Abstract

We report a novel fiber-optic anemometer with self-temperature compensation capability based on a Fabry-Pérot interferometer (FPI) formed by a thin silicon film attached to the end face of a single-mode fiber. Guided in the fiber are a visible laser beam from a 635 nm diode laser used to heat the FPI and a white-light in the infrared wavelength range as the signal light to interrogate the optical length of the FPI. Cooling effects on the heated sensor head by wind is converted to a wavelength blueshift of the reflection spectral fringes of the FPI. Self-temperature-compensated measurement of wind speed is achieved by recording the difference in fringe wavelengths when the heating laser is turned on and then off. Large thermal-optic coefficient and thermal expansion coefficient of silicon render a high sensitivity that can also be easily tuned by altering the heating laser power. Furthermore, the large thermal diffusivity and the small mass of the thin silicon film endow a fast sensor response.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical fiber anemometer based on laser heated fiber Bragg gratings

Shaorui Gao, A. Ping Zhang, Hwa-Yaw Tam, L. H. Cho, and Chao Lu
Opt. Express 19(11) 10124-10130 (2011)

High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity

Guigen Liu, Ming Han, and Weilin Hou
Opt. Express 23(6) 7237-7247 (2015)

Fiber-optic anemometer based on single-walled carbon nanotube coated tilted fiber Bragg grating

Yang Zhang, Fang Wang, Zigeng Liu, Zhihui Duan, Wenli Cui, Jie Han, Yiying Gu, Zhenlin Wu, Zhenguo Jing, Changsen Sun, and Wei Peng
Opt. Express 25(20) 24521-24530 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Chen, A. Yan, Q. Wang, and K. P. Chen, “Fiber-optic flow sensors for high-temperature environment operation up to 800°C,” Opt. Lett. 39(13), 3966–3969 (2014).
    [Crossref] [PubMed]
  2. C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sens. Actuators A Phys. 127(1), 63–68 (2006).
    [Crossref]
  3. D. W. Lamb and A. Hooper, “Laser-optical fiber Bragg grating anemometer for measuring gas flows: application to measuring the electric wind,” Opt. Lett. 31(8), 1035–1037 (2006).
    [Crossref] [PubMed]
  4. O. Frazão, P. Caldas, F. M. Araújo, L. A. Ferreira, and J. L. Santos, “Optical flowmeter using a modal interferometer based on a single nonadiabatic fiber taper,” Opt. Lett. 32(14), 1974–1976 (2007).
    [Crossref] [PubMed]
  5. J. Lee and J. Kim, “Elastomeric microwire-based optical gas flowmeter with stretching-enabled tunability in measurement range,” Opt. Lett. 36(19), 3789–3791 (2011).
    [Crossref] [PubMed]
  6. S. Takashima, H. Asanuma, and H. Niitsuma, “A water flowmeter using dual fiber Bragg grating sensors and cross-correlation technique,” Sens. Actuators A Phys. 116(1), 66–74 (2004).
    [Crossref]
  7. G. D. Byrne, S. W. James, and R. P. Tatam, “A Bragg grating based fibre optic reference beam laser Doppler anemometer,” Meas. Sci. Technol. 12, 909–914 (2001).
  8. C.-L. Lee, C.-F. Lee, C.-M. Li, T.-C. Chiang, and Y.-L. Hsiao, “Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer,” Appl. Phys. Lett. 101(2), 023502 (2012).
    [Crossref]
  9. S. Gao, A. P. Zhang, H.-Y. Tam, L. H. Cho, and C. Lu, “All-optical fiber anemometer based on laser heated fiber Bragg gratings,” Opt. Express 19(11), 10124–10130 (2011).
    [Crossref] [PubMed]
  10. T. Chen, Q. Wang, B. Zhang, R. Chen, and K. P. Chen, “Distributed flow sensing using optical hot -wire grid,” Opt. Express 20(8), 8240–8249 (2012).
    [Crossref] [PubMed]
  11. S. Takagi, “A hot-wire anemometer compensated for ambient temperature variations,” J. Phys. E Sci. Instrum. 19(9), 739–743 (1986).
    [Crossref]
  12. G. Liu, M. Han, and W. Hou, “High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity,” Opt. Express 23(6), 7237–7247 (2015).
    [Crossref] [PubMed]
  13. M. N. Özisik, Heat Transfer: A Basic Approach (McGraw-Hill, 1985).
  14. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
    [Crossref]

2015 (1)

2014 (1)

2012 (2)

C.-L. Lee, C.-F. Lee, C.-M. Li, T.-C. Chiang, and Y.-L. Hsiao, “Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer,” Appl. Phys. Lett. 101(2), 023502 (2012).
[Crossref]

T. Chen, Q. Wang, B. Zhang, R. Chen, and K. P. Chen, “Distributed flow sensing using optical hot -wire grid,” Opt. Express 20(8), 8240–8249 (2012).
[Crossref] [PubMed]

2011 (2)

2008 (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

2007 (1)

2006 (2)

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sens. Actuators A Phys. 127(1), 63–68 (2006).
[Crossref]

D. W. Lamb and A. Hooper, “Laser-optical fiber Bragg grating anemometer for measuring gas flows: application to measuring the electric wind,” Opt. Lett. 31(8), 1035–1037 (2006).
[Crossref] [PubMed]

2004 (1)

S. Takashima, H. Asanuma, and H. Niitsuma, “A water flowmeter using dual fiber Bragg grating sensors and cross-correlation technique,” Sens. Actuators A Phys. 116(1), 66–74 (2004).
[Crossref]

2001 (1)

G. D. Byrne, S. W. James, and R. P. Tatam, “A Bragg grating based fibre optic reference beam laser Doppler anemometer,” Meas. Sci. Technol. 12, 909–914 (2001).

1986 (1)

S. Takagi, “A hot-wire anemometer compensated for ambient temperature variations,” J. Phys. E Sci. Instrum. 19(9), 739–743 (1986).
[Crossref]

Araújo, F. M.

Asanuma, H.

S. Takashima, H. Asanuma, and H. Niitsuma, “A water flowmeter using dual fiber Bragg grating sensors and cross-correlation technique,” Sens. Actuators A Phys. 116(1), 66–74 (2004).
[Crossref]

Byrne, G. D.

G. D. Byrne, S. W. James, and R. P. Tatam, “A Bragg grating based fibre optic reference beam laser Doppler anemometer,” Meas. Sci. Technol. 12, 909–914 (2001).

Caldas, P.

Chen, K. P.

Chen, R.

Chen, T.

Chiang, T.-C.

C.-L. Lee, C.-F. Lee, C.-M. Li, T.-C. Chiang, and Y.-L. Hsiao, “Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer,” Appl. Phys. Lett. 101(2), 023502 (2012).
[Crossref]

Cho, L. H.

Cho, S. K.

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sens. Actuators A Phys. 127(1), 63–68 (2006).
[Crossref]

Ferreira, L. A.

Frazão, O.

Gao, S.

Green, M. A.

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Han, M.

Hooper, A.

Hou, W.

Hsiao, Y.-L.

C.-L. Lee, C.-F. Lee, C.-M. Li, T.-C. Chiang, and Y.-L. Hsiao, “Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer,” Appl. Phys. Lett. 101(2), 023502 (2012).
[Crossref]

James, S. W.

G. D. Byrne, S. W. James, and R. P. Tatam, “A Bragg grating based fibre optic reference beam laser Doppler anemometer,” Meas. Sci. Technol. 12, 909–914 (2001).

Jewart, C.

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sens. Actuators A Phys. 127(1), 63–68 (2006).
[Crossref]

Kim, J.

Lamb, D. W.

Lee, C.-F.

C.-L. Lee, C.-F. Lee, C.-M. Li, T.-C. Chiang, and Y.-L. Hsiao, “Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer,” Appl. Phys. Lett. 101(2), 023502 (2012).
[Crossref]

Lee, C.-L.

C.-L. Lee, C.-F. Lee, C.-M. Li, T.-C. Chiang, and Y.-L. Hsiao, “Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer,” Appl. Phys. Lett. 101(2), 023502 (2012).
[Crossref]

Lee, J.

Li, C.-M.

C.-L. Lee, C.-F. Lee, C.-M. Li, T.-C. Chiang, and Y.-L. Hsiao, “Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer,” Appl. Phys. Lett. 101(2), 023502 (2012).
[Crossref]

Liu, G.

Lu, C.

McMillen, B.

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sens. Actuators A Phys. 127(1), 63–68 (2006).
[Crossref]

Niitsuma, H.

S. Takashima, H. Asanuma, and H. Niitsuma, “A water flowmeter using dual fiber Bragg grating sensors and cross-correlation technique,” Sens. Actuators A Phys. 116(1), 66–74 (2004).
[Crossref]

Santos, J. L.

Takagi, S.

S. Takagi, “A hot-wire anemometer compensated for ambient temperature variations,” J. Phys. E Sci. Instrum. 19(9), 739–743 (1986).
[Crossref]

Takashima, S.

S. Takashima, H. Asanuma, and H. Niitsuma, “A water flowmeter using dual fiber Bragg grating sensors and cross-correlation technique,” Sens. Actuators A Phys. 116(1), 66–74 (2004).
[Crossref]

Tam, H.-Y.

Tatam, R. P.

G. D. Byrne, S. W. James, and R. P. Tatam, “A Bragg grating based fibre optic reference beam laser Doppler anemometer,” Meas. Sci. Technol. 12, 909–914 (2001).

Wang, Q.

Yan, A.

Zhang, A. P.

Zhang, B.

Appl. Phys. Lett. (1)

C.-L. Lee, C.-F. Lee, C.-M. Li, T.-C. Chiang, and Y.-L. Hsiao, “Directional anemometer based on an anisotropic flat-clad tapered fiber Michelson interferometer,” Appl. Phys. Lett. 101(2), 023502 (2012).
[Crossref]

J. Phys. E Sci. Instrum. (1)

S. Takagi, “A hot-wire anemometer compensated for ambient temperature variations,” J. Phys. E Sci. Instrum. 19(9), 739–743 (1986).
[Crossref]

Meas. Sci. Technol. (1)

G. D. Byrne, S. W. James, and R. P. Tatam, “A Bragg grating based fibre optic reference beam laser Doppler anemometer,” Meas. Sci. Technol. 12, 909–914 (2001).

Opt. Express (3)

Opt. Lett. (4)

Sens. Actuators A Phys. (2)

S. Takashima, H. Asanuma, and H. Niitsuma, “A water flowmeter using dual fiber Bragg grating sensors and cross-correlation technique,” Sens. Actuators A Phys. 116(1), 66–74 (2004).
[Crossref]

C. Jewart, B. McMillen, S. K. Cho, and K. P. Chen, “X-probe flow sensor using self-powered active fiber Bragg gratings,” Sens. Actuators A Phys. 127(1), 63–68 (2006).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Other (1)

M. N. Özisik, Heat Transfer: A Basic Approach (McGraw-Hill, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic illustration of the proposed wind probe. (b) Blueshift of the wavelength dip in response to the cooling effects by blowing wind. (c) Schematic model for the heat transfer analysis.
Fig. 2
Fig. 2 (a) Reflection spectra at different temperatures. Inset shows the fiber probe. (b) Relative dip wavelength with respect to temperature.
Fig. 3
Fig. 3 Schematic of the experimental setup for sensor demonstration and testing.
Fig. 4
Fig. 4 Fringe valley wavelength with respect to heating laser power at different wind speeds.
Fig. 5
Fig. 5 (a) Relative wavelength at different heating powers when the sensor is placed in wind with temperature of 19.7 °C or 23.7 °C and speed of 2.7 m/s or 4 m/s. Inset exhibits the original curves to show the wavelength difference due to the different wind temperatures, the legend also applies to the inset. (b) Wavelength difference measured for a certain wind speed due to different wind temperatures (19.7 °C and 23.7 °C) with respect to heating laser power.
Fig. 6
Fig. 6 (a) Relative dip wavelength versus wind speed at different heating laser currents. (b) Comparison of the responses between the fiber-optic sensor and the commercial FMA1002R-V1 anemometer when the wind is suddenly turned on. Inset to (b) is the enlarged view of the sensor response upon turning on the wind.

Tables (1)

Tables Icon

Table 1 Ratio of the wavelength shift to wind speed of 4 m/s to that of 2.7 m/s at different wind temperatures and heating laser currents.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

N λ N =2nL,
λ N T = λ N ( 1 n n T + 1 L L T ).
λ= λ 0 +KT.
B i = h L c K s ,
N u =0.664 Pr 1/3 Re L 1/2 ( 0.6<Pr<10, Re L <5× 10 5 ),
h A s [ T w T( t ) ]dt+Pdt= ρ s C s V s dT(t),
T(t)= T w + P h A s +( T 0 T w P h A s )exp( h A s ρ s C s V s t ),
λ(t)= λ 0 +KT(t) = λ 0 +K T w +K P h A s +K( T 0 T w P h A s )exp( h A s ρ s C s V s t ),
Δλ=K P h A s = 1.5K L c 1/2 v 1/6 α 1/3 K w A s P u 1/2 .
τ= ρ s C s V s h A s = 1.5 L c 1/2 v 1/6 α 1/3 ρ s C s V s K w A s 1 u 1/2

Metrics