Abstract

A novel hybrid time-frequency domain equalization scheme is proposed and experimentally demonstrated to mitigate the white light emitting diode (LED) nonlinearity in visible light communication (VLC) systems based on orthogonal frequency division multiplexing (OFDM). We handle the linear and nonlinear distortion separately in a nonlinear OFDM system. The linear part is equalized in frequency domain and the nonlinear part is compensated by an adaptive nonlinear time domain equalizer (N-TDE). The experimental results show that with only a small number of parameters the nonlinear equalizer can efficiently mitigate the LED nonlinearity. With the N-TDE the modulation index (MI) and BER performance can be significantly enhanced.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Predistortion and pre-equalization for nonlinearities and low-pass effect mitigation in OFDM-VLC systems

Luis Carlos Mathias, Jose Carlos Marinello Filho, and Taufik Abrao
Appl. Opt. 58(19) 5328-5338 (2019)

On the study of the relation between linear/nonlinear PAPR reduction and transmission performance for OFDM-based VLC systems

Huimin Lu, Yang Hong, Lian-Kuan Chen, and Jianping Wang
Opt. Express 26(11) 13891-13901 (2018)

References

  • View by:
  • |
  • |
  • |

  1. IEEE 802.15.7 Working group for WPAN, “Short-range wireless optical communication using visual light,” (2011), http://www.ieee802.org/15/ .
  2. L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100(13), 1853–1888 (2012).
    [Crossref]
  3. C. G. Gavrincea, J. Baranda, and P. Henarejos, “Rapid prototyping of standard-compliant visible light communications system,” IEEE Commun. Mag. 52(7), 80–87 (2014).
    [Crossref]
  4. Z. T. Huang and Y. F. Ji, “Design and demonstration of room division multiplexing-based hybrid VLC network,” Chin. Opt. Lett. 11(6), 060603 (2013).
    [Crossref]
  5. A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4(5), 1465–1473 (2012).
    [Crossref]
  6. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
    [Crossref] [PubMed]
  7. F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photon. J. 5(4), 7901507 (2013).
    [Crossref]
  8. D. Tsonev, H. Chun, S. Rajbhandari, J. D. Mckendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC wink using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
    [Crossref]
  9. I. Neokosmidis, T. Kamalakis, J. W. Walewski, B. Inan, and T. Sphicopoulos, “Impact of nonlinear LED transfer function on discrete multitone modulation: analytical approach,” J. Lightwave Technol. 27(22), 4970–4978 (2009).
    [Crossref]
  10. B. Inan, S. C. Jeffrey Lee, S. Randel, I. Neokosmidis, A. M. Koonen, and J. W. Walewski, “Impact of LED nonlinearity on discrete multitone modulation,” J. Opt. Commun. Netw. 1(5), 439–451 (2009).
    [Crossref]
  11. H. Elgala, R. Mesleh, and H. Haas, “Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs,” Int. J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009).
    [Crossref]
  12. R. Mesleh, H. Elgala, and H. Haas, “LED nonlinearity mitigation techniques in optical wireless OFDM communication systems,” J. Opt. Commun. Netw. 4(11), 865–875 (2012).
    [Crossref]
  13. G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of volterra DFE,” IEEE Photon. Technol. Lett. 25(16), 1597–1600 (2013).
    [Crossref]
  14. H. Elgala, R. Mesleh, and H. Haas, “An LED model for intensity-modulated optical communication systems,” IEEE Photon. Technol. Lett. 22(11), 835–837 (2010).
    [Crossref]
  15. H. Q. Zhao and J. S. Zhang, “A novel adaptive nonlinear filter-based pipelined feed-forward second-order Volterra architecture,” IEEE Trans. Signal Process. 57(1), 237–246 (2009).
    [Crossref]
  16. A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, “Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series,” IEEE Trans. Microw. Theory Tech. 56(7), 1524–1534 (2008).
    [Crossref]
  17. R. A. Shafik, S. Rahman, and R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proceedings of International Conference on Electrical and Computer Engineering. (IEEE, 2006), pp. 408–411.
    [Crossref]
  18. L. N. Peng, S. Haese, and M. Helard, “Frequency domain LED compensation for nonlinearity mitigation in DMT systems,” IEEE Photon. Technol. Lett. 25(20), 2022–2025 (2013).
    [Crossref]

2014 (2)

C. G. Gavrincea, J. Baranda, and P. Henarejos, “Rapid prototyping of standard-compliant visible light communications system,” IEEE Commun. Mag. 52(7), 80–87 (2014).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. D. Mckendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC wink using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

2013 (4)

Z. T. Huang and Y. F. Ji, “Design and demonstration of room division multiplexing-based hybrid VLC network,” Chin. Opt. Lett. 11(6), 060603 (2013).
[Crossref]

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of volterra DFE,” IEEE Photon. Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photon. J. 5(4), 7901507 (2013).
[Crossref]

L. N. Peng, S. Haese, and M. Helard, “Frequency domain LED compensation for nonlinearity mitigation in DMT systems,” IEEE Photon. Technol. Lett. 25(20), 2022–2025 (2013).
[Crossref]

2012 (4)

R. Mesleh, H. Elgala, and H. Haas, “LED nonlinearity mitigation techniques in optical wireless OFDM communication systems,” J. Opt. Commun. Netw. 4(11), 865–875 (2012).
[Crossref]

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100(13), 1853–1888 (2012).
[Crossref]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

2010 (1)

H. Elgala, R. Mesleh, and H. Haas, “An LED model for intensity-modulated optical communication systems,” IEEE Photon. Technol. Lett. 22(11), 835–837 (2010).
[Crossref]

2009 (4)

H. Q. Zhao and J. S. Zhang, “A novel adaptive nonlinear filter-based pipelined feed-forward second-order Volterra architecture,” IEEE Trans. Signal Process. 57(1), 237–246 (2009).
[Crossref]

I. Neokosmidis, T. Kamalakis, J. W. Walewski, B. Inan, and T. Sphicopoulos, “Impact of nonlinear LED transfer function on discrete multitone modulation: analytical approach,” J. Lightwave Technol. 27(22), 4970–4978 (2009).
[Crossref]

B. Inan, S. C. Jeffrey Lee, S. Randel, I. Neokosmidis, A. M. Koonen, and J. W. Walewski, “Impact of LED nonlinearity on discrete multitone modulation,” J. Opt. Commun. Netw. 1(5), 439–451 (2009).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs,” Int. J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009).
[Crossref]

2008 (1)

A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, “Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series,” IEEE Trans. Microw. Theory Tech. 56(7), 1524–1534 (2008).
[Crossref]

Asbeck, P. M.

A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, “Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series,” IEEE Trans. Microw. Theory Tech. 56(7), 1524–1534 (2008).
[Crossref]

Baranda, J.

C. G. Gavrincea, J. Baranda, and P. Henarejos, “Rapid prototyping of standard-compliant visible light communications system,” IEEE Commun. Mag. 52(7), 80–87 (2014).
[Crossref]

Brazil, T. J.

A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, “Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series,” IEEE Trans. Microw. Theory Tech. 56(7), 1524–1534 (2008).
[Crossref]

Chen, C. W.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photon. J. 5(4), 7901507 (2013).
[Crossref]

Chen, Z. Y.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photon. J. 5(4), 7901507 (2013).
[Crossref]

Chi, S.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photon. J. 5(4), 7901507 (2013).
[Crossref]

Choudhury, P.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Chun, H.

D. Tsonev, H. Chun, S. Rajbhandari, J. D. Mckendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC wink using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Ciaramella, E.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Corsini, R.

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4(5), 1465–1473 (2012).
[Crossref]

Cossu, G.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Dawson, M. D.

D. Tsonev, H. Chun, S. Rajbhandari, J. D. Mckendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC wink using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Draxler, P. J.

A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, “Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series,” IEEE Trans. Microw. Theory Tech. 56(7), 1524–1534 (2008).
[Crossref]

Elgala, H.

R. Mesleh, H. Elgala, and H. Haas, “LED nonlinearity mitigation techniques in optical wireless OFDM communication systems,” J. Opt. Commun. Netw. 4(11), 865–875 (2012).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “An LED model for intensity-modulated optical communication systems,” IEEE Photon. Technol. Lett. 22(11), 835–837 (2010).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs,” Int. J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009).
[Crossref]

Faulkner, G.

D. Tsonev, H. Chun, S. Rajbhandari, J. D. Mckendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC wink using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Gavrincea, C. G.

C. G. Gavrincea, J. Baranda, and P. Henarejos, “Rapid prototyping of standard-compliant visible light communications system,” IEEE Commun. Mag. 52(7), 80–87 (2014).
[Crossref]

Gu, E.

D. Tsonev, H. Chun, S. Rajbhandari, J. D. Mckendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC wink using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Gyongyosi, L.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100(13), 1853–1888 (2012).
[Crossref]

Haas, H.

D. Tsonev, H. Chun, S. Rajbhandari, J. D. Mckendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC wink using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100(13), 1853–1888 (2012).
[Crossref]

R. Mesleh, H. Elgala, and H. Haas, “LED nonlinearity mitigation techniques in optical wireless OFDM communication systems,” J. Opt. Commun. Netw. 4(11), 865–875 (2012).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “An LED model for intensity-modulated optical communication systems,” IEEE Photon. Technol. Lett. 22(11), 835–837 (2010).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs,” Int. J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009).
[Crossref]

Haese, S.

L. N. Peng, S. Haese, and M. Helard, “Frequency domain LED compensation for nonlinearity mitigation in DMT systems,” IEEE Photon. Technol. Lett. 25(20), 2022–2025 (2013).
[Crossref]

Haji, M.

D. Tsonev, H. Chun, S. Rajbhandari, J. D. Mckendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC wink using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Hanzo, L.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100(13), 1853–1888 (2012).
[Crossref]

Helard, M.

L. N. Peng, S. Haese, and M. Helard, “Frequency domain LED compensation for nonlinearity mitigation in DMT systems,” IEEE Photon. Technol. Lett. 25(20), 2022–2025 (2013).
[Crossref]

Henarejos, P.

C. G. Gavrincea, J. Baranda, and P. Henarejos, “Rapid prototyping of standard-compliant visible light communications system,” IEEE Commun. Mag. 52(7), 80–87 (2014).
[Crossref]

Huang, H. T.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photon. J. 5(4), 7901507 (2013).
[Crossref]

Huang, Z. T.

Imre, S.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100(13), 1853–1888 (2012).
[Crossref]

Inan, B.

Islam, R.

R. A. Shafik, S. Rahman, and R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proceedings of International Conference on Electrical and Computer Engineering. (IEEE, 2006), pp. 408–411.
[Crossref]

Jeffrey Lee, S. C.

Ji, Y. F.

Kamalakis, T.

Kelly, A. E.

D. Tsonev, H. Chun, S. Rajbhandari, J. D. Mckendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC wink using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Khalid, A. M.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4(5), 1465–1473 (2012).
[Crossref]

G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
[Crossref] [PubMed]

Kimball, D. F.

A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, “Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series,” IEEE Trans. Microw. Theory Tech. 56(7), 1524–1534 (2008).
[Crossref]

Koonen, A. M.

Lin, C. T.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photon. J. 5(4), 7901507 (2013).
[Crossref]

Mckendry, J. D.

D. Tsonev, H. Chun, S. Rajbhandari, J. D. Mckendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC wink using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Mesleh, R.

R. Mesleh, H. Elgala, and H. Haas, “LED nonlinearity mitigation techniques in optical wireless OFDM communication systems,” J. Opt. Commun. Netw. 4(11), 865–875 (2012).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “An LED model for intensity-modulated optical communication systems,” IEEE Photon. Technol. Lett. 22(11), 835–837 (2010).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs,” Int. J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009).
[Crossref]

Neokosmidis, I.

O’Brien, D.

D. Tsonev, H. Chun, S. Rajbhandari, J. D. Mckendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC wink using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100(13), 1853–1888 (2012).
[Crossref]

Peng, L. N.

L. N. Peng, S. Haese, and M. Helard, “Frequency domain LED compensation for nonlinearity mitigation in DMT systems,” IEEE Photon. Technol. Lett. 25(20), 2022–2025 (2013).
[Crossref]

Rahman, S.

R. A. Shafik, S. Rahman, and R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proceedings of International Conference on Electrical and Computer Engineering. (IEEE, 2006), pp. 408–411.
[Crossref]

Rajbhandari, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. D. Mckendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC wink using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Randel, S.

Rupp, M.

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100(13), 1853–1888 (2012).
[Crossref]

Shafik, R. A.

R. A. Shafik, S. Rahman, and R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proceedings of International Conference on Electrical and Computer Engineering. (IEEE, 2006), pp. 408–411.
[Crossref]

Siuzdak, J.

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of volterra DFE,” IEEE Photon. Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

Sphicopoulos, T.

Stepniak, G.

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of volterra DFE,” IEEE Photon. Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

Tsonev, D.

D. Tsonev, H. Chun, S. Rajbhandari, J. D. Mckendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC wink using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Videv, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. D. Mckendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC wink using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Walewski, J. W.

Watson, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. D. Mckendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC wink using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Wei, C. C.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photon. J. 5(4), 7901507 (2013).
[Crossref]

Wu, F. M.

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photon. J. 5(4), 7901507 (2013).
[Crossref]

Yan, J. J.

A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, “Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series,” IEEE Trans. Microw. Theory Tech. 56(7), 1524–1534 (2008).
[Crossref]

Zhang, J. S.

H. Q. Zhao and J. S. Zhang, “A novel adaptive nonlinear filter-based pipelined feed-forward second-order Volterra architecture,” IEEE Trans. Signal Process. 57(1), 237–246 (2009).
[Crossref]

Zhao, H. Q.

H. Q. Zhao and J. S. Zhang, “A novel adaptive nonlinear filter-based pipelined feed-forward second-order Volterra architecture,” IEEE Trans. Signal Process. 57(1), 237–246 (2009).
[Crossref]

Zhu, A.

A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, “Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series,” IEEE Trans. Microw. Theory Tech. 56(7), 1524–1534 (2008).
[Crossref]

Zwierko, P.

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of volterra DFE,” IEEE Photon. Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

Chin. Opt. Lett. (1)

IEEE Commun. Mag. (1)

C. G. Gavrincea, J. Baranda, and P. Henarejos, “Rapid prototyping of standard-compliant visible light communications system,” IEEE Commun. Mag. 52(7), 80–87 (2014).
[Crossref]

IEEE Photon. J. (2)

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1-Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4(5), 1465–1473 (2012).
[Crossref]

F. M. Wu, C. T. Lin, C. C. Wei, C. W. Chen, Z. Y. Chen, H. T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photon. J. 5(4), 7901507 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (4)

D. Tsonev, H. Chun, S. Rajbhandari, J. D. Mckendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC wink using a gallium nitride μLED,” IEEE Photon. Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

L. N. Peng, S. Haese, and M. Helard, “Frequency domain LED compensation for nonlinearity mitigation in DMT systems,” IEEE Photon. Technol. Lett. 25(20), 2022–2025 (2013).
[Crossref]

G. Stepniak, J. Siuzdak, and P. Zwierko, “Compensation of a VLC phosphorescent white LED nonlinearity by means of volterra DFE,” IEEE Photon. Technol. Lett. 25(16), 1597–1600 (2013).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “An LED model for intensity-modulated optical communication systems,” IEEE Photon. Technol. Lett. 22(11), 835–837 (2010).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

A. Zhu, P. J. Draxler, J. J. Yan, T. J. Brazil, D. F. Kimball, and P. M. Asbeck, “Open-loop digital predistorter for RF power amplifiers using dynamic deviation reduction-based Volterra series,” IEEE Trans. Microw. Theory Tech. 56(7), 1524–1534 (2008).
[Crossref]

IEEE Trans. Signal Process. (1)

H. Q. Zhao and J. S. Zhang, “A novel adaptive nonlinear filter-based pipelined feed-forward second-order Volterra architecture,” IEEE Trans. Signal Process. 57(1), 237–246 (2009).
[Crossref]

Int. J. Ultra Wideband Commun. Syst. (1)

H. Elgala, R. Mesleh, and H. Haas, “Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs,” Int. J. Ultra Wideband Commun. Syst. 1(2), 143–150 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Commun. Netw. (2)

Opt. Express (1)

Proc. IEEE (1)

L. Hanzo, H. Haas, S. Imre, D. O’Brien, M. Rupp, and L. Gyongyosi, “Wireless myths, realities, and futures: from 3G/4G to optical and quantum wireless,” Proc. IEEE 100(13), 1853–1888 (2012).
[Crossref]

Other (2)

IEEE 802.15.7 Working group for WPAN, “Short-range wireless optical communication using visual light,” (2011), http://www.ieee802.org/15/ .

R. A. Shafik, S. Rahman, and R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proceedings of International Conference on Electrical and Computer Engineering. (IEEE, 2006), pp. 408–411.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 The schematic of nonlinear compensation for OFDM systems (fixed-rate or adaptive bit-power loading). PA: power amplifier; Bias-T: bias tee; APD: avalanche photo diode.
Fig. 2
Fig. 2 (a) The measured optical power vs the LED current; (b) The schematic diagram of MI and DI.
Fig. 3
Fig. 3 The structure of the N-TDE.
Fig. 4
Fig. 4 Experimental setup of the LED communication.
Fig. 5
Fig. 5 (a) The channel gain of VLC links (blue line) and the power loading of pre-FDE (red line); (b) The measured BER versus the MI with the fixed-rate (M = 400, D = 1.1Gbps).
Fig. 6
Fig. 6 The measured spectra (fixed-rate of 64QAM) of: (a) without N-TDE, (b) with N-TDE; The nonlinear noise spectra of: (c) without N-TDE, (d) with N-TDE.
Fig. 7
Fig. 7 The measured BER versus the MI with different subcarrier numbers.
Fig. 8
Fig. 8 (a) The measured SNR versus frequency; (b) Optimal bit loading distribution.
Fig. 9
Fig. 9 Optimal power loading distribution.
Fig. 10
Fig. 10 The measured BER versus the MI with the scheme of bit-power loading (D = 1.3Gbps).
Fig. 11
Fig. 11 The measured spectra of bit-power loading (MI ≈36%, D = 1.3Gbps) of: (a) without N-TDE, (b) with N-TDE; The nonlinear noise spectra of: (c) without N-TDE, (d) with N-TDE.
Fig. 12
Fig. 12 The measured data rate versus the MI with adaptive bit-power loading (BER ≈10−4).
Fig. 13
Fig. 13 MSE as a function of the iteration number: (a) N-TDE of 2nd order; (b) N-TDE of 3rd order.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

y(t)= h 0 + k=0 T1 h 1 (k)x(tk)+ k 1 =0 T1 k 2 = k 1 T1 h 2 ( k 1 , k 2 )x(t k 1 )x(t k 2 ) ++ k 1 =0 T1 k p = k p1 T1 h p ( k 1 , k p )x(t k 1 )x(t k p )
y(t)= h 0 + h 1 (0)x(t)+ h 2 (0,0) x 2 (t)++ h p (0,0)x (t) p
y out (t)= w 1 x(t)+ w 2 x 2 (t)+ w 3 x 3 (t)+ w L x L (t) I DC
e(t)=d(t) y out (t)+ I DC
w(t+1)=w(t)+μe(t)x(t)
x noise (t)=| x(t)ρ x o (t) |

Metrics