta, P. Kiesel, G. Borghs, G. H. Döhler, and P. Heremans, “Large-signal-modulation of high-efficiency light-emitting diodes for optical communication,” IEEE J. Quantum Electron. 36(12), 1445–1453 (2000).
    [Crossref]
  10. J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based Green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication,” IEEE Photon. Technol. Lett. 18(15), 1636–1638 (2006).
    [Crossref]
  11. P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
    [Crossref]
  12. J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
    [Crossref]
  13. C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
    [Crossref]
  14. K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs-(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron. Dev. 24(7), 1001–1005 (1977).
    [Crossref]
  15. S. Zhu, J. Wang, J. Yan, Y. Zhang, Y. Pei, Z. Si, H. Yang, L. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
    [Crossref]
  16. S. Y. Huang, R. H. Horng, J. W. Shi, H. C. Kuo, and D. S. Wuu, “High-performance InGaN-based green resonant-cavity light-emitting diodes for plastic optical fiber applications,” J. Lightwave Technol. 27(18), 4084–4094 (2009).
    [Crossref]
  17. J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
    [Crossref] [PubMed]
  18. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
    [Crossref]
  19. C. L. Tsai, C. T. Yen, W. J. Huang, Z. F. Xu, and S. C. Ko, “InGaN-based resonant-cavity light-emitting diodes fabricated with a Ta2O5/SiO2 distributed Bragg reflector and metal reflector for visible light communications,” J. Disp. Technol. 9(5), 365–370 (2013).
    [Crossref]
  20. C. L. Tsai and Z. F. Xu, “Line-of-sight visible light communications with InGaN-based resonant cavity LEDs,” IEEE Photon. Technol. Lett. 25(18), 1793–1796 (2013).
    [Crossref]
  21. A. J. Shaw, A. L. Bradley, J. F. Donegan, and J. G. Lunney, “GaN resonant cavity light-emitting diodes for plastic optical fiber applications,” IEEE Photon. Technol. Lett. 16(9), 2006–2008 (2004).
    [Crossref]
  22. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
    [Crossref]
  23. I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
    [Crossref]
  24. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [Crossref] [PubMed]
  25. D. Fattal, M. Fiorentino, M. Tan, D. Houng, S. Y. Wang, and R. G. Beausoleil, “Design of an efficient light-emitting diode with 10 GHz modulation bandwidth,” Appl. Phys. Lett. 93(24), 243501 (2008).
    [Crossref]
  26. M. Nami and D. F. Feezell, “Optical properties of plasmonic light-emitting diodes based on flip-chip III-nitride core-shell nanowires,” Opt. Express 22(24), 29445–29455 (2014).
    [Crossref] [PubMed]
  27. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
    [Crossref]
  28. W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photon. Technol. Lett. 20(16), 1339–1341 (2008).
    [Crossref]
  29. H. S. Chen, C. F. Chen, Y. Kuo, W. H. Chou, C. H. Shen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN,” Appl. Phys. Lett. 102(4), 041108 (2013).
    [Crossref]
  30. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
    [Crossref] [PubMed]
  31. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
    [Crossref]
  32. Z. G. Yu, L. X. Zhao, X. C. Wei, X. J. Sun, P. B. An, S. C. Zhu, L. Liu, L. X. Tian, F. Zhang, H. X. Lu, J. X. Wang, Y. P. Zeng, and J. M. Li, “Surface plasmon-enhanced nanoporous GaN-based green light-emitting diodes with Al2O3 passivation layer,” Opt. Express 22(Suppl 6), A1596–A1603 (2014).
    [PubMed]
  33. D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
    [Crossref]
  34. S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906 (2003).
    [Crossref]
  35. S. Jiang, Z. Hu, Z. Chen, X. Fu, X. Jiang, Q. Jiao, T. Yu, and G. Zhang, “Resonant absorption and scattering suppression of localized surface plasmons in Ag particles on green LED,” Opt. Express 21(10), 12100–12110 (2013).
    [PubMed]
  36. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
    [Crossref]
  37. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
    [Crossref]
  38. J. B. Khurgin, G. Sun, and R. A. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93(2), 021120 (2008).
    [Crossref]
  39. G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
    [Crossref]
  40. A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35(24), 4208–4210 (2010).
    [Crossref] [PubMed]
  41. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  42. R. Wirth, B. Mayer, S. Kugler, and K. Streubel, “Fast LEDs for polymer optical fiber communication at 650nm,” Proc. SPIE 6013, 60130 (2005).
    [Crossref]

2014 (5)

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

S. Zhu, J. Wang, J. Yan, Y. Zhang, Y. Pei, Z. Si, H. Yang, L. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

M. Nami and D. F. Feezell, “Optical properties of plasmonic light-emitting diodes based on flip-chip III-nitride core-shell nanowires,” Opt. Express 22(24), 29445–29455 (2014).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Z. G. Yu, L. X. Zhao, X. C. Wei, X. J. Sun, P. B. An, S. C. Zhu, L. Liu, L. X. Tian, F. Zhang, H. X. Lu, J. X. Wang, Y. P. Zeng, and J. M. Li, “Surface plasmon-enhanced nanoporous GaN-based green light-emitting diodes with Al2O3 passivation layer,” Opt. Express 22(Suppl 6), A1596–A1603 (2014).
[PubMed]

2013 (7)

H. S. Chen, C. F. Chen, Y. Kuo, W. H. Chou, C. H. Shen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN,” Appl. Phys. Lett. 102(4), 041108 (2013).
[Crossref]

S. Jiang, Z. Hu, Z. Chen, X. Fu, X. Jiang, Q. Jiao, T. Yu, and G. Zhang, “Resonant absorption and scattering suppression of localized surface plasmons in Ag particles on green LED,” Opt. Express 21(10), 12100–12110 (2013).
[PubMed]

C. L. Tsai, C. T. Yen, W. J. Huang, Z. F. Xu, and S. C. Ko, “InGaN-based resonant-cavity light-emitting diodes fabricated with a Ta2O5/SiO2 distributed Bragg reflector and metal reflector for visible light communications,” J. Disp. Technol. 9(5), 365–370 (2013).
[Crossref]

C. L. Tsai and Z. F. Xu, “Line-of-sight visible light communications with InGaN-based resonant cavity LEDs,” IEEE Photon. Technol. Lett. 25(18), 1793–1796 (2013).
[Crossref]

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[Crossref] [PubMed]

C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
[Crossref]

R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes,” Appl. Phys. Lett. 102(9), 091103 (2013).
[Crossref]

2010 (3)

J. Vucic, C. Kottke, S. Nerreter, K. Langer, and J. W. Walewski, “513 Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol. 28(24), 3512 (2010).

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
[Crossref]

A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35(24), 4208–4210 (2010).
[Crossref] [PubMed]

2009 (3)

S. Y. Huang, R. H. Horng, J. W. Shi, H. C. Kuo, and D. S. Wuu, “High-performance InGaN-based green resonant-cavity light-emitting diodes for plastic optical fiber applications,” J. Lightwave Technol. 27(18), 4084–4094 (2009).
[Crossref]

H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

2008 (7)

J. B. Khurgin, G. Sun, and R. A. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93(2), 021120 (2008).
[Crossref]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photon. Technol. Lett. 20(16), 1339–1341 (2008).
[Crossref]

D. Fattal, M. Fiorentino, M. Tan, D. Houng, S. Y. Wang, and R. G. Beausoleil, “Design of an efficient light-emitting diode with 10 GHz modulation bandwidth,” Appl. Phys. Lett. 93(24), 243501 (2008).
[Crossref]

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29(2), 158–160 (2008).
[Crossref]

H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

2007 (2)

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[Crossref]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[Crossref]

2006 (1)

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based Green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication,” IEEE Photon. Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

2005 (2)

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

R. Wirth, B. Mayer, S. Kugler, and K. Streubel, “Fast LEDs for polymer optical fiber communication at 650nm,” Proc. SPIE 6013, 60130 (2005).
[Crossref]

2004 (2)

A. J. Shaw, A. L. Bradley, J. F. Donegan, and J. G. Lunney, “GaN resonant cavity light-emitting diodes for plastic optical fiber applications,” IEEE Photon. Technol. Lett. 16(9), 2006–2008 (2004).
[Crossref]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

2003 (3)

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906 (2003).
[Crossref]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

T. Komine and M. Nakagawa, “Integrated system of white LED visible-light communication and power-line communication,” IEEE Trans. Consum. Electron. 49(1), 71–79 (2003).
[Crossref]

2000 (1)

R. Windisch, A. Knobloch, M. Kuijk, C. Rooman, B. Dutta, P. Kiesel, G. Borghs, G. H. Döhler, and P. Heremans, “Large-signal-modulation of high-efficiency light-emitting diodes for optical communication,” IEEE J. Quantum Electron. 36(12), 1445–1453 (2000).
[Crossref]

1999 (2)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

1977 (1)

K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs-(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron. Dev. 24(7), 1001–1005 (1977).
[Crossref]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Akselrod, G. M.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

An, P. B.

Argyropoulos, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Beausoleil, R. G.

D. Fattal, M. Fiorentino, M. Tan, D. Houng, S. Y. Wang, and R. G. Beausoleil, “Design of an efficient light-emitting diode with 10 GHz modulation bandwidth,” Appl. Phys. Lett. 93(24), 243501 (2008).
[Crossref]

Borghs, G.

R. Windisch, A. Knobloch, M. Kuijk, C. Rooman, B. Dutta, P. Kiesel, G. Borghs, G. H. Döhler, and P. Heremans, “Large-signal-modulation of high-efficiency light-emitting diodes for optical communication,” IEEE J. Quantum Electron. 36(12), 1445–1453 (2000).
[Crossref]

Boroditsky, M.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Bradley, A. L.

A. J. Shaw, A. L. Bradley, J. F. Donegan, and J. G. Lunney, “GaN resonant cavity light-emitting diodes for plastic optical fiber applications,” IEEE Photon. Technol. Lett. 16(9), 2006–2008 (2004).
[Crossref]

Brien, D. O.

H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Byeon, C. C.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Chang, Y. F.

C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
[Crossref]

Chen, C. F.

H. S. Chen, C. F. Chen, Y. Kuo, W. H. Chou, C. H. Shen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN,” Appl. Phys. Lett. 102(4), 041108 (2013).
[Crossref]

Chen, C. H.

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29(2), 158–160 (2008).
[Crossref]

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based Green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication,” IEEE Photon. Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

Chen, C. Y.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[Crossref]

Chen, H. S.

H. S. Chen, C. F. Chen, Y. Kuo, W. H. Chou, C. H. Shen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN,” Appl. Phys. Lett. 102(4), 041108 (2013).
[Crossref]

Chen, Z.

Cho, C. Y.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Chou, W. H.

H. S. Chen, C. F. Chen, Y. Kuo, W. H. Chou, C. H. Shen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN,” Appl. Phys. Lett. 102(4), 041108 (2013).
[Crossref]

Chuang, W. H.

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photon. Technol. Lett. 20(16), 1339–1341 (2008).
[Crossref]

Ciracì, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Dawson, M. D.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes,” Appl. Phys. Lett. 102(9), 091103 (2013).
[Crossref]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
[Crossref]

DenBaars, S. P.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Döhler, G. H.

R. Windisch, A. Knobloch, M. Kuijk, C. Rooman, B. Dutta, P. Kiesel, G. Borghs, G. H. Döhler, and P. Heremans, “Large-signal-modulation of high-efficiency light-emitting diodes for optical communication,” IEEE J. Quantum Electron. 36(12), 1445–1453 (2000).
[Crossref]

Donegan, J. F.

A. J. Shaw, A. L. Bradley, J. F. Donegan, and J. G. Lunney, “GaN resonant cavity light-emitting diodes for plastic optical fiber applications,” IEEE Photon. Technol. Lett. 16(9), 2006–2008 (2004).
[Crossref]

Dutta, B.

R. Windisch, A. Knobloch, M. Kuijk, C. Rooman, B. Dutta, P. Kiesel, G. Borghs, G. H. Döhler, and P. Heremans, “Large-signal-modulation of high-efficiency light-emitting diodes for optical communication,” IEEE J. Quantum Electron. 36(12), 1445–1453 (2000).
[Crossref]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

Fang, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Fattal, D.

D. Fattal, M. Fiorentino, M. Tan, D. Houng, S. Y. Wang, and R. G. Beausoleil, “Design of an efficient light-emitting diode with 10 GHz modulation bandwidth,” Appl. Phys. Lett. 93(24), 243501 (2008).
[Crossref]

Faulkner, G.

H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Feezell, D. F.

Fiorentino, M.

D. Fattal, M. Fiorentino, M. Tan, D. Houng, S. Y. Wang, and R. G. Beausoleil, “Design of an efficient light-emitting diode with 10 GHz modulation bandwidth,” Appl. Phys. Lett. 93(24), 243501 (2008).
[Crossref]

Fu, X.

Gardner, N. F.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[Crossref]

Gong, Z.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
[Crossref]

Gontijo, I.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Green, R. P.

R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes,” Appl. Phys. Lett. 102(9), 091103 (2013).
[Crossref]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
[Crossref]

Gu, E.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes,” Appl. Phys. Lett. 102(9), 091103 (2013).
[Crossref]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
[Crossref]

Guilhabert, B.

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
[Crossref]

Heremans, P.

R. Windisch, A. Knobloch, M. Kuijk, C. Rooman, B. Dutta, P. Kiesel, G. Borghs, G. H. Döhler, and P. Heremans, “Large-signal-modulation of high-efficiency light-emitting diodes for optical communication,” IEEE J. Quantum Electron. 36(12), 1445–1453 (2000).
[Crossref]

Ho, C. L.

C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
[Crossref]

Hoang, T. B.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Horiuchi, S.

K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs-(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron. Dev. 24(7), 1001–1005 (1977).
[Crossref]

Horng, R. H.

Houng, D.

D. Fattal, M. Fiorentino, M. Tan, D. Houng, S. Y. Wang, and R. G. Beausoleil, “Design of an efficient light-emitting diode with 10 GHz modulation bandwidth,” Appl. Phys. Lett. 93(24), 243501 (2008).
[Crossref]

Hu, Z.

Huang, C. F.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[Crossref]

Huang, H. Y.

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based Green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication,” IEEE Photon. Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

Huang, J.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Huang, S. Y.

Huang, W. J.

C. L. Tsai, C. T. Yen, W. J. Huang, Z. F. Xu, and S. C. Ko, “InGaN-based resonant-cavity light-emitting diodes fabricated with a Ta2O5/SiO2 distributed Bragg reflector and metal reflector for visible light communications,” J. Disp. Technol. 9(5), 365–370 (2013).
[Crossref]

Humphreys, C. J.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

Ikeda, K.

K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs-(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron. Dev. 24(7), 1001–1005 (1977).
[Crossref]

Iveland, J.

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[Crossref] [PubMed]

Jiang, S.

Jiang, X.

Jiao, Q.

Jung, D.

H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Jung, Y. L.

H. S. Chen, C. F. Chen, Y. Kuo, W. H. Chou, C. H. Shen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN,” Appl. Phys. Lett. 102(4), 041108 (2013).
[Crossref]

Kawakami, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

Keller, S.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Kelly, A. E.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes,” Appl. Phys. Lett. 102(9), 091103 (2013).
[Crossref]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
[Crossref]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Khurgin, J. B.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

J. B. Khurgin, G. Sun, and R. A. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93(2), 021120 (2008).
[Crossref]

Kiang, Y. W.

H. S. Chen, C. F. Chen, Y. Kuo, W. H. Chou, C. H. Shen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN,” Appl. Phys. Lett. 102(4), 041108 (2013).
[Crossref]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photon. Technol. Lett. 20(16), 1339–1341 (2008).
[Crossref]

Kiesel, P.

R. Windisch, A. Knobloch, M. Kuijk, C. Rooman, B. Dutta, P. Kiesel, G. Borghs, G. H. Döhler, and P. Heremans, “Large-signal-modulation of high-efficiency light-emitting diodes for optical communication,” IEEE J. Quantum Electron. 36(12), 1445–1453 (2000).
[Crossref]

Kim, B. H.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Kim, J. Y.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Knobloch, A.

R. Windisch, A. Knobloch, M. Kuijk, C. Rooman, B. Dutta, P. Kiesel, G. Borghs, G. H. Döhler, and P. Heremans, “Large-signal-modulation of high-efficiency light-emitting diodes for optical communication,” IEEE J. Quantum Electron. 36(12), 1445–1453 (2000).
[Crossref]

Ko, S. C.

C. L. Tsai, C. T. Yen, W. J. Huang, Z. F. Xu, and S. C. Ko, “InGaN-based resonant-cavity light-emitting diodes fabricated with a Ta2O5/SiO2 distributed Bragg reflector and metal reflector for visible light communications,” J. Disp. Technol. 9(5), 365–370 (2013).
[Crossref]

Koenderink, A. F.

Komine, T.

T. Komine and M. Nakagawa, “Integrated system of white LED visible-light communication and power-line communication,” IEEE Trans. Consum. Electron. 49(1), 71–79 (2003).
[Crossref]

Kottke, C.

Krames, M. R.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[Crossref]

Kudo, H.

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906 (2003).
[Crossref]

Kugler, S.

R. Wirth, B. Mayer, S. Kugler, and K. Streubel, “Fast LEDs for polymer optical fiber communication at 650nm,” Proc. SPIE 6013, 60130 (2005).
[Crossref]

Kuijk, M.

R. Windisch, A. Knobloch, M. Kuijk, C. Rooman, B. Dutta, P. Kiesel, G. Borghs, G. H. Döhler, and P. Heremans, “Large-signal-modulation of high-efficiency light-emitting diodes for optical communication,” IEEE J. Quantum Electron. 36(12), 1445–1453 (2000).
[Crossref]

Kuo, H. C.

Kuo, Y.

H. S. Chen, C. F. Chen, Y. Kuo, W. H. Chou, C. H. Shen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN,” Appl. Phys. Lett. 102(4), 041108 (2013).
[Crossref]

Kwon, M. K.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Lai, W. C.

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29(2), 158–160 (2008).
[Crossref]

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based Green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication,” IEEE Photon. Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

Langer, K.

Lee, K.

H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Li, J.

S. Zhu, J. Wang, J. Yan, Y. Zhang, Y. Pei, Z. Si, H. Yang, L. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

Li, J. M.

Liao, C. L.

C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
[Crossref]

Lin, G. R.

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29(2), 158–160 (2008).
[Crossref]

Link, S.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

Liu, L.

Liu, Z.

S. Zhu, J. Wang, J. Yan, Y. Zhang, Y. Pei, Z. Si, H. Yang, L. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

Lu, H. X.

Lu, Y. C.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[Crossref]

Lunney, J. G.

A. J. Shaw, A. L. Bradley, J. F. Donegan, and J. G. Lunney, “GaN resonant cavity light-emitting diodes for plastic optical fiber applications,” IEEE Photon. Technol. Lett. 16(9), 2006–2008 (2004).
[Crossref]

Martinelli, L.

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[Crossref] [PubMed]

Massoubre, D.

R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes,” Appl. Phys. Lett. 102(9), 091103 (2013).
[Crossref]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
[Crossref]

Mayer, B.

R. Wirth, B. Mayer, S. Kugler, and K. Streubel, “Fast LEDs for polymer optical fiber communication at 650nm,” Proc. SPIE 6013, 60130 (2005).
[Crossref]

McKendry, J. J. D.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes,” Appl. Phys. Lett. 102(9), 091103 (2013).
[Crossref]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
[Crossref]

Mikkelsen, M. H.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Minh, H. L.

H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Mishra, U. K.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Mueller, G. O.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[Crossref]

Mukai, T.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Munkholm, A.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[Crossref]

Nagashima, M.

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906 (2003).
[Crossref]

Nakagawa, M.

T. Komine and M. Nakagawa, “Integrated system of white LED visible-light communication and power-line communication,” IEEE Trans. Consum. Electron. 49(1), 71–79 (2003).
[Crossref]

Nami, M.

Narukawa, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Nerreter, S.

Niki, I.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Oh, Y.

H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Okagawa, H.

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906 (2003).
[Crossref]

Okamoto, K.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Park, I. K.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Park, S. J.

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Pei, Y.

S. Zhu, J. Wang, J. Yan, Y. Zhang, Y. Pei, Z. Si, H. Yang, L. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

Peretti, J.

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[Crossref] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Rooman, C.

R. Windisch, A. Knobloch, M. Kuijk, C. Rooman, B. Dutta, P. Kiesel, G. Borghs, G. H. Döhler, and P. Heremans, “Large-signal-modulation of high-efficiency light-emitting diodes for optical communication,” IEEE J. Quantum Electron. 36(12), 1445–1453 (2000).
[Crossref]

Sasaki, C.

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906 (2003).
[Crossref]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Scherer, A.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Shaw, A. J.

A. J. Shaw, A. L. Bradley, J. F. Donegan, and J. G. Lunney, “GaN resonant cavity light-emitting diodes for plastic optical fiber applications,” IEEE Photon. Technol. Lett. 16(9), 2006–2008 (2004).
[Crossref]

Shen, C. H.

H. S. Chen, C. F. Chen, Y. Kuo, W. H. Chou, C. H. Shen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN,” Appl. Phys. Lett. 102(4), 041108 (2013).
[Crossref]

Shen, Y. C.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[Crossref]

Sheu, J. K.

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29(2), 158–160 (2008).
[Crossref]

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based Green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication,” IEEE Photon. Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

Shi, J. W.

S. Y. Huang, R. H. Horng, J. W. Shi, H. C. Kuo, and D. S. Wuu, “High-performance InGaN-based green resonant-cavity light-emitting diodes for plastic optical fiber applications,” J. Lightwave Technol. 27(18), 4084–4094 (2009).
[Crossref]

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29(2), 158–160 (2008).
[Crossref]

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based Green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication,” IEEE Photon. Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Si, Z.

S. Zhu, J. Wang, J. Yan, Y. Zhang, Y. Pei, Z. Si, H. Yang, L. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

Smith, D. R.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Soref, R. A.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

J. B. Khurgin, G. Sun, and R. A. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93(2), 021120 (2008).
[Crossref]

Speck, J. S.

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[Crossref] [PubMed]

Streubel, K.

R. Wirth, B. Mayer, S. Kugler, and K. Streubel, “Fast LEDs for polymer optical fiber communication at 650nm,” Proc. SPIE 6013, 60130 (2005).
[Crossref]

Sun, G.

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

J. B. Khurgin, G. Sun, and R. A. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93(2), 021120 (2008).
[Crossref]

Sun, X. J.

Susaki, W.

K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs-(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron. Dev. 24(7), 1001–1005 (1977).
[Crossref]

Tadatomo, K.

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906 (2003).
[Crossref]

Taguchi, T.

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906 (2003).
[Crossref]

Tan, M.

D. Fattal, M. Fiorentino, M. Tan, D. Houng, S. Y. Wang, and R. G. Beausoleil, “Design of an efficient light-emitting diode with 10 GHz modulation bandwidth,” Appl. Phys. Lett. 93(24), 243501 (2008).
[Crossref]

Tanaka, T.

K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs-(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron. Dev. 24(7), 1001–1005 (1977).
[Crossref]

Tian, L. X.

Tian, P.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

Tsai, C. L.

C. L. Tsai, C. T. Yen, W. J. Huang, Z. F. Xu, and S. C. Ko, “InGaN-based resonant-cavity light-emitting diodes fabricated with a Ta2O5/SiO2 distributed Bragg reflector and metal reflector for visible light communications,” J. Disp. Technol. 9(5), 365–370 (2013).
[Crossref]

C. L. Tsai and Z. F. Xu, “Line-of-sight visible light communications with InGaN-based resonant cavity LEDs,” IEEE Photon. Technol. Lett. 25(18), 1793–1796 (2013).
[Crossref]

Ueki, Y.

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906 (2003).
[Crossref]

Vucic, J.

Walewski, J. W.

Wang, J.

S. Zhu, J. Wang, J. Yan, Y. Zhang, Y. Pei, Z. Si, H. Yang, L. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

Wang, J. X.

Wang, J. Y.

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photon. Technol. Lett. 20(16), 1339–1341 (2008).
[Crossref]

Wang, S. Y.

D. Fattal, M. Fiorentino, M. Tan, D. Houng, S. Y. Wang, and R. G. Beausoleil, “Design of an efficient light-emitting diode with 10 GHz modulation bandwidth,” Appl. Phys. Lett. 93(24), 243501 (2008).
[Crossref]

Watanabe, S.

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[Crossref]

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906 (2003).
[Crossref]

Watson, I. M.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

Watson, S.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

Wei, X. C.

Weisbuch, C.

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[Crossref] [PubMed]

Windisch, R.

R. Windisch, A. Knobloch, M. Kuijk, C. Rooman, B. Dutta, P. Kiesel, G. Borghs, G. H. Döhler, and P. Heremans, “Large-signal-modulation of high-efficiency light-emitting diodes for optical communication,” IEEE J. Quantum Electron. 36(12), 1445–1453 (2000).
[Crossref]

Wirth, R.

R. Wirth, B. Mayer, S. Kugler, and K. Streubel, “Fast LEDs for polymer optical fiber communication at 650nm,” Proc. SPIE 6013, 60130 (2005).
[Crossref]

Won, E. T.

H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Wu, M. C.

C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
[Crossref]

Wu, Y. S.

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based Green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication,” IEEE Photon. Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

Wuu, D. S.

Xu, Z. F.

C. L. Tsai and Z. F. Xu, “Line-of-sight visible light communications with InGaN-based resonant cavity LEDs,” IEEE Photon. Technol. Lett. 25(18), 1793–1796 (2013).
[Crossref]

C. L. Tsai, C. T. Yen, W. J. Huang, Z. F. Xu, and S. C. Ko, “InGaN-based resonant-cavity light-emitting diodes fabricated with a Ta2O5/SiO2 distributed Bragg reflector and metal reflector for visible light communications,” J. Disp. Technol. 9(5), 365–370 (2013).
[Crossref]

Yablonovitch, E.

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Yamada, N.

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906 (2003).
[Crossref]

Yamada, Y.

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906 (2003).
[Crossref]

Yan, J.

S. Zhu, J. Wang, J. Yan, Y. Zhang, Y. Pei, Z. Si, H. Yang, L. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

Yang, C. C.

H. S. Chen, C. F. Chen, Y. Kuo, W. H. Chou, C. H. Shen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN,” Appl. Phys. Lett. 102(4), 041108 (2013).
[Crossref]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photon. Technol. Lett. 20(16), 1339–1341 (2008).
[Crossref]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[Crossref]

Yang, H.

S. Zhu, J. Wang, J. Yan, Y. Zhang, Y. Pei, Z. Si, H. Yang, L. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

Yeh, D. M.

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[Crossref]

Yen, C. T.

C. L. Tsai, C. T. Yen, W. J. Huang, Z. F. Xu, and S. C. Ko, “InGaN-based resonant-cavity light-emitting diodes fabricated with a Ta2O5/SiO2 distributed Bragg reflector and metal reflector for visible light communications,” J. Disp. Technol. 9(5), 365–370 (2013).
[Crossref]

Yu, T.

Yu, Z. G.

Zeng, L.

H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Zeng, Y. P.

Zhang, F.

Zhang, G.

Zhang, S.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

Zhang, Y.

S. Zhu, J. Wang, J. Yan, Y. Zhang, Y. Pei, Z. Si, H. Yang, L. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

Zhao, L.

S. Zhu, J. Wang, J. Yan, Y. Zhang, Y. Pei, Z. Si, H. Yang, L. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

Zhao, L. X.

Zhu, D.

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

Zhu, S.

S. Zhu, J. Wang, J. Yan, Y. Zhang, Y. Pei, Z. Si, H. Yang, L. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

Zhu, S. C.

Adv. Mater. (1)

M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, “Surface-plasmon-enhanced light-emitting diodes,” Adv. Mater. 20(7), 1253–1257 (2008).
[Crossref]

Appl. Phys. Lett. (9)

H. S. Chen, C. F. Chen, Y. Kuo, W. H. Chou, C. H. Shen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN,” Appl. Phys. Lett. 102(4), 041108 (2013).
[Crossref]

J. B. Khurgin, G. Sun, and R. A. Soref, “Electroluminescence efficiency enhancement using metal nanoparticles,” Appl. Phys. Lett. 93(2), 021120 (2008).
[Crossref]

G. Sun, J. B. Khurgin, and R. A. Soref, “Practical enhancement of photoluminescence by metal nanoparticles,” Appl. Phys. Lett. 94(10), 101103 (2009).
[Crossref]

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Surface plasmon coupling effect in an InGaN/GaN single-quantum-well light-emitting diode,” Appl. Phys. Lett. 91(17), 171103 (2007).
[Crossref]

S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, “Internal quantum efficiency of highly-efficient InxGa1−xN-based near-ultraviolet light-emitting diodes,” Appl. Phys. Lett. 83(24), 4906 (2003).
[Crossref]

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[Crossref]

D. Fattal, M. Fiorentino, M. Tan, D. Houng, S. Y. Wang, and R. G. Beausoleil, “Design of an efficient light-emitting diode with 10 GHz modulation bandwidth,” Appl. Phys. Lett. 93(24), 243501 (2008).
[Crossref]

R. P. Green, J. J. D. McKendry, D. Massoubre, E. Gu, M. D. Dawson, and A. E. Kelly, “Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes,” Appl. Phys. Lett. 102(9), 091103 (2013).
[Crossref]

Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, “Auger recombination in InGaN measured by photoluminescence,” Appl. Phys. Lett. 91(14), 141101 (2007).
[Crossref]

ECS Solid State Lett. (1)

S. Zhu, J. Wang, J. Yan, Y. Zhang, Y. Pei, Z. Si, H. Yang, L. Zhao, Z. Liu, and J. Li, “Influence of AlGaN electron blocking layer on modulation bandwidth of GaN-based light emitting diodes,” ECS Solid State Lett. 3(3), R11–R13 (2014).
[Crossref]

IEEE Electron Device Lett. (2)

C. L. Liao, Y. F. Chang, C. L. Ho, and M. C. Wu, “High-speed GaN-based blue light-emitting diodes with gallium-doped ZnO current spreading layer,” IEEE Electron Device Lett. 34(5), 611–613 (2013).
[Crossref]

J. W. Shi, J. K. Sheu, C. H. Chen, G. R. Lin, and W. C. Lai, “High-speed GaN-based green light-emitting diodes with partially n-doped active layers and current-confined apertures,” IEEE Electron Device Lett. 29(2), 158–160 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

R. Windisch, A. Knobloch, M. Kuijk, C. Rooman, B. Dutta, P. Kiesel, G. Borghs, G. H. Döhler, and P. Heremans, “Large-signal-modulation of high-efficiency light-emitting diodes for optical communication,” IEEE J. Quantum Electron. 36(12), 1445–1453 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (7)

J. W. Shi, H. Y. Huang, J. K. Sheu, C. H. Chen, Y. S. Wu, and W. C. Lai, “The improvement in modulation speed of GaN-based Green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication,” IEEE Photon. Technol. Lett. 18(15), 1636–1638 (2006).
[Crossref]

J. J. D. McKendry, R. P. Green, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-speed visible light communications using individual pixels in a micro light-emitting diode array,” IEEE Photon. Technol. Lett. 22(18), 1346–1348 (2010).
[Crossref]

H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

H. L. Minh, D. O. Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, and E. T. Won, “100-Mb/s NRZ visible light communications using a postequalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

C. L. Tsai and Z. F. Xu, “Line-of-sight visible light communications with InGaN-based resonant cavity LEDs,” IEEE Photon. Technol. Lett. 25(18), 1793–1796 (2013).
[Crossref]

A. J. Shaw, A. L. Bradley, J. F. Donegan, and J. G. Lunney, “GaN resonant cavity light-emitting diodes for plastic optical fiber applications,” IEEE Photon. Technol. Lett. 16(9), 2006–2008 (2004).
[Crossref]

W. H. Chuang, J. Y. Wang, C. C. Yang, and Y. W. Kiang, “Numerical study on quantum efficiency enhancement of a light-emitting diode based on surface plasmon coupling with a quantum well,” IEEE Photon. Technol. Lett. 20(16), 1339–1341 (2008).
[Crossref]

IEEE Trans. Consum. Electron. (1)

T. Komine and M. Nakagawa, “Integrated system of white LED visible-light communication and power-line communication,” IEEE Trans. Consum. Electron. 49(1), 71–79 (2003).
[Crossref]

IEEE Trans. Electron. Dev. (1)

K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design parameters of frequency response of GaAs-(Ga,Al)As double heterostructure LED’s for optical communications,” IEEE Trans. Electron. Dev. 24(7), 1001–1005 (1977).
[Crossref]

J. Appl. Phys. (1)

P. Tian, J. J. D. McKendry, Z. Gong, S. Zhang, S. Watson, D. Zhu, I. M. Watson, E. Gu, A. E. Kelly, C. J. Humphreys, and M. D. Dawson, “Characteristics and applications of micro-pixelated GaN-based light emitting diodes on Si substrates,” J. Appl. Phys. 115(3), 033112 (2014).
[Crossref]

J. Disp. Technol. (1)

C. L. Tsai, C. T. Yen, W. J. Huang, Z. F. Xu, and S. C. Ko, “InGaN-based resonant-cavity light-emitting diodes fabricated with a Ta2O5/SiO2 distributed Bragg reflector and metal reflector for visible light communications,” J. Disp. Technol. 9(5), 365–370 (2013).
[Crossref]

J. Lightwave Technol. (2)

J. Phys. Chem. B (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003).
[Crossref]

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999).
[Crossref]

Nanotechnology (1)

D. M. Yeh, C. F. Huang, C. Y. Chen, Y. C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19(34), 345201 (2008).
[Crossref] [PubMed]

Nat. Mater. (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Nat. Photonics (1)

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8(11), 835–840 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B (1)

I. Gontijo, M. Boroditsky, E. Yablonovitch, S. Keller, U. K. Mishra, and S. P. DenBaars, “Coupling of InGaN quantum-well photoluminescence to silver surface plasmons,” Phys. Rev. B 60(16), 11564–11567 (1999).
[Crossref]

Phys. Rev. Lett. (1)

J. Iveland, L. Martinelli, J. Peretti, J. S. Speck, and C. Weisbuch, “Direct measurement of Auger electrons emitted from a semiconductor light-emitting diode under electrical injection: identification of the dominant mechanism for efficiency droop,” Phys. Rev. Lett. 110(17), 177406 (2013).
[Crossref] [PubMed]

Proc. SPIE (1)

R. Wirth, B. Mayer, S. Kugler, and K. Streubel, “Fast LEDs for polymer optical fiber communication at 650nm,” Proc. SPIE 6013, 60130 (2005).
[Crossref]

Other (2)

Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmissions with white colored LED for wireless home links,” 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications. PIMRC. 2, 1325–1329 (2000).
[Crossref]

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LEDs as lighting,” 12th IEEE International Symposium on Personal Indoor and Mobile Radio Communications. PIMRC. 2, F-81-F-85 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic illustration of the fabrication processes for nanorod LEDs with Ag nanoparticles
Fig. 2
Fig. 2 SEM images of (a) the cross section of the nanorod array, top view of (b) the nanorod array covered by HfO2 and (c) Ag nanoparticles, and (d) tiled view of the nanorod array covered by the etched SOG.
Fig. 3
Fig. 3 (a) PL spectra of the nanorod LED without Ag Nps and nanorod LED with Ag Nps at room temperature (dashed lines) and 10 K (solid lines). (b) PL intensity ratio spectra of nanorod LED with Ag Nps to that without Ag Nps. The inset shows the transmission spectrum of similar Ag Nps on glass.
Fig. 4
Fig. 4 (a) Current density vs. voltage characteristics for the nanorod LED without Ag Nps (black dashed line) and nanorod LED with Ag Nps (red solid line) (b) EL spectra for the nanorod LED without Ag Nps and with Ag Nps at 57 A/cm2. (c) EL emission ratio spectra of nanorod LED with Ag Nps compared with that without Ag Nps at various injection current densities. (d) Integrated EL intensity in the visible range as a function of the injected current density. The inset shows the integrated EL intensity ratio of nanorod LED with Ag Nps to that without Ag Nps as a function of current density.
Fig. 5
Fig. 5 (a) Optical response of the nanorod LED without Ag Nps (black solid line) and nanorod LED with Ag Nps (red solid line) at 57 A/cm2. (b) The optical 3-dB bandwidth modulation as a function of injection current density for the nanorod LED without Ag Nps (black dashed line) and nanorod LED with Ag Nps (red solid line). The error bars come from the experimental measurements. The right axis gives the bandwidth ratio of nanorod LED with Ag Nps compared to nanorod without Ag Nps.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

τ r = 1 B( N 0 + P 0 +Δp)
f 3dB = 1 2π τ eff 1 2π BJ ed
η int = τ nr τ r + τ nr
1 τ eff = F τ r + 1 τ nr
M=(F1) η int +1

Metrics