Abstract

An all-fiber multiwavelength Tm-doped laser assisted by four-wave mixing (FWM) in highly Germania-doped highly nonlinear fiber (HG-HNLF) has been experimentally demonstrated. Benefiting from the high nonlinearity of the HG-HNLF, intensity-dependent gain caused by FWM is introduced into the laser cavity to mitigate the gain competition in Tm-doped fiber. Thanks to a 50-m HG-HNLF, 9, 22, and 36 lasing lines with considering 10-dB, 20-dB, and 30-dB bandwidth, respectively is obtained at room temperature with wavelength spacing of 0.86 nm. More than 30-nm broad-band lasing can be obtained. The stability of the proposed fiber laser has also been studied. Repeat measurements show the power fluctuations and wavelength drifts of the lasing lines are less than 1.6 dB and 0.05 nm, respectively. The laser performances without the assistance of HG-HNLF have fewer center wavelengths lasing, which indicates that FWM in HG-HNLF plays an important role for the multiwavelength laser operation.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable multiwavelength generation based on Brillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes

Jianguan Tang, Junqiang Sun, Liang Zhao, Tao Chen, Tianye Huang, and Yujie Zhou
Opt. Express 19(15) 14682-14689 (2011)

Tunable, multiwavelength Tm-doped fiber laser based on polarization rotation and four-wave-mixing effect

Xiong Wang, Yadong Zhu, Pu Zhou, Xiaolin Wang, Hu Xiao, and Lei Si
Opt. Express 21(22) 25977-25984 (2013)

Stable L-band multiwavelength erbium-doped fiber laser based on four-wave mixing using nickel nanofluid

Ansam M. Salman, Ali A. Salman, and Abdulhadi Al-Janabi
Appl. Opt. 58(22) 6136-6143 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Z. Li, S. U. Alam, Y. Jung, A. M. Heidt, and D. J. Richardson, “All-fiber, ultra-wideband tunable laser at 2 μm,” Opt. Lett. 38(22), 4739–4742 (2013).
    [Crossref] [PubMed]
  2. M. Tokurakawa, J. M. O. Daniel, C. S. Chenug, H. Liang, and W. A. Clarkson, “Wavelength-swept Tm-doped fiber laser operating in the two-micron wavelength band,” Opt. Express 22(17), 20014–20019 (2014).
    [Crossref] [PubMed]
  3. M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm: YAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
    [Crossref]
  4. L. Pearson, J. W. Kim, Z. Zhang, M. Ibsen, J. K. Sahu, and W. A. Clarkson, “High-power linearly-polarized single-frequency thulium-doped fiber master-oscillator power-amplifier,” Opt. Express 18(2), 1607–1612 (2010).
    [Crossref] [PubMed]
  5. K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm,” Opt. Express 22(17), 19947–19952 (2014).
    [Crossref] [PubMed]
  6. Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-um nanosecond all-fiber-based Thulium-doped fiber amplifier,” J. Sel. Top. Quant. Electron. 20(5), 537–543 (2014).
    [Crossref]
  7. M. A. Chernyscheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
    [Crossref]
  8. R. Gumenyuk, I. Vartiainen, H. Tuovinen, and O. G. Okhotnikov, “Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser,” Opt. Lett. 36(5), 609–611 (2011).
    [Crossref] [PubMed]
  9. X. Li, Q. Wang, Y. Tang, Z. Yan, Y. Wang, B. Meng, G. Liang, H. Sun, X. Yu, Y. Zhang, and X. Cheng, “Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101107 (2014).
  10. P. Zhou, X. Wang, Y. Ma, K. Han, and Z. Liu, “Stable all-fiber dual-wavelength thulium-doped fiber laser and its coherent beam combination,” Laser Phys. 21(1), 184–187 (2011).
    [Crossref]
  11. W. J. Peng, F. P. Yan, Q. Li, S. Liu, T. Feng, S. Y. Tan, and S. C. Feng, “1.94 μm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Appl. Opt. 52(19), 4601–4607 (2013).
    [Crossref] [PubMed]
  12. X. Wang, Y. Zhu, P. Zhou, X. Wang, H. Xiao, and L. Si, “Tunable, multiwavelength Tm-doped fiber laser based on polarization rotation and four-wave-mixing effect,” Opt. Express 21(22), 25977–25984 (2013).
    [PubMed]
  13. W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
    [Crossref]
  14. S. Liu, S. Fu, M. Tang, P. Shum, and D. Liu, “A pump power controlled 1,060 nm multiwavelength fiber ring laser using nonlinear polarization rotation of SOA,” Appl. Phys. B 110(4), 445–449 (2013).
    [Crossref]
  15. W. Wang, H. Meng, X. Wu, W. Wang, H. Xue, C. Tan, and X. Huang, “Three channel-spacing switchable multiwavelength fiber laser with two segments of polarization-maintaining fiber,” IEEE Photon. Technol. Lett. 24(6), 470–472 (2012).
    [Crossref]
  16. X. Li, X. Liu, D. Mao, X. Hu, and H. Lu, “Tunable and switchable multiwavelength fiber lasers with broadband range based on nonlinear polarization rotation technique,” Opt. Eng. 49(9), 094303 (2010).
    [Crossref]
  17. W. Gao, M. Liao, T. Cheng, T. Suzuki, and Y. Ohishi, “Tunable Brillouin-erbium comb fiber laser in a linear cavity with a single-mode Tellurite fiber,” IEEE Photon. Technol. Lett. 25(1), 51–54 (2013).
    [Crossref]
  18. X. Liu, L. Zhan, S. Luo, Z. Gu, J. Liu, Y. Wang, and Q. Shen, “Multiwavelength erbium-doped fiber laser based on a nonlinear amplifying loop mirror assisted by un-pumped EDF,” Opt. Express 20(7), 7088–7094 (2012).
    [Crossref] [PubMed]
  19. Y. Zhou, P. C. Chui, and K. K. Y. Wong, “Multiwavelength single-longitudinal-mode Ytterbium-doped fiber laser,” IEEE Photon. Technol. Lett. 25(4), 385–388 (2013).
    [Crossref]
  20. J. Zhou, S. Fu, F. Luan, J. H. Wong, S. Aditya, P. P. Shum, and K. E. K. Lee, “Tunable multi-tap bandpass microwave photonic filter using a windowed Fabry-Perot filter-based multi-wavelength tunable laser,” IEEE J. Lightw. Technol. 29(22), 3381–3386 (2011).
    [Crossref]
  21. P. Wang, D. Weng, K. Li, Y. Liu, X. Yu, and X. Zhou, “Multi-wavelength Erbium-doped fiber laser based on four-wave-mixing effect in single mode fiber and high nonlinear fiber,” Opt. Express 21(10), 12570–12578 (2013).
    [Crossref] [PubMed]
  22. T. Giorgio, V. Sudesh, M. C. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica and phosphate glasses: a comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
    [Crossref]
  23. C. W. Charles, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. to be appear, (2014).
  24. T. Huang, X. Shao, Z. Wu, T. Lee, Y. Sun, H. Q. Lam, J. Zhang, G. Brambilla, and S. Ping, “Efficient one-third harmonic generation in highly germania-doped fibers enhanced by pump attenuation,” Opt. Express 21(23), 28403–28413 (2013).
    [Crossref] [PubMed]
  25. T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few mode fiber,” Opt. Commun. 324, 53–57 (2014).
    [Crossref]
  26. V. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett. 9(3), 219–222 (2012).
    [Crossref]
  27. E. A. Anashkina, A. V. Andrianov, M. Yu. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express 20(24), 27102–27107 (2012).
    [Crossref] [PubMed]
  28. M. Zhang, E. J. R. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21(20), 23261–23271 (2013).
    [Crossref] [PubMed]
  29. E. A. Anashkina, A. V. Andrianov, M. Yu Koptev, S. V. Muravyev, and A. V. Kim, “Generating femtosecond optical pulses tunable from 2 to 3 μm with a silica-based all-fiber laser system,” Opt. Lett. 39(10), 2963–2966 (2014).
    [Crossref] [PubMed]
  30. E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005).
    [Crossref]
  31. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [Crossref] [PubMed]
  32. K. Shiraishi, T. Yanagi, and S. Kawakami, “Light-propagation characteristics in thermally diffused expanded core fibers,” J. Lightwave Technol. 11(10), 1584–1591 (1993).
    [Crossref]
  33. A. Wada, S. Okude, T. Sakai, and R. Yamauchi, “GeO2 concentration dependence of nonlinear refractive index coefficients of silica-based optical fibers,” Electron. Commun. Jpn. Part Commun. 79(11), 12–19 (1996).
    [Crossref]
  34. S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009).
    [Crossref] [PubMed]
  35. H. Kim, J. Kim, Y. Jung, L. A. Vazquez-Zuniga, S. J. Lee, G. Choi, K. Oh, P. Wang, W. A. Clarkson, and Y. Jeong, “Simple and reliable light launch from a conventional single-mode fiber into a helical-core fiber through an adiabatically tapered splice,” Opt. Express 20(23), 25562–25571 (2012).
    [Crossref] [PubMed]
  36. Y. Jung, Y. Jeong, G. Brambilla, and D. J. Richardson, “Adiabatically tapered splice for selective excitation of the fundamental mode in a multimode fiber,” Opt. Lett. 34(15), 2369–2371 (2009).
    [Crossref] [PubMed]
  37. D. B. Mortimore and J. V. Wright, “Low-loss joints between dissimilar fibres by tapering fusion splices,” Electron. Lett. 22(6), 318–319 (1986).
    [Crossref]

2014 (6)

X. Li, Q. Wang, Y. Tang, Z. Yan, Y. Wang, B. Meng, G. Liang, H. Sun, X. Yu, Y. Zhang, and X. Cheng, “Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101107 (2014).

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-um nanosecond all-fiber-based Thulium-doped fiber amplifier,” J. Sel. Top. Quant. Electron. 20(5), 537–543 (2014).
[Crossref]

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

E. A. Anashkina, A. V. Andrianov, M. Yu Koptev, S. V. Muravyev, and A. V. Kim, “Generating femtosecond optical pulses tunable from 2 to 3 μm with a silica-based all-fiber laser system,” Opt. Lett. 39(10), 2963–2966 (2014).
[Crossref] [PubMed]

K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm,” Opt. Express 22(17), 19947–19952 (2014).
[Crossref] [PubMed]

M. Tokurakawa, J. M. O. Daniel, C. S. Chenug, H. Liang, and W. A. Clarkson, “Wavelength-swept Tm-doped fiber laser operating in the two-micron wavelength band,” Opt. Express 22(17), 20014–20019 (2014).
[Crossref] [PubMed]

2013 (10)

P. Wang, D. Weng, K. Li, Y. Liu, X. Yu, and X. Zhou, “Multi-wavelength Erbium-doped fiber laser based on four-wave-mixing effect in single mode fiber and high nonlinear fiber,” Opt. Express 21(10), 12570–12578 (2013).
[Crossref] [PubMed]

W. J. Peng, F. P. Yan, Q. Li, S. Liu, T. Feng, S. Y. Tan, and S. C. Feng, “1.94 μm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Appl. Opt. 52(19), 4601–4607 (2013).
[Crossref] [PubMed]

M. Zhang, E. J. R. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21(20), 23261–23271 (2013).
[Crossref] [PubMed]

X. Wang, Y. Zhu, P. Zhou, X. Wang, H. Xiao, and L. Si, “Tunable, multiwavelength Tm-doped fiber laser based on polarization rotation and four-wave-mixing effect,” Opt. Express 21(22), 25977–25984 (2013).
[PubMed]

Z. Li, S. U. Alam, Y. Jung, A. M. Heidt, and D. J. Richardson, “All-fiber, ultra-wideband tunable laser at 2 μm,” Opt. Lett. 38(22), 4739–4742 (2013).
[Crossref] [PubMed]

T. Huang, X. Shao, Z. Wu, T. Lee, Y. Sun, H. Q. Lam, J. Zhang, G. Brambilla, and S. Ping, “Efficient one-third harmonic generation in highly germania-doped fibers enhanced by pump attenuation,” Opt. Express 21(23), 28403–28413 (2013).
[Crossref] [PubMed]

Y. Zhou, P. C. Chui, and K. K. Y. Wong, “Multiwavelength single-longitudinal-mode Ytterbium-doped fiber laser,” IEEE Photon. Technol. Lett. 25(4), 385–388 (2013).
[Crossref]

W. Gao, M. Liao, T. Cheng, T. Suzuki, and Y. Ohishi, “Tunable Brillouin-erbium comb fiber laser in a linear cavity with a single-mode Tellurite fiber,” IEEE Photon. Technol. Lett. 25(1), 51–54 (2013).
[Crossref]

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

S. Liu, S. Fu, M. Tang, P. Shum, and D. Liu, “A pump power controlled 1,060 nm multiwavelength fiber ring laser using nonlinear polarization rotation of SOA,” Appl. Phys. B 110(4), 445–449 (2013).
[Crossref]

2012 (7)

W. Wang, H. Meng, X. Wu, W. Wang, H. Xue, C. Tan, and X. Huang, “Three channel-spacing switchable multiwavelength fiber laser with two segments of polarization-maintaining fiber,” IEEE Photon. Technol. Lett. 24(6), 470–472 (2012).
[Crossref]

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm: YAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

M. A. Chernyscheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[Crossref]

V. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett. 9(3), 219–222 (2012).
[Crossref]

X. Liu, L. Zhan, S. Luo, Z. Gu, J. Liu, Y. Wang, and Q. Shen, “Multiwavelength erbium-doped fiber laser based on a nonlinear amplifying loop mirror assisted by un-pumped EDF,” Opt. Express 20(7), 7088–7094 (2012).
[Crossref] [PubMed]

H. Kim, J. Kim, Y. Jung, L. A. Vazquez-Zuniga, S. J. Lee, G. Choi, K. Oh, P. Wang, W. A. Clarkson, and Y. Jeong, “Simple and reliable light launch from a conventional single-mode fiber into a helical-core fiber through an adiabatically tapered splice,” Opt. Express 20(23), 25562–25571 (2012).
[Crossref] [PubMed]

E. A. Anashkina, A. V. Andrianov, M. Yu. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express 20(24), 27102–27107 (2012).
[Crossref] [PubMed]

2011 (3)

R. Gumenyuk, I. Vartiainen, H. Tuovinen, and O. G. Okhotnikov, “Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser,” Opt. Lett. 36(5), 609–611 (2011).
[Crossref] [PubMed]

J. Zhou, S. Fu, F. Luan, J. H. Wong, S. Aditya, P. P. Shum, and K. E. K. Lee, “Tunable multi-tap bandpass microwave photonic filter using a windowed Fabry-Perot filter-based multi-wavelength tunable laser,” IEEE J. Lightw. Technol. 29(22), 3381–3386 (2011).
[Crossref]

P. Zhou, X. Wang, Y. Ma, K. Han, and Z. Liu, “Stable all-fiber dual-wavelength thulium-doped fiber laser and its coherent beam combination,” Laser Phys. 21(1), 184–187 (2011).
[Crossref]

2010 (2)

X. Li, X. Liu, D. Mao, X. Hu, and H. Lu, “Tunable and switchable multiwavelength fiber lasers with broadband range based on nonlinear polarization rotation technique,” Opt. Eng. 49(9), 094303 (2010).
[Crossref]

L. Pearson, J. W. Kim, Z. Zhang, M. Ibsen, J. K. Sahu, and W. A. Clarkson, “High-power linearly-polarized single-frequency thulium-doped fiber master-oscillator power-amplifier,” Opt. Express 18(2), 1607–1612 (2010).
[Crossref] [PubMed]

2009 (2)

2008 (1)

T. Giorgio, V. Sudesh, M. C. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica and phosphate glasses: a comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[Crossref]

2005 (1)

1996 (1)

A. Wada, S. Okude, T. Sakai, and R. Yamauchi, “GeO2 concentration dependence of nonlinear refractive index coefficients of silica-based optical fibers,” Electron. Commun. Jpn. Part Commun. 79(11), 12–19 (1996).
[Crossref]

1993 (1)

K. Shiraishi, T. Yanagi, and S. Kawakami, “Light-propagation characteristics in thermally diffused expanded core fibers,” J. Lightwave Technol. 11(10), 1584–1591 (1993).
[Crossref]

1986 (1)

D. B. Mortimore and J. V. Wright, “Low-loss joints between dissimilar fibres by tapering fusion splices,” Electron. Lett. 22(6), 318–319 (1986).
[Crossref]

1984 (1)

Aditya, S.

J. Zhou, S. Fu, F. Luan, J. H. Wong, S. Aditya, P. P. Shum, and K. E. K. Lee, “Tunable multi-tap bandpass microwave photonic filter using a windowed Fabry-Perot filter-based multi-wavelength tunable laser,” IEEE J. Lightw. Technol. 29(22), 3381–3386 (2011).
[Crossref]

Afshar V, S.

Alam, S. U.

An, Y.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm: YAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Anashkina, E. A.

Andrianov, A. V.

Bass, M.

T. Giorgio, V. Sudesh, M. C. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica and phosphate glasses: a comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[Crossref]

Bonaccorso, F.

Brambilla, G.

Chapman, B. H.

Cheng, T.

W. Gao, M. Liao, T. Cheng, T. Suzuki, and Y. Ohishi, “Tunable Brillouin-erbium comb fiber laser in a linear cavity with a single-mode Tellurite fiber,” IEEE Photon. Technol. Lett. 25(1), 51–54 (2013).
[Crossref]

Cheng, X.

X. Li, Q. Wang, Y. Tang, Z. Yan, Y. Wang, B. Meng, G. Liang, H. Sun, X. Yu, Y. Zhang, and X. Cheng, “Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101107 (2014).

Chenug, C. S.

Chernyscheva, M. A.

M. A. Chernyscheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[Crossref]

Choi, G.

Chui, P. C.

Y. Zhou, P. C. Chui, and K. K. Y. Wong, “Multiwavelength single-longitudinal-mode Ytterbium-doped fiber laser,” IEEE Photon. Technol. Lett. 25(4), 385–388 (2013).
[Crossref]

Clarkson, W. A.

Daniel, J. M. O.

Dianov, E. M.

Feng, S. C.

Feng, T.

W. J. Peng, F. P. Yan, Q. Li, S. Liu, T. Feng, S. Y. Tan, and S. C. Feng, “1.94 μm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Appl. Opt. 52(19), 4601–4607 (2013).
[Crossref] [PubMed]

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

Ferrari, A. C.

Flahaut, E.

Fleming, J. W.

Fu, S.

S. Liu, S. Fu, M. Tang, P. Shum, and D. Liu, “A pump power controlled 1,060 nm multiwavelength fiber ring laser using nonlinear polarization rotation of SOA,” Appl. Phys. B 110(4), 445–449 (2013).
[Crossref]

J. Zhou, S. Fu, F. Luan, J. H. Wong, S. Aditya, P. P. Shum, and K. E. K. Lee, “Tunable multi-tap bandpass microwave photonic filter using a windowed Fabry-Perot filter-based multi-wavelength tunable laser,” IEEE J. Lightw. Technol. 29(22), 3381–3386 (2011).
[Crossref]

Gao, W.

W. Gao, M. Liao, T. Cheng, T. Suzuki, and Y. Ohishi, “Tunable Brillouin-erbium comb fiber laser in a linear cavity with a single-mode Tellurite fiber,” IEEE Photon. Technol. Lett. 25(1), 51–54 (2013).
[Crossref]

Giorgio, T.

T. Giorgio, V. Sudesh, M. C. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica and phosphate glasses: a comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[Crossref]

Gu, Z.

Gumenyuk, R.

Han, K.

P. Zhou, X. Wang, Y. Ma, K. Han, and Z. Liu, “Stable all-fiber dual-wavelength thulium-doped fiber laser and its coherent beam combination,” Laser Phys. 21(1), 184–187 (2011).
[Crossref]

Hasan, T.

Heidt, A. M.

Hou, J.

Hu, J.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Hu, X.

X. Li, X. Liu, D. Mao, X. Hu, and H. Lu, “Tunable and switchable multiwavelength fiber lasers with broadband range based on nonlinear polarization rotation technique,” Opt. Eng. 49(9), 094303 (2010).
[Crossref]

Hu, X. H.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm: YAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Huang, T.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

T. Huang, X. Shao, Z. Wu, T. Lee, Y. Sun, H. Q. Lam, J. Zhang, G. Brambilla, and S. Ping, “Efficient one-third harmonic generation in highly germania-doped fibers enhanced by pump attenuation,” Opt. Express 21(23), 28403–28413 (2013).
[Crossref] [PubMed]

Huang, X.

W. Wang, H. Meng, X. Wu, W. Wang, H. Xue, C. Tan, and X. Huang, “Three channel-spacing switchable multiwavelength fiber laser with two segments of polarization-maintaining fiber,” IEEE Photon. Technol. Lett. 24(6), 470–472 (2012).
[Crossref]

Ibsen, M.

Jeong, Y.

Jiang, Z.

Jung, Y.

Kamynin, V.

V. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett. 9(3), 219–222 (2012).
[Crossref]

Kawakami, S.

K. Shiraishi, T. Yanagi, and S. Kawakami, “Light-propagation characteristics in thermally diffused expanded core fibers,” J. Lightwave Technol. 11(10), 1584–1591 (1993).
[Crossref]

Kelleher, E. J. R.

Kim, A. V.

Kim, H.

Kim, J.

Kim, J. W.

Koptev, M. Yu.

Krylov, A. A.

M. A. Chernyscheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[Crossref]

Kryukov, P. G.

M. A. Chernyscheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[Crossref]

Kurkov, A. S.

V. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett. 9(3), 219–222 (2012).
[Crossref]

Lam, H. Q.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

T. Huang, X. Shao, Z. Wu, T. Lee, Y. Sun, H. Q. Lam, J. Zhang, G. Brambilla, and S. Ping, “Efficient one-third harmonic generation in highly germania-doped fibers enhanced by pump attenuation,” Opt. Express 21(23), 28403–28413 (2013).
[Crossref] [PubMed]

Lee, K. E. K.

J. Zhou, S. Fu, F. Luan, J. H. Wong, S. Aditya, P. P. Shum, and K. E. K. Lee, “Tunable multi-tap bandpass microwave photonic filter using a windowed Fabry-Perot filter-based multi-wavelength tunable laser,” IEEE J. Lightw. Technol. 29(22), 3381–3386 (2011).
[Crossref]

Lee, S. J.

Lee, T.

Li, C.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm: YAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Li, K.

Li, L.

Li, Q.

W. J. Peng, F. P. Yan, Q. Li, S. Liu, T. Feng, S. Y. Tan, and S. C. Feng, “1.94 μm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Appl. Opt. 52(19), 4601–4607 (2013).
[Crossref] [PubMed]

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

Li, X.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-um nanosecond all-fiber-based Thulium-doped fiber amplifier,” J. Sel. Top. Quant. Electron. 20(5), 537–543 (2014).
[Crossref]

X. Li, Q. Wang, Y. Tang, Z. Yan, Y. Wang, B. Meng, G. Liang, H. Sun, X. Yu, Y. Zhang, and X. Cheng, “Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101107 (2014).

X. Li, X. Liu, D. Mao, X. Hu, and H. Lu, “Tunable and switchable multiwavelength fiber lasers with broadband range based on nonlinear polarization rotation technique,” Opt. Eng. 49(9), 094303 (2010).
[Crossref]

Li, X. H.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm: YAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Li, Z.

Liang, G.

X. Li, Q. Wang, Y. Tang, Z. Yan, Y. Wang, B. Meng, G. Liang, H. Sun, X. Yu, Y. Zhang, and X. Cheng, “Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101107 (2014).

Liang, H.

Liao, M.

W. Gao, M. Liao, T. Cheng, T. Suzuki, and Y. Ohishi, “Tunable Brillouin-erbium comb fiber laser in a linear cavity with a single-mode Tellurite fiber,” IEEE Photon. Technol. Lett. 25(1), 51–54 (2013).
[Crossref]

Liu, D.

S. Liu, S. Fu, M. Tang, P. Shum, and D. Liu, “A pump power controlled 1,060 nm multiwavelength fiber ring laser using nonlinear polarization rotation of SOA,” Appl. Phys. B 110(4), 445–449 (2013).
[Crossref]

Liu, J.

Liu, S.

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

S. Liu, S. Fu, M. Tang, P. Shum, and D. Liu, “A pump power controlled 1,060 nm multiwavelength fiber ring laser using nonlinear polarization rotation of SOA,” Appl. Phys. B 110(4), 445–449 (2013).
[Crossref]

W. J. Peng, F. P. Yan, Q. Li, S. Liu, T. Feng, S. Y. Tan, and S. C. Feng, “1.94 μm switchable dual-wavelength Tm3+ fiber laser employing high-birefringence fiber Bragg grating,” Appl. Opt. 52(19), 4601–4607 (2013).
[Crossref] [PubMed]

Liu, X.

X. Liu, L. Zhan, S. Luo, Z. Gu, J. Liu, Y. Wang, and Q. Shen, “Multiwavelength erbium-doped fiber laser based on a nonlinear amplifying loop mirror assisted by un-pumped EDF,” Opt. Express 20(7), 7088–7094 (2012).
[Crossref] [PubMed]

X. Li, X. Liu, D. Mao, X. Hu, and H. Lu, “Tunable and switchable multiwavelength fiber lasers with broadband range based on nonlinear polarization rotation technique,” Opt. Eng. 49(9), 094303 (2010).
[Crossref]

Liu, Y.

P. Wang, D. Weng, K. Li, Y. Liu, X. Yu, and X. Zhou, “Multi-wavelength Erbium-doped fiber laser based on four-wave-mixing effect in single mode fiber and high nonlinear fiber,” Opt. Express 21(10), 12570–12578 (2013).
[Crossref] [PubMed]

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm: YAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Liu, Z.

P. Zhou, X. Wang, Y. Ma, K. Han, and Z. Liu, “Stable all-fiber dual-wavelength thulium-doped fiber laser and its coherent beam combination,” Laser Phys. 21(1), 184–187 (2011).
[Crossref]

Long, J. Y.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm: YAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Lu, H.

X. Li, X. Liu, D. Mao, X. Hu, and H. Lu, “Tunable and switchable multiwavelength fiber lasers with broadband range based on nonlinear polarization rotation technique,” Opt. Eng. 49(9), 094303 (2010).
[Crossref]

Luan, F.

J. Zhou, S. Fu, F. Luan, J. H. Wong, S. Aditya, P. P. Shum, and K. E. K. Lee, “Tunable multi-tap bandpass microwave photonic filter using a windowed Fabry-Perot filter-based multi-wavelength tunable laser,” IEEE J. Lightw. Technol. 29(22), 3381–3386 (2011).
[Crossref]

Luo, S.

Ma, H. F.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm: YAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Ma, Y.

P. Zhou, X. Wang, Y. Ma, K. Han, and Z. Liu, “Stable all-fiber dual-wavelength thulium-doped fiber laser and its coherent beam combination,” Laser Phys. 21(1), 184–187 (2011).
[Crossref]

Mao, D.

X. Li, X. Liu, D. Mao, X. Hu, and H. Lu, “Tunable and switchable multiwavelength fiber lasers with broadband range based on nonlinear polarization rotation technique,” Opt. Eng. 49(9), 094303 (2010).
[Crossref]

Mashinsky, V. M.

Medvedkov, O. I.

Meng, B.

X. Li, Q. Wang, Y. Tang, Z. Yan, Y. Wang, B. Meng, G. Liang, H. Sun, X. Yu, Y. Zhang, and X. Cheng, “Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101107 (2014).

Meng, H.

W. Wang, H. Meng, X. Wu, W. Wang, H. Xue, C. Tan, and X. Huang, “Three channel-spacing switchable multiwavelength fiber laser with two segments of polarization-maintaining fiber,” IEEE Photon. Technol. Lett. 24(6), 470–472 (2012).
[Crossref]

Milana, S.

Monro, T. M.

Mortimore, D. B.

D. B. Mortimore and J. V. Wright, “Low-loss joints between dissimilar fibres by tapering fusion splices,” Electron. Lett. 22(6), 318–319 (1986).
[Crossref]

Muravyev, S. V.

Oh, K.

Ohishi, Y.

W. Gao, M. Liao, T. Cheng, T. Suzuki, and Y. Ohishi, “Tunable Brillouin-erbium comb fiber laser in a linear cavity with a single-mode Tellurite fiber,” IEEE Photon. Technol. Lett. 25(1), 51–54 (2013).
[Crossref]

Okhotnikov, O. G.

Okude, S.

A. Wada, S. Okude, T. Sakai, and R. Yamauchi, “GeO2 concentration dependence of nonlinear refractive index coefficients of silica-based optical fibers,” Electron. Commun. Jpn. Part Commun. 79(11), 12–19 (1996).
[Crossref]

Pearson, L.

Peng, W.

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

Peng, W. J.

Ping, S.

Popa, D.

Popov, S. V.

Richardson, D. J.

Richardson, M. C.

T. Giorgio, V. Sudesh, M. C. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica and phosphate glasses: a comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[Crossref]

Runcorn, T. H.

Sahu, J. K.

Sakai, T.

A. Wada, S. Okude, T. Sakai, and R. Yamauchi, “GeO2 concentration dependence of nonlinear refractive index coefficients of silica-based optical fibers,” Electron. Commun. Jpn. Part Commun. 79(11), 12–19 (1996).
[Crossref]

Shao, X.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

T. Huang, X. Shao, Z. Wu, T. Lee, Y. Sun, H. Q. Lam, J. Zhang, G. Brambilla, and S. Ping, “Efficient one-third harmonic generation in highly germania-doped fibers enhanced by pump attenuation,” Opt. Express 21(23), 28403–28413 (2013).
[Crossref] [PubMed]

Shen, D. Y.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm: YAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Shen, Q.

Shiraishi, K.

K. Shiraishi, T. Yanagi, and S. Kawakami, “Light-propagation characteristics in thermally diffused expanded core fibers,” J. Lightwave Technol. 11(10), 1584–1591 (1993).
[Crossref]

Shum, P.

S. Liu, S. Fu, M. Tang, P. Shum, and D. Liu, “A pump power controlled 1,060 nm multiwavelength fiber ring laser using nonlinear polarization rotation of SOA,” Appl. Phys. B 110(4), 445–449 (2013).
[Crossref]

Shum, P. P.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

J. Zhou, S. Fu, F. Luan, J. H. Wong, S. Aditya, P. P. Shum, and K. E. K. Lee, “Tunable multi-tap bandpass microwave photonic filter using a windowed Fabry-Perot filter-based multi-wavelength tunable laser,” IEEE J. Lightw. Technol. 29(22), 3381–3386 (2011).
[Crossref]

Si, L.

Sudesh, V.

T. Giorgio, V. Sudesh, M. C. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica and phosphate glasses: a comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[Crossref]

Sun, H.

X. Li, Q. Wang, Y. Tang, Z. Yan, Y. Wang, B. Meng, G. Liang, H. Sun, X. Yu, Y. Zhang, and X. Cheng, “Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101107 (2014).

Sun, M.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm: YAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Sun, Y.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

T. Huang, X. Shao, Z. Wu, T. Lee, Y. Sun, H. Q. Lam, J. Zhang, G. Brambilla, and S. Ping, “Efficient one-third harmonic generation in highly germania-doped fibers enhanced by pump attenuation,” Opt. Express 21(23), 28403–28413 (2013).
[Crossref] [PubMed]

Sun, Z.

Suzuki, T.

W. Gao, M. Liao, T. Cheng, T. Suzuki, and Y. Ohishi, “Tunable Brillouin-erbium comb fiber laser in a linear cavity with a single-mode Tellurite fiber,” IEEE Photon. Technol. Lett. 25(1), 51–54 (2013).
[Crossref]

Tan, C.

W. Wang, H. Meng, X. Wu, W. Wang, H. Xue, C. Tan, and X. Huang, “Three channel-spacing switchable multiwavelength fiber laser with two segments of polarization-maintaining fiber,” IEEE Photon. Technol. Lett. 24(6), 470–472 (2012).
[Crossref]

Tan, S.

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

Tan, S. Y.

Tang, M.

S. Liu, S. Fu, M. Tang, P. Shum, and D. Liu, “A pump power controlled 1,060 nm multiwavelength fiber ring laser using nonlinear polarization rotation of SOA,” Appl. Phys. B 110(4), 445–449 (2013).
[Crossref]

Tang, Y.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-um nanosecond all-fiber-based Thulium-doped fiber amplifier,” J. Sel. Top. Quant. Electron. 20(5), 537–543 (2014).
[Crossref]

X. Li, Q. Wang, Y. Tang, Z. Yan, Y. Wang, B. Meng, G. Liang, H. Sun, X. Yu, Y. Zhang, and X. Cheng, “Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101107 (2014).

Taylor, J. R.

Tokurakawa, M.

Toncelli, A.

T. Giorgio, V. Sudesh, M. C. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica and phosphate glasses: a comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[Crossref]

Tonelli, M.

T. Giorgio, V. Sudesh, M. C. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica and phosphate glasses: a comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[Crossref]

Tuovinen, H.

Vartiainen, I.

Vazquez-Zuniga, L. A.

Wada, A.

A. Wada, S. Okude, T. Sakai, and R. Yamauchi, “GeO2 concentration dependence of nonlinear refractive index coefficients of silica-based optical fibers,” Electron. Commun. Jpn. Part Commun. 79(11), 12–19 (1996).
[Crossref]

Wang, P.

Wang, Q.

X. Li, Q. Wang, Y. Tang, Z. Yan, Y. Wang, B. Meng, G. Liang, H. Sun, X. Yu, Y. Zhang, and X. Cheng, “Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101107 (2014).

Wang, Q. J.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-um nanosecond all-fiber-based Thulium-doped fiber amplifier,” J. Sel. Top. Quant. Electron. 20(5), 537–543 (2014).
[Crossref]

Wang, W.

W. Wang, H. Meng, X. Wu, W. Wang, H. Xue, C. Tan, and X. Huang, “Three channel-spacing switchable multiwavelength fiber laser with two segments of polarization-maintaining fiber,” IEEE Photon. Technol. Lett. 24(6), 470–472 (2012).
[Crossref]

W. Wang, H. Meng, X. Wu, W. Wang, H. Xue, C. Tan, and X. Huang, “Three channel-spacing switchable multiwavelength fiber laser with two segments of polarization-maintaining fiber,” IEEE Photon. Technol. Lett. 24(6), 470–472 (2012).
[Crossref]

Wang, X.

Wang, Y.

X. Li, Q. Wang, Y. Tang, Z. Yan, Y. Wang, B. Meng, G. Liang, H. Sun, X. Yu, Y. Zhang, and X. Cheng, “Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101107 (2014).

X. Liu, L. Zhan, S. Luo, Z. Gu, J. Liu, Y. Wang, and Q. Shen, “Multiwavelength erbium-doped fiber laser based on a nonlinear amplifying loop mirror assisted by un-pumped EDF,” Opt. Express 20(7), 7088–7094 (2012).
[Crossref] [PubMed]

Wang, Y. S.

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm: YAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

Weng, D.

Wong, J. H.

J. Zhou, S. Fu, F. Luan, J. H. Wong, S. Aditya, P. P. Shum, and K. E. K. Lee, “Tunable multi-tap bandpass microwave photonic filter using a windowed Fabry-Perot filter-based multi-wavelength tunable laser,” IEEE J. Lightw. Technol. 29(22), 3381–3386 (2011).
[Crossref]

Wong, K. K. Y.

Y. Zhou, P. C. Chui, and K. K. Y. Wong, “Multiwavelength single-longitudinal-mode Ytterbium-doped fiber laser,” IEEE Photon. Technol. Lett. 25(4), 385–388 (2013).
[Crossref]

Wright, J. V.

D. B. Mortimore and J. V. Wright, “Low-loss joints between dissimilar fibres by tapering fusion splices,” Electron. Lett. 22(6), 318–319 (1986).
[Crossref]

Wu, X.

W. Wang, H. Meng, X. Wu, W. Wang, H. Xue, C. Tan, and X. Huang, “Three channel-spacing switchable multiwavelength fiber laser with two segments of polarization-maintaining fiber,” IEEE Photon. Technol. Lett. 24(6), 470–472 (2012).
[Crossref]

Wu, Z.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

T. Huang, X. Shao, Z. Wu, T. Lee, Y. Sun, H. Q. Lam, J. Zhang, G. Brambilla, and S. Ping, “Efficient one-third harmonic generation in highly germania-doped fibers enhanced by pump attenuation,” Opt. Express 21(23), 28403–28413 (2013).
[Crossref] [PubMed]

Xiao, H.

Xue, G.

Xue, H.

W. Wang, H. Meng, X. Wu, W. Wang, H. Xue, C. Tan, and X. Huang, “Three channel-spacing switchable multiwavelength fiber laser with two segments of polarization-maintaining fiber,” IEEE Photon. Technol. Lett. 24(6), 470–472 (2012).
[Crossref]

Yamauchi, R.

A. Wada, S. Okude, T. Sakai, and R. Yamauchi, “GeO2 concentration dependence of nonlinear refractive index coefficients of silica-based optical fibers,” Electron. Commun. Jpn. Part Commun. 79(11), 12–19 (1996).
[Crossref]

Yan, F.

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

Yan, F. P.

Yan, Z.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-um nanosecond all-fiber-based Thulium-doped fiber amplifier,” J. Sel. Top. Quant. Electron. 20(5), 537–543 (2014).
[Crossref]

X. Li, Q. Wang, Y. Tang, Z. Yan, Y. Wang, B. Meng, G. Liang, H. Sun, X. Yu, Y. Zhang, and X. Cheng, “Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101107 (2014).

Yanagi, T.

K. Shiraishi, T. Yanagi, and S. Kawakami, “Light-propagation characteristics in thermally diffused expanded core fibers,” J. Lightwave Technol. 11(10), 1584–1591 (1993).
[Crossref]

Yin, K.

Yu, X.

X. Li, Q. Wang, Y. Tang, Z. Yan, Y. Wang, B. Meng, G. Liang, H. Sun, X. Yu, Y. Zhang, and X. Cheng, “Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101107 (2014).

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-um nanosecond all-fiber-based Thulium-doped fiber amplifier,” J. Sel. Top. Quant. Electron. 20(5), 537–543 (2014).
[Crossref]

P. Wang, D. Weng, K. Li, Y. Liu, X. Yu, and X. Zhou, “Multi-wavelength Erbium-doped fiber laser based on four-wave-mixing effect in single mode fiber and high nonlinear fiber,” Opt. Express 21(10), 12570–12578 (2013).
[Crossref] [PubMed]

Yu Koptev, M.

Zhan, L.

Zhang, B.

Zhang, J.

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

T. Huang, X. Shao, Z. Wu, T. Lee, Y. Sun, H. Q. Lam, J. Zhang, G. Brambilla, and S. Ping, “Efficient one-third harmonic generation in highly germania-doped fibers enhanced by pump attenuation,” Opt. Express 21(23), 28403–28413 (2013).
[Crossref] [PubMed]

Zhang, M.

Zhang, Y.

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-um nanosecond all-fiber-based Thulium-doped fiber amplifier,” J. Sel. Top. Quant. Electron. 20(5), 537–543 (2014).
[Crossref]

X. Li, Q. Wang, Y. Tang, Z. Yan, Y. Wang, B. Meng, G. Liang, H. Sun, X. Yu, Y. Zhang, and X. Cheng, “Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101107 (2014).

Zhang, Z.

Zhou, J.

J. Zhou, S. Fu, F. Luan, J. H. Wong, S. Aditya, P. P. Shum, and K. E. K. Lee, “Tunable multi-tap bandpass microwave photonic filter using a windowed Fabry-Perot filter-based multi-wavelength tunable laser,” IEEE J. Lightw. Technol. 29(22), 3381–3386 (2011).
[Crossref]

Zhou, P.

X. Wang, Y. Zhu, P. Zhou, X. Wang, H. Xiao, and L. Si, “Tunable, multiwavelength Tm-doped fiber laser based on polarization rotation and four-wave-mixing effect,” Opt. Express 21(22), 25977–25984 (2013).
[PubMed]

P. Zhou, X. Wang, Y. Ma, K. Han, and Z. Liu, “Stable all-fiber dual-wavelength thulium-doped fiber laser and its coherent beam combination,” Laser Phys. 21(1), 184–187 (2011).
[Crossref]

Zhou, X.

Zhou, Y.

Y. Zhou, P. C. Chui, and K. K. Y. Wong, “Multiwavelength single-longitudinal-mode Ytterbium-doped fiber laser,” IEEE Photon. Technol. Lett. 25(4), 385–388 (2013).
[Crossref]

Zhu, Y.

Appl. Opt. (2)

Appl. Phys. B (1)

S. Liu, S. Fu, M. Tang, P. Shum, and D. Liu, “A pump power controlled 1,060 nm multiwavelength fiber ring laser using nonlinear polarization rotation of SOA,” Appl. Phys. B 110(4), 445–449 (2013).
[Crossref]

Electron. Commun. Jpn. Part Commun. (1)

A. Wada, S. Okude, T. Sakai, and R. Yamauchi, “GeO2 concentration dependence of nonlinear refractive index coefficients of silica-based optical fibers,” Electron. Commun. Jpn. Part Commun. 79(11), 12–19 (1996).
[Crossref]

Electron. Lett. (1)

D. B. Mortimore and J. V. Wright, “Low-loss joints between dissimilar fibres by tapering fusion splices,” Electron. Lett. 22(6), 318–319 (1986).
[Crossref]

IEEE J. Lightw. Technol. (1)

J. Zhou, S. Fu, F. Luan, J. H. Wong, S. Aditya, P. P. Shum, and K. E. K. Lee, “Tunable multi-tap bandpass microwave photonic filter using a windowed Fabry-Perot filter-based multi-wavelength tunable laser,” IEEE J. Lightw. Technol. 29(22), 3381–3386 (2011).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Li, Q. Wang, Y. Tang, Z. Yan, Y. Wang, B. Meng, G. Liang, H. Sun, X. Yu, Y. Zhang, and X. Cheng, “Broadband saturable absorption of graphene oxide thin film and its application in pulsed fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 20(5), 1101107 (2014).

IEEE Photon. Technol. Lett. (4)

W. Wang, H. Meng, X. Wu, W. Wang, H. Xue, C. Tan, and X. Huang, “Three channel-spacing switchable multiwavelength fiber laser with two segments of polarization-maintaining fiber,” IEEE Photon. Technol. Lett. 24(6), 470–472 (2012).
[Crossref]

W. Gao, M. Liao, T. Cheng, T. Suzuki, and Y. Ohishi, “Tunable Brillouin-erbium comb fiber laser in a linear cavity with a single-mode Tellurite fiber,” IEEE Photon. Technol. Lett. 25(1), 51–54 (2013).
[Crossref]

M. A. Chernyscheva, A. A. Krylov, P. G. Kryukov, and E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked thulium-doped fiber laser,” IEEE Photon. Technol. Lett. 24(14), 1254–1256 (2012).
[Crossref]

Y. Zhou, P. C. Chui, and K. K. Y. Wong, “Multiwavelength single-longitudinal-mode Ytterbium-doped fiber laser,” IEEE Photon. Technol. Lett. 25(4), 385–388 (2013).
[Crossref]

J. Appl. Phys. (1)

T. Giorgio, V. Sudesh, M. C. Richardson, M. Bass, A. Toncelli, and M. Tonelli, “Temperature-dependent spectroscopic properties of Tm3+ in germanate, silica and phosphate glasses: a comparative study,” J. Appl. Phys. 103(9), 093104 (2008).
[Crossref]

J. Lightwave Technol. (2)

E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005).
[Crossref]

K. Shiraishi, T. Yanagi, and S. Kawakami, “Light-propagation characteristics in thermally diffused expanded core fibers,” J. Lightwave Technol. 11(10), 1584–1591 (1993).
[Crossref]

J. Sel. Top. Quant. Electron. (1)

Y. Tang, X. Li, Z. Yan, X. Yu, Y. Zhang, and Q. J. Wang, “50-W 2-um nanosecond all-fiber-based Thulium-doped fiber amplifier,” J. Sel. Top. Quant. Electron. 20(5), 537–543 (2014).
[Crossref]

Laser Phys. (1)

P. Zhou, X. Wang, Y. Ma, K. Han, and Z. Liu, “Stable all-fiber dual-wavelength thulium-doped fiber laser and its coherent beam combination,” Laser Phys. 21(1), 184–187 (2011).
[Crossref]

Laser Phys. Lett. (3)

W. Peng, F. Yan, Q. Li, S. Liu, T. Feng, and S. Tan, “A 1.97 μm multiwavelength thulium-doped silica fiber laser based on a nonlinear amplifier loop mirror,” Laser Phys. Lett. 10(11), 115102 (2013).
[Crossref]

M. Sun, J. Y. Long, X. H. Li, Y. Liu, H. F. Ma, Y. An, X. H. Hu, Y. S. Wang, C. Li, and D. Y. Shen, “Widely tunable Tm: YAG laser with a volume Bragg grating,” Laser Phys. Lett. 9(8), 553–556 (2012).
[Crossref]

V. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett. 9(3), 219–222 (2012).
[Crossref]

Opt. Commun. (1)

T. Huang, X. Shao, Z. Wu, Y. Sun, J. Zhang, H. Q. Lam, J. Hu, and P. P. Shum, “A sensitivity enhanced temperature sensor based on highly Germania-doped few mode fiber,” Opt. Commun. 324, 53–57 (2014).
[Crossref]

Opt. Eng. (1)

X. Li, X. Liu, D. Mao, X. Hu, and H. Lu, “Tunable and switchable multiwavelength fiber lasers with broadband range based on nonlinear polarization rotation technique,” Opt. Eng. 49(9), 094303 (2010).
[Crossref]

Opt. Express (11)

S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009).
[Crossref] [PubMed]

X. Liu, L. Zhan, S. Luo, Z. Gu, J. Liu, Y. Wang, and Q. Shen, “Multiwavelength erbium-doped fiber laser based on a nonlinear amplifying loop mirror assisted by un-pumped EDF,” Opt. Express 20(7), 7088–7094 (2012).
[Crossref] [PubMed]

H. Kim, J. Kim, Y. Jung, L. A. Vazquez-Zuniga, S. J. Lee, G. Choi, K. Oh, P. Wang, W. A. Clarkson, and Y. Jeong, “Simple and reliable light launch from a conventional single-mode fiber into a helical-core fiber through an adiabatically tapered splice,” Opt. Express 20(23), 25562–25571 (2012).
[Crossref] [PubMed]

E. A. Anashkina, A. V. Andrianov, M. Yu. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express 20(24), 27102–27107 (2012).
[Crossref] [PubMed]

P. Wang, D. Weng, K. Li, Y. Liu, X. Yu, and X. Zhou, “Multi-wavelength Erbium-doped fiber laser based on four-wave-mixing effect in single mode fiber and high nonlinear fiber,” Opt. Express 21(10), 12570–12578 (2013).
[Crossref] [PubMed]

M. Zhang, E. J. R. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21(20), 23261–23271 (2013).
[Crossref] [PubMed]

X. Wang, Y. Zhu, P. Zhou, X. Wang, H. Xiao, and L. Si, “Tunable, multiwavelength Tm-doped fiber laser based on polarization rotation and four-wave-mixing effect,” Opt. Express 21(22), 25977–25984 (2013).
[PubMed]

L. Pearson, J. W. Kim, Z. Zhang, M. Ibsen, J. K. Sahu, and W. A. Clarkson, “High-power linearly-polarized single-frequency thulium-doped fiber master-oscillator power-amplifier,” Opt. Express 18(2), 1607–1612 (2010).
[Crossref] [PubMed]

T. Huang, X. Shao, Z. Wu, T. Lee, Y. Sun, H. Q. Lam, J. Zhang, G. Brambilla, and S. Ping, “Efficient one-third harmonic generation in highly germania-doped fibers enhanced by pump attenuation,” Opt. Express 21(23), 28403–28413 (2013).
[Crossref] [PubMed]

K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm,” Opt. Express 22(17), 19947–19952 (2014).
[Crossref] [PubMed]

M. Tokurakawa, J. M. O. Daniel, C. S. Chenug, H. Liang, and W. A. Clarkson, “Wavelength-swept Tm-doped fiber laser operating in the two-micron wavelength band,” Opt. Express 22(17), 20014–20019 (2014).
[Crossref] [PubMed]

Opt. Lett. (4)

Other (1)

C. W. Charles, M. J. F. Digonnet, and R. L. Byer, “Advances in 2-μm Tm-doped mode-locked fiber lasers,” Opt. Fiber Technol. to be appear, (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the proposed Tm-doped multiwavelength laser source. PC: polarization controller; PMF: Polarization maintaining fiber; ISO: Isolator.
Fig. 2
Fig. 2 The output lasing spectrum under the pump power of 1.28 W.
Fig. 3
Fig. 3 (a) Measured spectrum of comb filter by launching ASE noise, and (b) measured spectrum of ASE noise produced by pumped Tm fiber.
Fig. 4
Fig. 4 (a) Output spectra measured within 30 minutes, and (b) power fluctuations of five selected lasing lines.
Fig. 5
Fig. 5 (a) Laser output power against input pump power, (b-c) laser output spectra with pump power of 865 mW, 1033 mW, and 1200 mW, respectively.
Fig. 6
Fig. 6 Laser output spectra with 780 mW pump under the condition of (a) with neither 50-m HG-HNLF nor 50-m SMF and (c) with 50-m SMF. Laser output power versus pump power under the condition of (b) with neither 50-m HG-HNLF nor 50-m SMF and (d) with 50-m SMF.

Metrics