Abstract

This paper reports on the first implementation of a single-photon avalanche diode (SPAD) in standard silicon on insulator (SOI) complementary metal-oxide-semiconductor (CMOS) technology. The SPAD is realized in a circular shape, and it is based on a P+/N-well junction along with a P-well guard-ring structure formed by lateral diffusion of two closely spaced N-well regions. The SPAD electric-field profile is analyzed by means of simulation to predict the breakdown voltage and the effectiveness of premature edge breakdown. Measurements confirm these predictions and also provide a complete characterization of the device, including current-voltage characteristics, dark count rate (DCR), photon detection probability (PDP), afterpulsing probability, and photon timing jitter. The SOI CMOS SPAD has a PDP above 25% at 490-nm wavelength and, thanks to built-in optical sensitivity enhancement mechanisms, it is as high as 7.7% at 850-nm wavelength. The DCR is 244 Hz/μm2, and the afterpulsing probability is less than 0.1% for a dead time longer than 200 ns. The SPAD exhibits a timing response without exponential tail and provides a remarkable timing jitter of 65 ps (FWHM). The new device is well suited to operate in backside illumination within complex three-dimensional (3D) integrated circuits, thus contributing to a great improvement of fill factor and jitter uniformity in large arrays.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A new single-photon avalanche diode in 90nm standard CMOS technology

Mohammad Azim Karami, Marek Gersbach, Hyung-June Yoon, and Edoardo Charbon
Opt. Express 18(21) 22158-22166 (2010)

A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology

Shingo Mandai, Matthew W. Fishburn, Yuki Maruyama, and Edoardo Charbon
Opt. Express 20(6) 5849-5857 (2012)

Flexible ultrathin-body single-photon avalanche diode sensors and CMOS integration

Pengfei Sun, Ryoichi Ishihara, and Edoardo Charbon
Opt. Express 24(4) 3734-3748 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum. 74(7), 3263–3270 (2003).
    [Crossref]
  2. A. Rochas, “Single photon avalanche diodes in CMOS technology,” Ph.D. dissertation (École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2003).
  3. S. Mandai, M. W. Fishburn, Y. Maruyama, and E. Charbon, “A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology,” Opt. Express 20(6), 5849–5857 (2012).
    [Crossref] [PubMed]
  4. C. Veerappan and E. Charbon, “A substrate isolated CMOS SPAD enabling wide spectral response and low electrical crosstalk,” IEEE J. Sel. Top. Quantum Electron. 20(6), 299–305 (2014).
    [Crossref]
  5. F. Zappa and A. Tosi, “MiSPIA: Microelectronic single-photon 3D imaging arrays for low-light high-speed safety and security applications,” Proc. SPIE 8727, 87270L (2013).
    [Crossref]
  6. Y. Zou, D. Bronzi, F. Villa, and S. Weyers, “Backside illuminated wafer-to-wafer bonding single photon avalanche diode array,” in Conf. Ph.D. Research Microelectron. Electron. (2014), pp. 1–4.
  7. M.-J. Lee, H. Rücker, and W.-Y. Choi, “Effects of guard-ring structures on the performance of silicon avalanche photodetectors fabricated with standard CMOS technology,” IEEE Electron Device Lett. 33(1), 80–82 (2012).
    [Crossref]
  8. G. F. D. Betta, Advances in Photodiodes (InTech, 2011), Chap. 11.
  9. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, 2007).
  10. M. Ghioni, G. Armellini, P. Maccagnani, I. Rech, M. K. Emsley, and M. S. Ünlü, “Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates,” IEEE Photon. Technol. Lett. 20(6), 413–415 (2008).
    [Crossref]
  11. P. Sun, E. Charbon, and R. Ishihara, “A flexible ultra-thin-body single-photon avalanche diode with dual side illumination,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804708 (2014).
  12. M. W. Fishburn, “Fundamentals of CMOS single-photon avalanche diodes,” Ph.D. dissertation (Delft Univ. of Technology, Delft, the Netherlands, 2012).
  13. J.-Y. Wu, S.-C. Li, F.-Z. Hsu, and S.-D. Lin, “Two-dimensional mapping of photon counts in low-noise single-photon avalanche diodes,” in International Image Sensor Workshop (2013).
  14. T. Leitner, A. Feiningstein, R. Turchetta, R. Coath, S. Chick, G. Visokolov, V. Savuskan, M. Javitt, L. Gal, I. Brouk, S. Bar-Lev, and Y. Nemirovsky, “Measurements and simulations of low dark count rate single photon avalanche diode device in a low voltage 180-nm CMOS image sensor technology,” IEEE Trans. Electron. Dev. 60(6), 1982–1988 (2013).
    [Crossref]
  15. C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “A single photon avalanche diode implemented in 130-nm CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 13(4), 863–869 (2007).
    [Crossref]
  16. M. Gersbach, C. Niclass, E. Charbon, J. Richardson, R. Henderson, and L. Grant, “A single photon detector implemented in a 130nm CMOS imaging process,” in European Solid-State Device Research Conf. (2008), pp. 270–273.
    [Crossref]
  17. J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
    [Crossref]
  18. E. Charbon, H.-J. Yoon, and Y. Maruyama, “A geiger mode APD fabricated in standard 65nm CMOS technology,” in IEEE International Electron Devices Meeting (2013).
    [Crossref]
  19. C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35μm CMOS and based on an event-driven readout for TCSPC experiments,” Proc. SPIE 6372, 63720S (2006).
    [Crossref]
  20. D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J. 9(9), 1084–1090 (2009).
    [Crossref]
  21. F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
    [Crossref]
  22. F. Zappa, M. Ghioni, S. Cova, L. Varisco, B. Sinnis, A. Morrison, and A. Mathewson, “Integrated array of avalanche photodiodes for single-photon counting,” in European Solid-State Device Research Conf. (1997), pp. 600–603.
  23. W. J. Kindt, H. W. van Zeijl, and S. Middelhoek, “Optical cross talk in geiger mode avalanche photodiode arrays: modeling, prevention and measurement,” in European Solid-State Device Research Conf. (1998), pp. 192–195.

2014 (3)

C. Veerappan and E. Charbon, “A substrate isolated CMOS SPAD enabling wide spectral response and low electrical crosstalk,” IEEE J. Sel. Top. Quantum Electron. 20(6), 299–305 (2014).
[Crossref]

P. Sun, E. Charbon, and R. Ishihara, “A flexible ultra-thin-body single-photon avalanche diode with dual side illumination,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804708 (2014).

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

2013 (2)

T. Leitner, A. Feiningstein, R. Turchetta, R. Coath, S. Chick, G. Visokolov, V. Savuskan, M. Javitt, L. Gal, I. Brouk, S. Bar-Lev, and Y. Nemirovsky, “Measurements and simulations of low dark count rate single photon avalanche diode device in a low voltage 180-nm CMOS image sensor technology,” IEEE Trans. Electron. Dev. 60(6), 1982–1988 (2013).
[Crossref]

F. Zappa and A. Tosi, “MiSPIA: Microelectronic single-photon 3D imaging arrays for low-light high-speed safety and security applications,” Proc. SPIE 8727, 87270L (2013).
[Crossref]

2012 (2)

M.-J. Lee, H. Rücker, and W.-Y. Choi, “Effects of guard-ring structures on the performance of silicon avalanche photodetectors fabricated with standard CMOS technology,” IEEE Electron Device Lett. 33(1), 80–82 (2012).
[Crossref]

S. Mandai, M. W. Fishburn, Y. Maruyama, and E. Charbon, “A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology,” Opt. Express 20(6), 5849–5857 (2012).
[Crossref] [PubMed]

2009 (2)

D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J. 9(9), 1084–1090 (2009).
[Crossref]

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[Crossref]

2008 (1)

M. Ghioni, G. Armellini, P. Maccagnani, I. Rech, M. K. Emsley, and M. S. Ünlü, “Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates,” IEEE Photon. Technol. Lett. 20(6), 413–415 (2008).
[Crossref]

2007 (1)

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “A single photon avalanche diode implemented in 130-nm CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 13(4), 863–869 (2007).
[Crossref]

2006 (1)

C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35μm CMOS and based on an event-driven readout for TCSPC experiments,” Proc. SPIE 6372, 63720S (2006).
[Crossref]

2003 (1)

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum. 74(7), 3263–3270 (2003).
[Crossref]

Armellini, G.

M. Ghioni, G. Armellini, P. Maccagnani, I. Rech, M. K. Emsley, and M. S. Ünlü, “Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates,” IEEE Photon. Technol. Lett. 20(6), 413–415 (2008).
[Crossref]

Bar-Lev, S.

T. Leitner, A. Feiningstein, R. Turchetta, R. Coath, S. Chick, G. Visokolov, V. Savuskan, M. Javitt, L. Gal, I. Brouk, S. Bar-Lev, and Y. Nemirovsky, “Measurements and simulations of low dark count rate single photon avalanche diode device in a low voltage 180-nm CMOS image sensor technology,” IEEE Trans. Electron. Dev. 60(6), 1982–1988 (2013).
[Crossref]

Besse, P. A.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum. 74(7), 3263–3270 (2003).
[Crossref]

Boso, G.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Brockherde, W.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Bronzi, D.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Brouk, I.

T. Leitner, A. Feiningstein, R. Turchetta, R. Coath, S. Chick, G. Visokolov, V. Savuskan, M. Javitt, L. Gal, I. Brouk, S. Bar-Lev, and Y. Nemirovsky, “Measurements and simulations of low dark count rate single photon avalanche diode device in a low voltage 180-nm CMOS image sensor technology,” IEEE Trans. Electron. Dev. 60(6), 1982–1988 (2013).
[Crossref]

Charbon, E.

P. Sun, E. Charbon, and R. Ishihara, “A flexible ultra-thin-body single-photon avalanche diode with dual side illumination,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804708 (2014).

C. Veerappan and E. Charbon, “A substrate isolated CMOS SPAD enabling wide spectral response and low electrical crosstalk,” IEEE J. Sel. Top. Quantum Electron. 20(6), 299–305 (2014).
[Crossref]

S. Mandai, M. W. Fishburn, Y. Maruyama, and E. Charbon, “A wide spectral range single-photon avalanche diode fabricated in an advanced 180 nm CMOS technology,” Opt. Express 20(6), 5849–5857 (2012).
[Crossref] [PubMed]

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “A single photon avalanche diode implemented in 130-nm CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 13(4), 863–869 (2007).
[Crossref]

C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35μm CMOS and based on an event-driven readout for TCSPC experiments,” Proc. SPIE 6372, 63720S (2006).
[Crossref]

M. Gersbach, C. Niclass, E. Charbon, J. Richardson, R. Henderson, and L. Grant, “A single photon detector implemented in a 130nm CMOS imaging process,” in European Solid-State Device Research Conf. (2008), pp. 270–273.
[Crossref]

Chick, S.

T. Leitner, A. Feiningstein, R. Turchetta, R. Coath, S. Chick, G. Visokolov, V. Savuskan, M. Javitt, L. Gal, I. Brouk, S. Bar-Lev, and Y. Nemirovsky, “Measurements and simulations of low dark count rate single photon avalanche diode device in a low voltage 180-nm CMOS image sensor technology,” IEEE Trans. Electron. Dev. 60(6), 1982–1988 (2013).
[Crossref]

Choi, W.-Y.

M.-J. Lee, H. Rücker, and W.-Y. Choi, “Effects of guard-ring structures on the performance of silicon avalanche photodetectors fabricated with standard CMOS technology,” IEEE Electron Device Lett. 33(1), 80–82 (2012).
[Crossref]

Coath, R.

T. Leitner, A. Feiningstein, R. Turchetta, R. Coath, S. Chick, G. Visokolov, V. Savuskan, M. Javitt, L. Gal, I. Brouk, S. Bar-Lev, and Y. Nemirovsky, “Measurements and simulations of low dark count rate single photon avalanche diode device in a low voltage 180-nm CMOS image sensor technology,” IEEE Trans. Electron. Dev. 60(6), 1982–1988 (2013).
[Crossref]

Cova, S.

F. Zappa, M. Ghioni, S. Cova, L. Varisco, B. Sinnis, A. Morrison, and A. Mathewson, “Integrated array of avalanche photodiodes for single-photon counting,” in European Solid-State Device Research Conf. (1997), pp. 600–603.

Durini, D.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Emsley, M. K.

M. Ghioni, G. Armellini, P. Maccagnani, I. Rech, M. K. Emsley, and M. S. Ünlü, “Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates,” IEEE Photon. Technol. Lett. 20(6), 413–415 (2008).
[Crossref]

Feiningstein, A.

T. Leitner, A. Feiningstein, R. Turchetta, R. Coath, S. Chick, G. Visokolov, V. Savuskan, M. Javitt, L. Gal, I. Brouk, S. Bar-Lev, and Y. Nemirovsky, “Measurements and simulations of low dark count rate single photon avalanche diode device in a low voltage 180-nm CMOS image sensor technology,” IEEE Trans. Electron. Dev. 60(6), 1982–1988 (2013).
[Crossref]

Fishburn, M. W.

Furrer, B.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum. 74(7), 3263–3270 (2003).
[Crossref]

Gal, L.

T. Leitner, A. Feiningstein, R. Turchetta, R. Coath, S. Chick, G. Visokolov, V. Savuskan, M. Javitt, L. Gal, I. Brouk, S. Bar-Lev, and Y. Nemirovsky, “Measurements and simulations of low dark count rate single photon avalanche diode device in a low voltage 180-nm CMOS image sensor technology,” IEEE Trans. Electron. Dev. 60(6), 1982–1988 (2013).
[Crossref]

Gani, M.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum. 74(7), 3263–3270 (2003).
[Crossref]

Gersbach, M.

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “A single photon avalanche diode implemented in 130-nm CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 13(4), 863–869 (2007).
[Crossref]

M. Gersbach, C. Niclass, E. Charbon, J. Richardson, R. Henderson, and L. Grant, “A single photon detector implemented in a 130nm CMOS imaging process,” in European Solid-State Device Research Conf. (2008), pp. 270–273.
[Crossref]

Ghioni, M.

M. Ghioni, G. Armellini, P. Maccagnani, I. Rech, M. K. Emsley, and M. S. Ünlü, “Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates,” IEEE Photon. Technol. Lett. 20(6), 413–415 (2008).
[Crossref]

F. Zappa, M. Ghioni, S. Cova, L. Varisco, B. Sinnis, A. Morrison, and A. Mathewson, “Integrated array of avalanche photodiodes for single-photon counting,” in European Solid-State Device Research Conf. (1997), pp. 600–603.

Gisin, N.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum. 74(7), 3263–3270 (2003).
[Crossref]

Gonzo, L.

D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J. 9(9), 1084–1090 (2009).
[Crossref]

Grant, L.

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “A single photon avalanche diode implemented in 130-nm CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 13(4), 863–869 (2007).
[Crossref]

M. Gersbach, C. Niclass, E. Charbon, J. Richardson, R. Henderson, and L. Grant, “A single photon detector implemented in a 130nm CMOS imaging process,” in European Solid-State Device Research Conf. (2008), pp. 270–273.
[Crossref]

Grant, L. A.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[Crossref]

Henderson, R.

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “A single photon avalanche diode implemented in 130-nm CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 13(4), 863–869 (2007).
[Crossref]

M. Gersbach, C. Niclass, E. Charbon, J. Richardson, R. Henderson, and L. Grant, “A single photon detector implemented in a 130nm CMOS imaging process,” in European Solid-State Device Research Conf. (2008), pp. 270–273.
[Crossref]

Henderson, R. K.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[Crossref]

Hsu, F.-Z.

J.-Y. Wu, S.-C. Li, F.-Z. Hsu, and S.-D. Lin, “Two-dimensional mapping of photon counts in low-noise single-photon avalanche diodes,” in International Image Sensor Workshop (2013).

Ishihara, R.

P. Sun, E. Charbon, and R. Ishihara, “A flexible ultra-thin-body single-photon avalanche diode with dual side illumination,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804708 (2014).

Javitt, M.

T. Leitner, A. Feiningstein, R. Turchetta, R. Coath, S. Chick, G. Visokolov, V. Savuskan, M. Javitt, L. Gal, I. Brouk, S. Bar-Lev, and Y. Nemirovsky, “Measurements and simulations of low dark count rate single photon avalanche diode device in a low voltage 180-nm CMOS image sensor technology,” IEEE Trans. Electron. Dev. 60(6), 1982–1988 (2013).
[Crossref]

Kindt, W. J.

W. J. Kindt, H. W. van Zeijl, and S. Middelhoek, “Optical cross talk in geiger mode avalanche photodiode arrays: modeling, prevention and measurement,” in European Solid-State Device Research Conf. (1998), pp. 192–195.

Lee, M.-J.

M.-J. Lee, H. Rücker, and W.-Y. Choi, “Effects of guard-ring structures on the performance of silicon avalanche photodetectors fabricated with standard CMOS technology,” IEEE Electron Device Lett. 33(1), 80–82 (2012).
[Crossref]

Leitner, T.

T. Leitner, A. Feiningstein, R. Turchetta, R. Coath, S. Chick, G. Visokolov, V. Savuskan, M. Javitt, L. Gal, I. Brouk, S. Bar-Lev, and Y. Nemirovsky, “Measurements and simulations of low dark count rate single photon avalanche diode device in a low voltage 180-nm CMOS image sensor technology,” IEEE Trans. Electron. Dev. 60(6), 1982–1988 (2013).
[Crossref]

Li, S.-C.

J.-Y. Wu, S.-C. Li, F.-Z. Hsu, and S.-D. Lin, “Two-dimensional mapping of photon counts in low-noise single-photon avalanche diodes,” in International Image Sensor Workshop (2013).

Lin, S.-D.

J.-Y. Wu, S.-C. Li, F.-Z. Hsu, and S.-D. Lin, “Two-dimensional mapping of photon counts in low-noise single-photon avalanche diodes,” in International Image Sensor Workshop (2013).

Maccagnani, P.

M. Ghioni, G. Armellini, P. Maccagnani, I. Rech, M. K. Emsley, and M. S. Ünlü, “Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates,” IEEE Photon. Technol. Lett. 20(6), 413–415 (2008).
[Crossref]

Mandai, S.

Maruyama, Y.

Mathewson, A.

F. Zappa, M. Ghioni, S. Cova, L. Varisco, B. Sinnis, A. Morrison, and A. Mathewson, “Integrated array of avalanche photodiodes for single-photon counting,” in European Solid-State Device Research Conf. (1997), pp. 600–603.

Middelhoek, S.

W. J. Kindt, H. W. van Zeijl, and S. Middelhoek, “Optical cross talk in geiger mode avalanche photodiode arrays: modeling, prevention and measurement,” in European Solid-State Device Research Conf. (1998), pp. 192–195.

Morrison, A.

F. Zappa, M. Ghioni, S. Cova, L. Varisco, B. Sinnis, A. Morrison, and A. Mathewson, “Integrated array of avalanche photodiodes for single-photon counting,” in European Solid-State Device Research Conf. (1997), pp. 600–603.

Mosconi, D.

D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J. 9(9), 1084–1090 (2009).
[Crossref]

Nemirovsky, Y.

T. Leitner, A. Feiningstein, R. Turchetta, R. Coath, S. Chick, G. Visokolov, V. Savuskan, M. Javitt, L. Gal, I. Brouk, S. Bar-Lev, and Y. Nemirovsky, “Measurements and simulations of low dark count rate single photon avalanche diode device in a low voltage 180-nm CMOS image sensor technology,” IEEE Trans. Electron. Dev. 60(6), 1982–1988 (2013).
[Crossref]

Niclass, C.

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “A single photon avalanche diode implemented in 130-nm CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 13(4), 863–869 (2007).
[Crossref]

C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35μm CMOS and based on an event-driven readout for TCSPC experiments,” Proc. SPIE 6372, 63720S (2006).
[Crossref]

M. Gersbach, C. Niclass, E. Charbon, J. Richardson, R. Henderson, and L. Grant, “A single photon detector implemented in a 130nm CMOS imaging process,” in European Solid-State Device Research Conf. (2008), pp. 270–273.
[Crossref]

Pancheri, L.

D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J. 9(9), 1084–1090 (2009).
[Crossref]

Paschen, U.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Popovic, R. S.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum. 74(7), 3263–3270 (2003).
[Crossref]

Rech, I.

M. Ghioni, G. Armellini, P. Maccagnani, I. Rech, M. K. Emsley, and M. S. Ünlü, “Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates,” IEEE Photon. Technol. Lett. 20(6), 413–415 (2008).
[Crossref]

Ribordy, G.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum. 74(7), 3263–3270 (2003).
[Crossref]

Richardson, J.

M. Gersbach, C. Niclass, E. Charbon, J. Richardson, R. Henderson, and L. Grant, “A single photon detector implemented in a 130nm CMOS imaging process,” in European Solid-State Device Research Conf. (2008), pp. 270–273.
[Crossref]

Richardson, J. A.

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[Crossref]

Rochas, A.

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum. 74(7), 3263–3270 (2003).
[Crossref]

Rücker, H.

M.-J. Lee, H. Rücker, and W.-Y. Choi, “Effects of guard-ring structures on the performance of silicon avalanche photodetectors fabricated with standard CMOS technology,” IEEE Electron Device Lett. 33(1), 80–82 (2012).
[Crossref]

Savuskan, V.

T. Leitner, A. Feiningstein, R. Turchetta, R. Coath, S. Chick, G. Visokolov, V. Savuskan, M. Javitt, L. Gal, I. Brouk, S. Bar-Lev, and Y. Nemirovsky, “Measurements and simulations of low dark count rate single photon avalanche diode device in a low voltage 180-nm CMOS image sensor technology,” IEEE Trans. Electron. Dev. 60(6), 1982–1988 (2013).
[Crossref]

Scarcella, C.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Sergio, M.

C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35μm CMOS and based on an event-driven readout for TCSPC experiments,” Proc. SPIE 6372, 63720S (2006).
[Crossref]

Sinnis, B.

F. Zappa, M. Ghioni, S. Cova, L. Varisco, B. Sinnis, A. Morrison, and A. Mathewson, “Integrated array of avalanche photodiodes for single-photon counting,” in European Solid-State Device Research Conf. (1997), pp. 600–603.

Stoppa, D.

D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J. 9(9), 1084–1090 (2009).
[Crossref]

Sun, P.

P. Sun, E. Charbon, and R. Ishihara, “A flexible ultra-thin-body single-photon avalanche diode with dual side illumination,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804708 (2014).

Tisa, S.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Tosi, A.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

F. Zappa and A. Tosi, “MiSPIA: Microelectronic single-photon 3D imaging arrays for low-light high-speed safety and security applications,” Proc. SPIE 8727, 87270L (2013).
[Crossref]

Turchetta, R.

T. Leitner, A. Feiningstein, R. Turchetta, R. Coath, S. Chick, G. Visokolov, V. Savuskan, M. Javitt, L. Gal, I. Brouk, S. Bar-Lev, and Y. Nemirovsky, “Measurements and simulations of low dark count rate single photon avalanche diode device in a low voltage 180-nm CMOS image sensor technology,” IEEE Trans. Electron. Dev. 60(6), 1982–1988 (2013).
[Crossref]

Ünlü, M. S.

M. Ghioni, G. Armellini, P. Maccagnani, I. Rech, M. K. Emsley, and M. S. Ünlü, “Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates,” IEEE Photon. Technol. Lett. 20(6), 413–415 (2008).
[Crossref]

van Zeijl, H. W.

W. J. Kindt, H. W. van Zeijl, and S. Middelhoek, “Optical cross talk in geiger mode avalanche photodiode arrays: modeling, prevention and measurement,” in European Solid-State Device Research Conf. (1998), pp. 192–195.

Varisco, L.

F. Zappa, M. Ghioni, S. Cova, L. Varisco, B. Sinnis, A. Morrison, and A. Mathewson, “Integrated array of avalanche photodiodes for single-photon counting,” in European Solid-State Device Research Conf. (1997), pp. 600–603.

Veerappan, C.

C. Veerappan and E. Charbon, “A substrate isolated CMOS SPAD enabling wide spectral response and low electrical crosstalk,” IEEE J. Sel. Top. Quantum Electron. 20(6), 299–305 (2014).
[Crossref]

Villa, F.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Visokolov, G.

T. Leitner, A. Feiningstein, R. Turchetta, R. Coath, S. Chick, G. Visokolov, V. Savuskan, M. Javitt, L. Gal, I. Brouk, S. Bar-Lev, and Y. Nemirovsky, “Measurements and simulations of low dark count rate single photon avalanche diode device in a low voltage 180-nm CMOS image sensor technology,” IEEE Trans. Electron. Dev. 60(6), 1982–1988 (2013).
[Crossref]

Weyers, S.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Wu, J.-Y.

J.-Y. Wu, S.-C. Li, F.-Z. Hsu, and S.-D. Lin, “Two-dimensional mapping of photon counts in low-noise single-photon avalanche diodes,” in International Image Sensor Workshop (2013).

Zappa, F.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

F. Zappa and A. Tosi, “MiSPIA: Microelectronic single-photon 3D imaging arrays for low-light high-speed safety and security applications,” Proc. SPIE 8727, 87270L (2013).
[Crossref]

F. Zappa, M. Ghioni, S. Cova, L. Varisco, B. Sinnis, A. Morrison, and A. Mathewson, “Integrated array of avalanche photodiodes for single-photon counting,” in European Solid-State Device Research Conf. (1997), pp. 600–603.

Zou, Y.

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

IEEE Electron Device Lett. (1)

M.-J. Lee, H. Rücker, and W.-Y. Choi, “Effects of guard-ring structures on the performance of silicon avalanche photodetectors fabricated with standard CMOS technology,” IEEE Electron Device Lett. 33(1), 80–82 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

C. Veerappan and E. Charbon, “A substrate isolated CMOS SPAD enabling wide spectral response and low electrical crosstalk,” IEEE J. Sel. Top. Quantum Electron. 20(6), 299–305 (2014).
[Crossref]

P. Sun, E. Charbon, and R. Ishihara, “A flexible ultra-thin-body single-photon avalanche diode with dual side illumination,” IEEE J. Sel. Top. Quantum Electron. 20(6), 3804708 (2014).

C. Niclass, M. Gersbach, R. Henderson, L. Grant, and E. Charbon, “A single photon avalanche diode implemented in 130-nm CMOS technology,” IEEE J. Sel. Top. Quantum Electron. 13(4), 863–869 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (2)

J. A. Richardson, L. A. Grant, and R. K. Henderson, “Low dark count single-photon avalanche diode structure compatible with standard nanometer scale CMOS technology,” IEEE Photon. Technol. Lett. 21(14), 1020–1022 (2009).
[Crossref]

M. Ghioni, G. Armellini, P. Maccagnani, I. Rech, M. K. Emsley, and M. S. Ünlü, “Resonant-cavity-enhanced single-photon avalanche diodes on reflecting silicon substrates,” IEEE Photon. Technol. Lett. 20(6), 413–415 (2008).
[Crossref]

IEEE Sens. J. (1)

D. Stoppa, D. Mosconi, L. Pancheri, and L. Gonzo, “Single-photon avalanche diode CMOS sensor for time-resolved fluorescence measurements,” IEEE Sens. J. 9(9), 1084–1090 (2009).
[Crossref]

IEEE Trans. Electron. Dev. (1)

T. Leitner, A. Feiningstein, R. Turchetta, R. Coath, S. Chick, G. Visokolov, V. Savuskan, M. Javitt, L. Gal, I. Brouk, S. Bar-Lev, and Y. Nemirovsky, “Measurements and simulations of low dark count rate single photon avalanche diode device in a low voltage 180-nm CMOS image sensor technology,” IEEE Trans. Electron. Dev. 60(6), 1982–1988 (2013).
[Crossref]

J. Mod. Opt. (1)

F. Villa, D. Bronzi, Y. Zou, C. Scarcella, G. Boso, S. Tisa, A. Tosi, F. Zappa, D. Durini, S. Weyers, U. Paschen, and W. Brockherde, “CMOS SPADs with up to 500 μm diameter and 55% detection efficiency at 420 nm,” J. Mod. Opt. 61(2), 102–115 (2014).
[Crossref]

Opt. Express (1)

Proc. SPIE (2)

F. Zappa and A. Tosi, “MiSPIA: Microelectronic single-photon 3D imaging arrays for low-light high-speed safety and security applications,” Proc. SPIE 8727, 87270L (2013).
[Crossref]

C. Niclass, M. Sergio, and E. Charbon, “A single photon avalanche diode array fabricated in 0.35μm CMOS and based on an event-driven readout for TCSPC experiments,” Proc. SPIE 6372, 63720S (2006).
[Crossref]

Rev. Sci. Instrum. (1)

A. Rochas, M. Gani, B. Furrer, P. A. Besse, R. S. Popovic, G. Ribordy, and N. Gisin, “Single photon detector fabricated in a complementary metal–oxide–semiconductor high-voltage technology,” Rev. Sci. Instrum. 74(7), 3263–3270 (2003).
[Crossref]

Other (10)

A. Rochas, “Single photon avalanche diodes in CMOS technology,” Ph.D. dissertation (École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2003).

Y. Zou, D. Bronzi, F. Villa, and S. Weyers, “Backside illuminated wafer-to-wafer bonding single photon avalanche diode array,” in Conf. Ph.D. Research Microelectron. Electron. (2014), pp. 1–4.

G. F. D. Betta, Advances in Photodiodes (InTech, 2011), Chap. 11.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, 2007).

E. Charbon, H.-J. Yoon, and Y. Maruyama, “A geiger mode APD fabricated in standard 65nm CMOS technology,” in IEEE International Electron Devices Meeting (2013).
[Crossref]

M. Gersbach, C. Niclass, E. Charbon, J. Richardson, R. Henderson, and L. Grant, “A single photon detector implemented in a 130nm CMOS imaging process,” in European Solid-State Device Research Conf. (2008), pp. 270–273.
[Crossref]

M. W. Fishburn, “Fundamentals of CMOS single-photon avalanche diodes,” Ph.D. dissertation (Delft Univ. of Technology, Delft, the Netherlands, 2012).

J.-Y. Wu, S.-C. Li, F.-Z. Hsu, and S.-D. Lin, “Two-dimensional mapping of photon counts in low-noise single-photon avalanche diodes,” in International Image Sensor Workshop (2013).

F. Zappa, M. Ghioni, S. Cova, L. Varisco, B. Sinnis, A. Morrison, and A. Mathewson, “Integrated array of avalanche photodiodes for single-photon counting,” in European Solid-State Device Research Conf. (1997), pp. 600–603.

W. J. Kindt, H. W. van Zeijl, and S. Middelhoek, “Optical cross talk in geiger mode avalanche photodiode arrays: modeling, prevention and measurement,” in European Solid-State Device Research Conf. (1998), pp. 192–195.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Cross section of the fabricated SOI CMOS SPAD (MTI: medium trench isolation, STI: shallow trench isolation).
Fig. 2
Fig. 2 Electric field in a SPAD biased above breakdown by an excess bias voltage VE of 3 V.
Fig. 3
Fig. 3 Steady-state current-voltage characteristics under dark conditions at room temperature.
Fig. 4
Fig. 4 DCR (a) as a function of the excess bias voltage at room temperature and (b) as a function of the inverse of temperature for various excess bias voltages.
Fig. 5
Fig. 5 PDP as a function of wavelength for various excess bias voltages at room temperature.
Fig. 6
Fig. 6 Afterpulsing: inter-arrival time histogram measured at room temperature and exponential curve fit.
Fig. 7
Fig. 7 Timing jitter performance as a function of excess bias voltage at room temperature using a 405-nm wavelength laser.
Fig. 8
Fig. 8 SPAD-performance comparison: PDP.
Fig. 9
Fig. 9 SPAD-performance comparison: area-normalized DCR.
Fig. 10
Fig. 10 SPAD-performance comparison: peak PDP vs. area-normalized DCR.

Tables (1)

Tables Icon

Table 1 Performance summary and comparison with substrate-isolated SPADs fabricated in advanced CMOS technologies (140-nm technology nodes and below)

Metrics