Abstract

Wavelength-division-multiplexing passive optical network (WDM-PON) is a promising architecture for next-generation access networks because of its large bandwidth, protocol transparency and scalability. In this paper, we propose a cost-effective, high-speed upstream WDM-PON scheme adopting polarization division multiplexed (PDM) on-off keying (OOK) modulation at the optical network unit (ONU) and digital coherent/self-coherent detection with a novel blind dual-modulus equalization algorithm at the optical line terminal (OLT). As such, the upstream capacity can be directly enhanced at low ONU expenditure, and receiver sensitivity as well as power budget can be also improved. Enabled by the scheme, 40-Gb/s upstream transmission in 80-km WDM-PON is experimentally demonstrated.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transmission of 40-Gb/s QPSK upstream signal in RSOA-based coherent WDM PON using offset PDM technique

H. K. Shim, K. Y. Cho, U. H. Hong, and Y. C. Chung
Opt. Express 21(3) 3721-3725 (2013)

200  Gbit/s/λ PDM-PAM-4 PON system based on intensity modulation and coherent detection

Jiao Zhang, Jianjun Yu, Xinying Li, Kaihui Wang, Wen Zhou, Jiangnan Xiao, Li Zhao, Xiaolong Pan, Bo Liu, and Xiangjun Xin
J. Opt. Commun. Netw. 12(1) A1-A8 (2020)

Novel MDM-PON scheme utilizing self-homodyne detection for high-speed/capacity access networks

Yuanxiang Chen, Juhao Li, Paikun Zhu, Zhongying Wu, Peng Zhou, Yu Tian, Fang Ren, Jinyi Yu, Dawei Ge, Jingbiao Chen, Yongqi He, and Zhangyuan Chen
Opt. Express 23(25) 32054-32062 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. C. Chung, “Recent advancement in WDM PON technology,” in Proc. ECOC 2011, Paper Th.11.C.4.
  2. H. K. Shim, K. Y. Cho, U. H. Hong, and Y. C. Chung, “Transmission of 40-Gb/s QPSK upstream signal in RSOA-based coherent WDM PON using offset PDM technique,” Opt. Express 21(3), 3721–3725 (2013).
    [Crossref] [PubMed]
  3. L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong, “Next-Generation optical access networks,” J. Lightwave Technol. 25(11), 3428–3442 (2007).
    [Crossref]
  4. E. Hugues-Salas, R. P. Giddings, X. Q. Jin, Y. Hong, T. Quinlan, S. Walker, and J. M. Tang, “REAM intensity modulator-enabled 10Gb/s colorless upstream transmission of real-time optical OFDM signals in a single-fiber-based bidirectional PON architecture,” Opt. Express 20(19), 21089–21100 (2012).
    [Crossref] [PubMed]
  5. D. Che, A. Li, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “Stokes vector direct detection for short-reach optical communication,” Opt. Lett. 39(11), 3110–3113 (2014).
    [Crossref] [PubMed]
  6. Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km Passive Reach TWDM-PON with 53-dB Loss Budget,” J. Lightwave Technol. 32(21), 3389–3396 (2014).
  7. R. Gaudino, V. Curri, G. Bosco, G. Rizzelli, A. Nespola, D. Zeolla, S. Straullu, S. Capriata, and P. Solina, “On the use of DFB Lasers for Coherent PON,” in Proc. OFC 2012, paper OTh4G.1.
    [Crossref]
  8. K. Grobe, M. H. Eiselt, S. Pachnicke, and J. Elbers, “Access networks based on tunable lasers,” J. Lightwave Technol. 32(16), 2815–2823 (2014).
    [Crossref]
  9. P. Zhou, P. Zhu, J. Li, Y. He, and Z. Chen, “A novel upstream OOK transmission and DSP-based coherent detection scheme for WDM-PON,” in Proc. ACP 2014, paper ATh3A.163.
    [Crossref]
  10. D. T. van Veen, V. E. Houtsma, A. H. Gnauck, and P. Iannone, “Demonstration of 40-Gb/s TDM-PON over 42-km with 31 dB optical power budget using an APD-based receiver [Invited],” J. Lightwave Technol. 33(8), 1675–1680 (2015).
    [Crossref]
  11. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [Crossref] [PubMed]
  12. X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
    [Crossref]
  13. X. Zhou and J. Yu, “Multi-Level, multi-dimensional coding for high-speed and high-spectral-efficiency optical transmission,” J. Lightwave Technol. 27(16), 3641–3653 (2009).
    [Crossref]
  14. J. Zhang, J. Yu, N. Chi, Z. Dong, J. Yu, X. Li, L. Tao, and Y. Shao, “Multi-modulus blind equalizations for coherent quadrature duobinary spectrum shaped PM-QPSK digital signal processing,” J. Lightwave Technol. 31(7), 1073–1078 (2013).
    [Crossref]
  15. X. Zhou, “Digital signal processing for coherent multi-level modulation formats [Invited],” Chin. Opt. Lett. 8(9), 863–870 (2010).
    [Crossref]
  16. D. Lavery, B. C. Thomsen, P. Bayvel, and S. J. Savory, “Reduced complexity equalization for coherent long-reach passive optical networks [Invited],” J. Opt. Commun. Netw. 7(1), A16–A27 (2015).
    [Crossref]
  17. J. G. Proakis, Digital Communications, 4th edition (McGraw-Hill, 2001).
  18. K. Kikuchi and S. Tsukamoto, “Evaluation of Sensitivity of the Digital Coherent Receiver,” J. Lightwave Technol. 26(13), 1817–1822 (2008).
    [Crossref]
  19. C. Xie, P. Dong, P. Winzer, C. Gréus, M. Ortsiefer, C. Neumeyr, S. Spiga, M. Müller, and M.-C. Amann, “960-km SSMF transmission of 105.7-Gb/s PDM 3-PAM using directly modulated VCSELs and coherent detection,” Opt. Express 21(9), 11585–11589 (2013).
    [Crossref] [PubMed]
  20. J. Verbrugghe, B. Schrenk, J. Bauwelinck, X. Yin, S. Dris, J. A. Lazaro, V. Katopodis, P. Bakopoulos, and H. Avramopoulos, “Quaternary TDM-PAM as upgrade path of access PON beyond 10Gb/s,” Opt. Express 20(26), B15–B20 (2012).
    [Crossref] [PubMed]
  21. H. Rohde, S. Smolorz, J. Wey, and E. Gottwald, “Coherent optical access networks,” in Proc. OFC 2011, paper OTuB1.
  22. H. Rohde, E. Gottwald, S. Rosner, E. Weis, P. Wagner, Y. Babenko, D. Fritzsche, and H. Chaouch, “Trials of a coherent UDWDM PON over field-deployed fiber: real-time LTE backhauling, legacy and 100G coexistence [Invited],” J. Lightwave Technol. 33(8), 1644–1649 (2015).
    [Crossref]
  23. D. Nesset, “NG-PON2 technology and standards [Invited],” J. Lightwave Technol. 33(5), 1136–1143 (2015).
    [Crossref]
  24. K. Tanaka and A. Agata, “Next-generation optical access networks for C-RAN,” in Proc. OFC 2015, paper Tu2E.1.

2015 (4)

2014 (3)

2013 (3)

2012 (2)

2011 (1)

2010 (1)

2009 (1)

2008 (2)

2007 (1)

Amann, M.-C.

Avramopoulos, H.

Babenko, Y.

Bakopoulos, P.

Bauwelinck, J.

Bayvel, P.

Bi, M.

Chandrasekhar, S.

Chaouch, H.

Che, D.

Chen, X.

Cheng, N.

Chi, N.

Cho, K. Y.

Chung, Y. C.

Dong, P.

Dong, Z.

Dris, S.

Eiselt, M. H.

Elbers, J.

Fritzsche, D.

Giddings, R. P.

Gnauck, A. H.

Gottwald, E.

Gréus, C.

Grobe, K.

Gutierrez, D.

He, H.

Hong, U. H.

Hong, Y.

Houtsma, V. E.

Hu, Q.

Hu, W.

Hugues-Salas, E.

Iannone, P.

Jin, X. Q.

Katopodis, V.

Kazovsky, L. G.

Kikuchi, K.

Lavery, D.

Lazaro, J. A.

Li, A.

Li, X.

Li, Z.

Liu, X.

Müller, M.

Nesset, D.

Neumeyr, C.

Ortsiefer, M.

Pachnicke, S.

Peckham, D. W.

Quinlan, T.

Rohde, H.

Rosner, S.

Savory, S. J.

Schrenk, B.

Shao, Y.

Shaw, W.-T.

Shieh, W.

Shim, H. K.

Spiga, S.

Tang, J. M.

Tao, L.

Thomsen, B. C.

Tsukamoto, S.

van Veen, D. T.

Verbrugghe, J.

Wagner, P.

Walker, S.

Wang, Y.

Wei, W.

Weis, E.

Winzer, P.

Winzer, P. J.

Wong, S.-W.

Xiao, S.

Xie, C.

Yi, L.

Yin, X.

Yu, J.

Zhang, J.

Zhou, X.

Zhu, B.

Chin. Opt. Lett. (1)

J. Lightwave Technol. (10)

H. Rohde, E. Gottwald, S. Rosner, E. Weis, P. Wagner, Y. Babenko, D. Fritzsche, and H. Chaouch, “Trials of a coherent UDWDM PON over field-deployed fiber: real-time LTE backhauling, legacy and 100G coexistence [Invited],” J. Lightwave Technol. 33(8), 1644–1649 (2015).
[Crossref]

D. Nesset, “NG-PON2 technology and standards [Invited],” J. Lightwave Technol. 33(5), 1136–1143 (2015).
[Crossref]

L. G. Kazovsky, W.-T. Shaw, D. Gutierrez, N. Cheng, and S.-W. Wong, “Next-Generation optical access networks,” J. Lightwave Technol. 25(11), 3428–3442 (2007).
[Crossref]

Z. Li, L. Yi, W. Wei, M. Bi, H. He, S. Xiao, and W. Hu, “Symmetric 40-Gb/s, 100-km Passive Reach TWDM-PON with 53-dB Loss Budget,” J. Lightwave Technol. 32(21), 3389–3396 (2014).

K. Grobe, M. H. Eiselt, S. Pachnicke, and J. Elbers, “Access networks based on tunable lasers,” J. Lightwave Technol. 32(16), 2815–2823 (2014).
[Crossref]

D. T. van Veen, V. E. Houtsma, A. H. Gnauck, and P. Iannone, “Demonstration of 40-Gb/s TDM-PON over 42-km with 31 dB optical power budget using an APD-based receiver [Invited],” J. Lightwave Technol. 33(8), 1675–1680 (2015).
[Crossref]

X. Liu, S. Chandrasekhar, B. Zhu, P. J. Winzer, A. H. Gnauck, and D. W. Peckham, “448-Gb/s reduced-guard-interval CO-OFDM transmission over 2000 km of ultra-large-area fiber and five 80-GHz-grid ROADMs,” J. Lightwave Technol. 29(4), 483–490 (2011).
[Crossref]

X. Zhou and J. Yu, “Multi-Level, multi-dimensional coding for high-speed and high-spectral-efficiency optical transmission,” J. Lightwave Technol. 27(16), 3641–3653 (2009).
[Crossref]

J. Zhang, J. Yu, N. Chi, Z. Dong, J. Yu, X. Li, L. Tao, and Y. Shao, “Multi-modulus blind equalizations for coherent quadrature duobinary spectrum shaped PM-QPSK digital signal processing,” J. Lightwave Technol. 31(7), 1073–1078 (2013).
[Crossref]

K. Kikuchi and S. Tsukamoto, “Evaluation of Sensitivity of the Digital Coherent Receiver,” J. Lightwave Technol. 26(13), 1817–1822 (2008).
[Crossref]

J. Opt. Commun. Netw. (1)

Opt. Express (5)

Opt. Lett. (1)

Other (6)

Y. C. Chung, “Recent advancement in WDM PON technology,” in Proc. ECOC 2011, Paper Th.11.C.4.

P. Zhou, P. Zhu, J. Li, Y. He, and Z. Chen, “A novel upstream OOK transmission and DSP-based coherent detection scheme for WDM-PON,” in Proc. ACP 2014, paper ATh3A.163.
[Crossref]

R. Gaudino, V. Curri, G. Bosco, G. Rizzelli, A. Nespola, D. Zeolla, S. Straullu, S. Capriata, and P. Solina, “On the use of DFB Lasers for Coherent PON,” in Proc. OFC 2012, paper OTh4G.1.
[Crossref]

H. Rohde, S. Smolorz, J. Wey, and E. Gottwald, “Coherent optical access networks,” in Proc. OFC 2011, paper OTuB1.

J. G. Proakis, Digital Communications, 4th edition (McGraw-Hill, 2001).

K. Tanaka and A. Agata, “Next-generation optical access networks for C-RAN,” in Proc. OFC 2015, paper Tu2E.1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Block diagram of the proposed upstream architecture. ODN: optical distribution network. AWG: arrayed waveguide grating. DML: direct modulated laser.
Fig. 2
Fig. 2 Block diagram of DSP method for upstream PDM-OOK signal.
Fig. 3
Fig. 3 Illustration of DMA for PDM-OOK signal.
Fig. 4
Fig. 4 Simulation setup of upstream PDM-OOK transmission. MZM: Mach-Zehnder modulator; VOA: variable optical attenuator; PBC: polarization beam combiner; OBPF: optical band-pass filter; PC: polarization controller; BD: balanced detector; ELPF: electrical low-pass filter.
Fig. 5
Fig. 5 (a) Theoretical and simulated BER curve versus received power. (b) BER as a function of laser linewidth at received power of −44 dBm.
Fig. 6
Fig. 6 Experimental setup for PDM coherent WDM-PON upstream transmission (ECL: external cavity laser; MZM: Mach–Zehnder modulator; PBS: polarization beam splitter; PBC: polarization beam combiner; OBPF: optical band-pass filter; PC: polarization controller; BD: balanced detector).
Fig. 7
Fig. 7 Experimental constellation diagrams of PDM-OOK signal before and after DMA.
Fig. 8
Fig. 8 Spectra of (a) 20-Gb/s and (b) 40-Gb/s PDM-OOK signal at ONU. Insets show corresponding eye-diagrams.
Fig. 9
Fig. 9 BER versus received power of (a) 20-Gb/s and (b) 40-Gb/s PDM-OOK upstream transmissions.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

h xx (k) h xx (k)+μ ε x (i) e x (i)x*(ik) h xy (k) h xy (k)+μ ε x (i) e x (i)y*(ik) h yx (k) h yx (k)+μ ε y (i) e y (i)x*(ik) h yy (k) h yy (k)+μ ε y (i) e y (i)y*(ik)
ε x, y =| | Z x, y | A 1 | A 2
e x, y =sign(| Z x, y | A 1 )*sign( Z x, y )
BER= 1 2 erfc( SNR 2 )
SNR= P S hf n sp B

Metrics