Abstract

We propose and demonstrate active resonance wavelength stabilization for silicon microring resonators with an in-resonator defect-state-absorption (DSA)-based photodetector (PD) for optical interconnects. We integrate an electro-optic (EO) tuner and a thermo-optic (TO) tuner on the microring, which are both feedback-controlled following a photocurrent threshold-detection method. Our BF2-ion-implanted DSA-based PIN PD exhibits a cavity-enhanced sub-bandgap responsivity at 1550 nm of 3.3 mA/W upon −2 V, which is 550-fold higher than that exhibited by an unimplanted PIN diode integrated on the same microring. Our experiment reveals active stabilization of the resonance wavelength within a tolerance of 0.07 nm upon a step increment of the stage temperature by 7 °C. Upon temperature modulations between 23 °C and 32 °C and between 18 °C and 23 °C, the actively stabilized resonance exhibits a transmission power fluctuation within 2 dB. We observe open eye diagrams at a data transmission rate of up to 30 Gb/s under the temperature modulations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters

Hasitha Jayatilleka, Kyle Murray, Miguel Ángel Guillén-Torres, Michael Caverley, Ricky Hu, Nicolas A. F. Jaeger, Lukas Chrostowski, and Sudip Shekhar
Opt. Express 23(19) 25084-25097 (2015)

Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives [Invited]

Yu Li, Yu Zhang, Lei Zhang, and Andrew W. Poon
Photon. Res. 3(5) B10-B27 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. Dong, Y. K. Chen, T. Gu, L. L. Buhl, D. T. Neilson, and J. H. Sinsky, “Reconfigurable 100Gb/s Silicon Photonic Network-on-Chip,” J. Opt. Commun. Netw. 7(1), A37–A43 (2015).
    [Crossref]
  2. A. H. Atabaki, A. A. Eftekhar, M. Askari, and A. Adibi, “Accurate post-fabrication trimming of ultra-compact resonators on silicon,” Opt. Express 21(12), 14139–14145 (2013).
    [Crossref] [PubMed]
  3. K. Padmaraju, D. F. Logan, T. Shiraishi, J. J. Ackert, A. P. Knights, and K. Bergman, “Wavelength locking and thermally stabilizing microring resonators using dithering signals,” J. Lightwave Technol. 32(3), 505–512 (2014).
    [Crossref]
  4. J. A. Cox, A. L. Lentine, D. C. Trotter, and A. L. Starbuck, “Control of integrated micro-resonator wavelength via balanced homodyne locking,” Opt. Express 22(9), 11279–11289 (2014).
    [PubMed]
  5. X. Zheng, E. Chang, P. Amberg, I. Shubin, J. Lexau, F. Liu, H. Thacker, S. S. Djordjevic, S. Lin, Y. Luo, J. Yao, J. H. Lee, K. Raj, R. Ho, J. E. Cunningham, and A. V. Krishnamoorthy, “A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control,” Opt. Express 22(10), 12628–12633 (2014).
    [Crossref] [PubMed]
  6. A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97(7), 1216–1238 (2009).
    [Crossref]
  7. Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “In-microresonator linear-absorption-based real-time photocurrent-monitoring and tuning with closed-loop control for silicon microresonators,” (US patent application 14/057,679 filed on the 18th, Oct. 2013).
  8. Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136 (2014).
    [Crossref]
  9. Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “Sub-bandgap linear-absorption-based photodetectors in avalanche mode in PN-diode-integrated silicon microring resonators,” Opt. Lett. 38(23), 5200–5203 (2013).
    [Crossref] [PubMed]
  10. D. Logan, K. Murray, J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. Jessop, and A. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
    [Crossref]
  11. M. W. Geis, S. J. Spector, M. E. Grein, J. U. Yoon, D. M. Lennon, and T. M. Lyszczarz, “Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response,” Opt. Express 17(7), 5193–5204 (2009).
    [Crossref] [PubMed]
  12. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]

2015 (1)

2014 (4)

2013 (2)

2011 (1)

D. Logan, K. Murray, J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. Jessop, and A. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

2009 (2)

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Ackert, J.

D. Logan, K. Murray, J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. Jessop, and A. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Ackert, J. J.

Adibi, A.

Amberg, P.

Askari, M.

Atabaki, A. H.

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Bergman, K.

Buhl, L. L.

Chang, E.

Chen, H.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97(7), 1216–1238 (2009).
[Crossref]

Chen, Y. K.

Cox, J. A.

Cunningham, J. E.

De La Rue, R. M.

D. Logan, K. Murray, J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. Jessop, and A. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Djordjevic, S. S.

Dong, P.

Eftekhar, A. A.

Feng, S.

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136 (2014).
[Crossref]

Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “Sub-bandgap linear-absorption-based photodetectors in avalanche mode in PN-diode-integrated silicon microring resonators,” Opt. Lett. 38(23), 5200–5203 (2013).
[Crossref] [PubMed]

Geis, M. W.

Grein, M. E.

Gu, T.

Ho, R.

Jessop, P.

D. Logan, K. Murray, J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. Jessop, and A. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Knights, A.

D. Logan, K. Murray, J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. Jessop, and A. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Knights, A. P.

Krishnamoorthy, A. V.

Lee, J. H.

Lennon, D. M.

Lentine, A. L.

Lexau, J.

Li, Y.

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136 (2014).
[Crossref]

Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “Sub-bandgap linear-absorption-based photodetectors in avalanche mode in PN-diode-integrated silicon microring resonators,” Opt. Lett. 38(23), 5200–5203 (2013).
[Crossref] [PubMed]

Lin, S.

Liu, F.

Logan, D.

D. Logan, K. Murray, J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. Jessop, and A. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Logan, D. F.

Luo, X.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97(7), 1216–1238 (2009).
[Crossref]

Luo, Y.

Lyszczarz, T. M.

Murray, K.

D. Logan, K. Murray, J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. Jessop, and A. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Neilson, D. T.

Padmaraju, K.

Poon, A. W.

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136 (2014).
[Crossref]

Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “Sub-bandgap linear-absorption-based photodetectors in avalanche mode in PN-diode-integrated silicon microring resonators,” Opt. Lett. 38(23), 5200–5203 (2013).
[Crossref] [PubMed]

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97(7), 1216–1238 (2009).
[Crossref]

Raj, K.

Shiraishi, T.

Shubin, I.

Sinsky, J. H.

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Sorel, M.

D. Logan, K. Murray, J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. Jessop, and A. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Spector, S. J.

Starbuck, A. L.

Thacker, H.

Trotter, D. C.

Velha, P.

D. Logan, K. Murray, J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. Jessop, and A. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

Xu, F.

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97(7), 1216–1238 (2009).
[Crossref]

Yao, J.

Yoon, J. U.

Zhang, Y.

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136 (2014).
[Crossref]

Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “Sub-bandgap linear-absorption-based photodetectors in avalanche mode in PN-diode-integrated silicon microring resonators,” Opt. Lett. 38(23), 5200–5203 (2013).
[Crossref] [PubMed]

Zheng, X.

IEEE J. Quantum Electron. (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Zhang, Y. Li, S. Feng, and A. W. Poon, “Towards adaptively tuned silicon microring resonators for optical networks-on-chip applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 136 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

D. Logan, K. Murray, J. Ackert, P. Velha, M. Sorel, R. M. De La Rue, P. Jessop, and A. Knights, “Analysis of resonance enhancement in defect-mediated silicon micro-ring photodiodes operating at 1550 nm,” J. Opt. 13(12), 125503 (2011).
[Crossref]

J. Opt. Commun. Netw. (1)

Opt. Express (4)

Opt. Lett. (1)

Proc. IEEE (1)

A. W. Poon, X. Luo, F. Xu, and H. Chen, “Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection,” Proc. IEEE 97(7), 1216–1238 (2009).
[Crossref]

Other (1)

Y. Li, S. Feng, Y. Zhang, and A. W. Poon, “In-microresonator linear-absorption-based real-time photocurrent-monitoring and tuning with closed-loop control for silicon microresonators,” (US patent application 14/057,679 filed on the 18th, Oct. 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 (a) Schematic of the active wavelength stabilization scheme for a silicon microring resonator with an in-resonator PD, integrated EO and TO tuners. (b) Top-view schematic of the microring resonator with a feedback-control circuit. L.B.: leakage block. (i)-(iv) Cross-sectional-view schematics of (i) the in-resonator DSA-based photocurrent monitor, (ii) EO tuner, (iii) leakage block, and (iv) TO tuner. Inset of (i): Energy band diagram of the DSA in silicon for 0.8eV photons.
Fig. 2
Fig. 2 Schematics of the working principle of our active resonance wavelength stabilization scheme. (a) Resonance red-shifted upon a temperature rise, with an EO tuner to realign the resonance. (b) Resonance blue-shifted upon a temperature fall, with a TO tuner to realign the resonance. Pp: peak transmission intensity at λo. Pth: transmission intensity at λo for a shifted resonance at λth or λth’.
Fig. 3
Fig. 3 Modeled drop-port transmission and the corresponding photocurrent spectra without (black) and with (blue) carrier injection.
Fig. 4
Fig. 4 Schematic of the algorithm for the threshold-detection method using both EO and TO tuners.
Fig. 5
Fig. 5 (a) Top-view scanning-electron micrograph of the fabricated device. G: ground, S: signal. (b) Measured drop-transmission and photocurrent spectra of the fabricated device. Black-line: measured photocurrent spectrum from the monitor, red-line: measured photocurrent spectrum from the EO tuner. (c) Measured photocurrent values (with BF2 implantation) at 1546 nm upon −1 V, −2 V and −3 V as a function of the estimated waveguide input power.
Fig. 6
Fig. 6 (a) Measured drop-transmission and photocurrent spectra under different tuner conditions. Black lines: no tuner voltage, blue lines: VEO = 1.2 V, red lines: VTO = 2.4 V. (b) Measured resonance wavelength blue-tuning as a function of VEO (black squares) and the corresponding electrical power consumption (red circles). (c) Measured resonance wavelength red-tuning as a function of VTO (black squares) and the corresponding electrical power consumption (red circles).
Fig. 7
Fig. 7 (a) Step-increment voltage over the TEC. (b) – (c) Measured drop-transmission intensity (b) and photocurrent (c) at 1546 nm over time. Inset of (b): Zoom-in view of the measured drop-transmission spectrum around 1546 nm. Inset of (c): Zoom-in view of the measured photocurrent spectrum around 1546 nm
Fig. 8
Fig. 8 (a) Step-increment voltage over the TEC. (b)-(c) Measured drop-transmission intensity (b) and photocurrent (c) variations at 31°C with the feedback control switched on and off alternatively using various Ith values.
Fig. 9
Fig. 9 Measured drop-transmission intensity variation upon a temperature swing from 23 °C to 32 °C in (a) a square-wave function and (b) a sine-wave function.
Fig. 10
Fig. 10 (a) Measured drop-transmission intensity variation over time (lower) with a temperature step drop (upper). Inset: zoom-in view of the measured drop-transmission intensity variation at ~40 s. (b) Measured drop-transmission intensity variation over time (lower) upon a square-wave modulated cooling process (upper).
Fig. 11
Fig. 11 Measured eye diagrams during a period of the 10mHz temperature modulation between 23.5 °C and 32 °C for data transmission upon (a) 20 Gb/s without feedback control, (b) 20 Gb/s with feedback control, (c) 30 Gb/s without feedback control, and (d) 30 Gb/s with feedback control.
Fig. 12
Fig. 12 Measured eye diagrams during a period of the 10mHz temperature modulation between 23.5 °C and 18 °C for data transmission upon (a) 10 Gb/s without feedback control, (b) 10 Gb/s with feedback control, (c) 30 Gb/s without feedback control, and (d) 30 Gb/s with feedback control.

Tables (1)

Tables Icon

Table 1 Key methods and performances of active resonance wavelength stabilization schemes for silicon microresonators

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ EOmax = ( Δ n eff / n g,eff )×( L EO / L total )×λ.

Metrics