Abstract

Efficient wavelength-selective coupling of lights between sub-wavelength plasmonic waveguides and free space is theoretically investigated. The idea is based on a new type of vertical resonance coupling devices built on plasmonic metal/insulator/metal (MIM) waveguides. The device structure consists of a vertical grating coupler in a resonance cavity formed by two distributed Bragg reflectors (DBRs). With the metal loss included, maximum coupling efficiency around 50% can be obtained at the 1550 nm wavelength with a filtering 3dB bandwidth around 20 nm (7nm for the lossless case), demonstrating the feasibility of the idea for achieving high efficiency wavelength-selective vertical coupling through optical resonance. By utilizing this coupler, a plasmonic add-drop device is proposed and theoretically demonstrated. This kind of compact wavelength selective coupling devices shall have the potential to open up a new avenue of photonics circuitry at nanoscale.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Potential characterization of free-space-wave drop demultiplexer using cavity-resonator-integrated grating input/output coupler

Kenji Kintaka, Katsuya Shimizu, Yuki Kita, Satoshi Kawanami, Junichi Inoue, Shogo Ura, and Junji Nishii
Opt. Express 18(24) 25108-25115 (2010)

Tiny surface plasmon resonance sensor integrated on silicon waveguide based on vertical coupling into finite metal-insulator-metal plasmonic waveguide

Dong-Jin Lee, Hae-Dong Yim, Seung-Gol Lee, and Beom-Hoan O
Opt. Express 19(21) 19895-19900 (2011)

Silicon based plasmonic coupler

Roney Thomas, Zoran Ikonic, and R.W. Kelsall
Opt. Express 20(19) 21520-21531 (2012)

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  2. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [Crossref] [PubMed]
  3. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  4. Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
    [Crossref] [PubMed]
  5. C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. Chu, Y. Z. Ho, H. W. Huang, Y. C. Lan, D. W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. 25(8), 1118–1123 (2013).
    [Crossref] [PubMed]
  6. S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  7. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
    [Crossref]
  8. B. H. Cheng and Y. C. Lan, “Multi-layered dielectric cladding plasmonic microdisk resonator filter and coupler,” Phys. Plasmas 20(2), 020701 (2013).
    [Crossref]
  9. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  10. J. P. Tetienne, A. Bousseksou, D. Costantini, Y. De Wilde, and R. Colombelli, “Design of an integrated coupler for the electrical generation of surface plasmon polaritons,” Opt. Express 19(19), 18155–18163 (2011).
    [Crossref] [PubMed]
  11. S. Ura, S. Murata, Y. Awatsuji, and K. Kintaka, “Design of resonance grating coupler,” Opt. Express 16(16), 12207–12213 (2008).
    [Crossref] [PubMed]
  12. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett. 32(11), 1495–1497 (2007).
    [Crossref] [PubMed]
  13. K. Kintaka, Y. Kita, K. Shimizu, H. Matsuoka, S. Ura, and J. Nishii, “Cavity-resonator-integrated grating input/output coupler for high-efficiency vertical coupling with a small aperture,” Opt. Lett. 35(12), 1989–1991 (2010).
    [Crossref] [PubMed]
  14. Y. Zhou, M. Moewe, J. Kern, M. C. Y. Huang, and C. J. Chang-Hasnain, “Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating,” Opt. Express 16(22), 17282–17287 (2008).
    [Crossref] [PubMed]
  15. X. F. Li, S. F. Yu, and A. Kumar, “A surface-emitting distributed-feedback plasmonic laser,” Appl. Phys. Lett. 95(14), 141114 (2009).
    [Crossref]
  16. S. Ura, H. Moriguchi, S. Kido, T. Suhara, and H. Nishihara, “Switching of output coupling in a grating coupler by diffraction transition to the distributed Bragg reflector regime,” Appl. Opt. 38(12), 2500–2503 (1999).
    [Crossref] [PubMed]
  17. K. Kintaka, J. Nishii, Y. Imaoka, J. Ohmori, S. Ura, R. Satoh, and H. Nishihara, “A guided-mode-selective focusing grating coupler,” IEEE Photon. Technol. Lett. 16(2), 512–514 (2004).
    [Crossref]
  18. H. Zhang and H. P. Ho, “Low-loss plasmonic waveguide based on gain-assisted periodic metal nanosphere chains,” Opt. Express 18(22), 23035–23040 (2010).
    [Crossref] [PubMed]
  19. Y. Kou, F. Ye, and X. Chen, “Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration,” Opt. Express 19(12), 11746–11752 (2011).
    [Crossref] [PubMed]
  20. J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett. 100(1), 011105 (2012).
    [Crossref]
  21. Y. T. Wang, B. H. Cheng, Y. Z. Ho, Y. C. Lan, P. G. Luan, and D. P. Tsai, “Gain-assisted hybrid-superlens hyperlens for nano imaging,” Opt. Express 20(20), 22953–22960 (2012).
    [Crossref] [PubMed]
  22. H. A. Haus, Waves and Fields in Optoelectronics (Prentice, 1984).
  23. J. Ohmori, Y. Imaoka, S. Ura, K. Kintaka, R. Satoh, and H. Nishihara, “Integrated-optic add/drop multiplexing of free-space waves for intra-board chip-to-chip optical interconnects,” Jpn. J. Appl. Phys. 44(11), 7987–7992 (2005).
    [Crossref]
  24. K. Kintaka, J. Nishii, K. Shinoda, and S. Ura, “WDM signal transmission in a thin-film waveguide for opitcal interconnection,” IEEE Photon. Technol. Lett. 18(21), 2299–2301 (2006).
    [Crossref]
  25. H. A. Haus and Y. Lai, “Theory of cascaded quarter wave shifted distributed feedback resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992).
    [Crossref]
  26. W. Lin and G. P. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91(14), 143121 (2007).
    [Crossref]

2013 (2)

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. Chu, Y. Z. Ho, H. W. Huang, Y. C. Lan, D. W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. 25(8), 1118–1123 (2013).
[Crossref] [PubMed]

B. H. Cheng and Y. C. Lan, “Multi-layered dielectric cladding plasmonic microdisk resonator filter and coupler,” Phys. Plasmas 20(2), 020701 (2013).
[Crossref]

2012 (2)

J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett. 100(1), 011105 (2012).
[Crossref]

Y. T. Wang, B. H. Cheng, Y. Z. Ho, Y. C. Lan, P. G. Luan, and D. P. Tsai, “Gain-assisted hybrid-superlens hyperlens for nano imaging,” Opt. Express 20(20), 22953–22960 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (2)

2009 (2)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

X. F. Li, S. F. Yu, and A. Kumar, “A surface-emitting distributed-feedback plasmonic laser,” Appl. Phys. Lett. 95(14), 141114 (2009).
[Crossref]

2008 (3)

2007 (2)

W. Lin and G. P. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91(14), 143121 (2007).
[Crossref]

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett. 32(11), 1495–1497 (2007).
[Crossref] [PubMed]

2006 (2)

K. Kintaka, J. Nishii, K. Shinoda, and S. Ura, “WDM signal transmission in a thin-film waveguide for opitcal interconnection,” IEEE Photon. Technol. Lett. 18(21), 2299–2301 (2006).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

2005 (1)

J. Ohmori, Y. Imaoka, S. Ura, K. Kintaka, R. Satoh, and H. Nishihara, “Integrated-optic add/drop multiplexing of free-space waves for intra-board chip-to-chip optical interconnects,” Jpn. J. Appl. Phys. 44(11), 7987–7992 (2005).
[Crossref]

2004 (1)

K. Kintaka, J. Nishii, Y. Imaoka, J. Ohmori, S. Ura, R. Satoh, and H. Nishihara, “A guided-mode-selective focusing grating coupler,” IEEE Photon. Technol. Lett. 16(2), 512–514 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

1999 (1)

1997 (1)

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

1992 (1)

H. A. Haus and Y. Lai, “Theory of cascaded quarter wave shifted distributed feedback resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992).
[Crossref]

Awatsuji, Y.

Baets, R.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Bousseksou, A.

Bozhevolnyi, S. I.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Chang, C. M.

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. Chu, Y. Z. Ho, H. W. Huang, Y. C. Lan, D. W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. 25(8), 1118–1123 (2013).
[Crossref] [PubMed]

Chang-Hasnain, C. J.

Chen, X.

Cheng, B. H.

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. Chu, Y. Z. Ho, H. W. Huang, Y. C. Lan, D. W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. 25(8), 1118–1123 (2013).
[Crossref] [PubMed]

B. H. Cheng and Y. C. Lan, “Multi-layered dielectric cladding plasmonic microdisk resonator filter and coupler,” Phys. Plasmas 20(2), 020701 (2013).
[Crossref]

Y. T. Wang, B. H. Cheng, Y. Z. Ho, Y. C. Lan, P. G. Luan, and D. P. Tsai, “Gain-assisted hybrid-superlens hyperlens for nano imaging,” Opt. Express 20(20), 22953–22960 (2012).
[Crossref] [PubMed]

Chu, C. H.

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. Chu, Y. Z. Ho, H. W. Huang, Y. C. Lan, D. W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. 25(8), 1118–1123 (2013).
[Crossref] [PubMed]

Colombelli, R.

Costantini, D.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

De Wilde, Y.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Emory, S. R.

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Fang, Z.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Hao, F.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Haus, H. A.

H. A. Haus and Y. Lai, “Theory of cascaded quarter wave shifted distributed feedback resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992).
[Crossref]

Ho, H. P.

Ho, Y. Z.

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. Chu, Y. Z. Ho, H. W. Huang, Y. C. Lan, D. W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. 25(8), 1118–1123 (2013).
[Crossref] [PubMed]

Y. T. Wang, B. H. Cheng, Y. Z. Ho, Y. C. Lan, P. G. Luan, and D. P. Tsai, “Gain-assisted hybrid-superlens hyperlens for nano imaging,” Opt. Express 20(20), 22953–22960 (2012).
[Crossref] [PubMed]

Huang, D. W.

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. Chu, Y. Z. Ho, H. W. Huang, Y. C. Lan, D. W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. 25(8), 1118–1123 (2013).
[Crossref] [PubMed]

Huang, H. W.

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. Chu, Y. Z. Ho, H. W. Huang, Y. C. Lan, D. W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. 25(8), 1118–1123 (2013).
[Crossref] [PubMed]

Huang, M. C. Y.

Imaoka, Y.

J. Ohmori, Y. Imaoka, S. Ura, K. Kintaka, R. Satoh, and H. Nishihara, “Integrated-optic add/drop multiplexing of free-space waves for intra-board chip-to-chip optical interconnects,” Jpn. J. Appl. Phys. 44(11), 7987–7992 (2005).
[Crossref]

K. Kintaka, J. Nishii, Y. Imaoka, J. Ohmori, S. Ura, R. Satoh, and H. Nishihara, “A guided-mode-selective focusing grating coupler,” IEEE Photon. Technol. Lett. 16(2), 512–514 (2004).
[Crossref]

Kern, J.

Khurgin, J. B.

J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett. 100(1), 011105 (2012).
[Crossref]

Kido, S.

Kintaka, K.

K. Kintaka, Y. Kita, K. Shimizu, H. Matsuoka, S. Ura, and J. Nishii, “Cavity-resonator-integrated grating input/output coupler for high-efficiency vertical coupling with a small aperture,” Opt. Lett. 35(12), 1989–1991 (2010).
[Crossref] [PubMed]

S. Ura, S. Murata, Y. Awatsuji, and K. Kintaka, “Design of resonance grating coupler,” Opt. Express 16(16), 12207–12213 (2008).
[Crossref] [PubMed]

K. Kintaka, J. Nishii, K. Shinoda, and S. Ura, “WDM signal transmission in a thin-film waveguide for opitcal interconnection,” IEEE Photon. Technol. Lett. 18(21), 2299–2301 (2006).
[Crossref]

J. Ohmori, Y. Imaoka, S. Ura, K. Kintaka, R. Satoh, and H. Nishihara, “Integrated-optic add/drop multiplexing of free-space waves for intra-board chip-to-chip optical interconnects,” Jpn. J. Appl. Phys. 44(11), 7987–7992 (2005).
[Crossref]

K. Kintaka, J. Nishii, Y. Imaoka, J. Ohmori, S. Ura, R. Satoh, and H. Nishihara, “A guided-mode-selective focusing grating coupler,” IEEE Photon. Technol. Lett. 16(2), 512–514 (2004).
[Crossref]

Kita, Y.

Kou, Y.

Kumar, A.

X. F. Li, S. F. Yu, and A. Kumar, “A surface-emitting distributed-feedback plasmonic laser,” Appl. Phys. Lett. 95(14), 141114 (2009).
[Crossref]

Lai, Y.

H. A. Haus and Y. Lai, “Theory of cascaded quarter wave shifted distributed feedback resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992).
[Crossref]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Lan, Y. C.

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. Chu, Y. Z. Ho, H. W. Huang, Y. C. Lan, D. W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. 25(8), 1118–1123 (2013).
[Crossref] [PubMed]

B. H. Cheng and Y. C. Lan, “Multi-layered dielectric cladding plasmonic microdisk resonator filter and coupler,” Phys. Plasmas 20(2), 020701 (2013).
[Crossref]

Y. T. Wang, B. H. Cheng, Y. Z. Ho, Y. C. Lan, P. G. Luan, and D. P. Tsai, “Gain-assisted hybrid-superlens hyperlens for nano imaging,” Opt. Express 20(20), 22953–22960 (2012).
[Crossref] [PubMed]

Li, X. F.

X. F. Li, S. F. Yu, and A. Kumar, “A surface-emitting distributed-feedback plasmonic laser,” Appl. Phys. Lett. 95(14), 141114 (2009).
[Crossref]

Lin, W.

W. Lin and G. P. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91(14), 143121 (2007).
[Crossref]

Liu, A. Q.

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. Chu, Y. Z. Ho, H. W. Huang, Y. C. Lan, D. W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. 25(8), 1118–1123 (2013).
[Crossref] [PubMed]

Luan, P. G.

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Matsuoka, H.

Moewe, M.

Moriguchi, H.

Murata, S.

Nie, S. M.

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Nishihara, H.

J. Ohmori, Y. Imaoka, S. Ura, K. Kintaka, R. Satoh, and H. Nishihara, “Integrated-optic add/drop multiplexing of free-space waves for intra-board chip-to-chip optical interconnects,” Jpn. J. Appl. Phys. 44(11), 7987–7992 (2005).
[Crossref]

K. Kintaka, J. Nishii, Y. Imaoka, J. Ohmori, S. Ura, R. Satoh, and H. Nishihara, “A guided-mode-selective focusing grating coupler,” IEEE Photon. Technol. Lett. 16(2), 512–514 (2004).
[Crossref]

S. Ura, H. Moriguchi, S. Kido, T. Suhara, and H. Nishihara, “Switching of output coupling in a grating coupler by diffraction transition to the distributed Bragg reflector regime,” Appl. Opt. 38(12), 2500–2503 (1999).
[Crossref] [PubMed]

Nishii, J.

K. Kintaka, Y. Kita, K. Shimizu, H. Matsuoka, S. Ura, and J. Nishii, “Cavity-resonator-integrated grating input/output coupler for high-efficiency vertical coupling with a small aperture,” Opt. Lett. 35(12), 1989–1991 (2010).
[Crossref] [PubMed]

K. Kintaka, J. Nishii, K. Shinoda, and S. Ura, “WDM signal transmission in a thin-film waveguide for opitcal interconnection,” IEEE Photon. Technol. Lett. 18(21), 2299–2301 (2006).
[Crossref]

K. Kintaka, J. Nishii, Y. Imaoka, J. Ohmori, S. Ura, R. Satoh, and H. Nishihara, “A guided-mode-selective focusing grating coupler,” IEEE Photon. Technol. Lett. 16(2), 512–514 (2004).
[Crossref]

Nordlander, P.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Ohmori, J.

J. Ohmori, Y. Imaoka, S. Ura, K. Kintaka, R. Satoh, and H. Nishihara, “Integrated-optic add/drop multiplexing of free-space waves for intra-board chip-to-chip optical interconnects,” Jpn. J. Appl. Phys. 44(11), 7987–7992 (2005).
[Crossref]

K. Kintaka, J. Nishii, Y. Imaoka, J. Ohmori, S. Ura, R. Satoh, and H. Nishihara, “A guided-mode-selective focusing grating coupler,” IEEE Photon. Technol. Lett. 16(2), 512–514 (2004).
[Crossref]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Peng, Q.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Roelkens, G.

Satoh, R.

J. Ohmori, Y. Imaoka, S. Ura, K. Kintaka, R. Satoh, and H. Nishihara, “Integrated-optic add/drop multiplexing of free-space waves for intra-board chip-to-chip optical interconnects,” Jpn. J. Appl. Phys. 44(11), 7987–7992 (2005).
[Crossref]

K. Kintaka, J. Nishii, Y. Imaoka, J. Ohmori, S. Ura, R. Satoh, and H. Nishihara, “A guided-mode-selective focusing grating coupler,” IEEE Photon. Technol. Lett. 16(2), 512–514 (2004).
[Crossref]

Shimizu, K.

Shinoda, K.

K. Kintaka, J. Nishii, K. Shinoda, and S. Ura, “WDM signal transmission in a thin-film waveguide for opitcal interconnection,” IEEE Photon. Technol. Lett. 18(21), 2299–2301 (2006).
[Crossref]

Song, W.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Suhara, T.

Sun, G.

J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett. 100(1), 011105 (2012).
[Crossref]

Tetienne, J. P.

Tsai, D. P.

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. Chu, Y. Z. Ho, H. W. Huang, Y. C. Lan, D. W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. 25(8), 1118–1123 (2013).
[Crossref] [PubMed]

Y. T. Wang, B. H. Cheng, Y. Z. Ho, Y. C. Lan, P. G. Luan, and D. P. Tsai, “Gain-assisted hybrid-superlens hyperlens for nano imaging,” Opt. Express 20(20), 22953–22960 (2012).
[Crossref] [PubMed]

Tseng, M. L.

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. Chu, Y. Z. Ho, H. W. Huang, Y. C. Lan, D. W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. 25(8), 1118–1123 (2013).
[Crossref] [PubMed]

Ura, S.

K. Kintaka, Y. Kita, K. Shimizu, H. Matsuoka, S. Ura, and J. Nishii, “Cavity-resonator-integrated grating input/output coupler for high-efficiency vertical coupling with a small aperture,” Opt. Lett. 35(12), 1989–1991 (2010).
[Crossref] [PubMed]

S. Ura, S. Murata, Y. Awatsuji, and K. Kintaka, “Design of resonance grating coupler,” Opt. Express 16(16), 12207–12213 (2008).
[Crossref] [PubMed]

K. Kintaka, J. Nishii, K. Shinoda, and S. Ura, “WDM signal transmission in a thin-film waveguide for opitcal interconnection,” IEEE Photon. Technol. Lett. 18(21), 2299–2301 (2006).
[Crossref]

J. Ohmori, Y. Imaoka, S. Ura, K. Kintaka, R. Satoh, and H. Nishihara, “Integrated-optic add/drop multiplexing of free-space waves for intra-board chip-to-chip optical interconnects,” Jpn. J. Appl. Phys. 44(11), 7987–7992 (2005).
[Crossref]

K. Kintaka, J. Nishii, Y. Imaoka, J. Ohmori, S. Ura, R. Satoh, and H. Nishihara, “A guided-mode-selective focusing grating coupler,” IEEE Photon. Technol. Lett. 16(2), 512–514 (2004).
[Crossref]

S. Ura, H. Moriguchi, S. Kido, T. Suhara, and H. Nishihara, “Switching of output coupling in a grating coupler by diffraction transition to the distributed Bragg reflector regime,” Appl. Opt. 38(12), 2500–2503 (1999).
[Crossref] [PubMed]

Van Thourhout, D.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

Wang, G. P.

W. Lin and G. P. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91(14), 143121 (2007).
[Crossref]

Wang, J.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Wang, Y. T.

Ye, F.

Yu, S. F.

X. F. Li, S. F. Yu, and A. Kumar, “A surface-emitting distributed-feedback plasmonic laser,” Appl. Phys. Lett. 95(14), 141114 (2009).
[Crossref]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhang, H.

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhou, Y.

Zhu, X.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Adv. Mater. (1)

C. M. Chang, M. L. Tseng, B. H. Cheng, C. H. Chu, Y. Z. Ho, H. W. Huang, Y. C. Lan, D. W. Huang, A. Q. Liu, and D. P. Tsai, “Three-dimensional plasmonic micro projector for light manipulation,” Adv. Mater. 25(8), 1118–1123 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

W. Lin and G. P. Wang, “Metal heterowaveguide superlattices for a plasmonic analog to electronic Bloch oscillations,” Appl. Phys. Lett. 91(14), 143121 (2007).
[Crossref]

J. B. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett. 100(1), 011105 (2012).
[Crossref]

X. F. Li, S. F. Yu, and A. Kumar, “A surface-emitting distributed-feedback plasmonic laser,” Appl. Phys. Lett. 95(14), 141114 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

H. A. Haus and Y. Lai, “Theory of cascaded quarter wave shifted distributed feedback resonators,” IEEE J. Quantum Electron. 28(1), 205–213 (1992).
[Crossref]

IEEE Photon. Technol. Lett. (2)

K. Kintaka, J. Nishii, Y. Imaoka, J. Ohmori, S. Ura, R. Satoh, and H. Nishihara, “A guided-mode-selective focusing grating coupler,” IEEE Photon. Technol. Lett. 16(2), 512–514 (2004).
[Crossref]

K. Kintaka, J. Nishii, K. Shinoda, and S. Ura, “WDM signal transmission in a thin-film waveguide for opitcal interconnection,” IEEE Photon. Technol. Lett. 18(21), 2299–2301 (2006).
[Crossref]

Jpn. J. Appl. Phys. (1)

J. Ohmori, Y. Imaoka, S. Ura, K. Kintaka, R. Satoh, and H. Nishihara, “Integrated-optic add/drop multiplexing of free-space waves for intra-board chip-to-chip optical interconnects,” Jpn. J. Appl. Phys. 44(11), 7987–7992 (2005).
[Crossref]

Nano Lett. (1)

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11(2), 893–897 (2011).
[Crossref] [PubMed]

Nature (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Phys. Plasmas (1)

B. H. Cheng and Y. C. Lan, “Multi-layered dielectric cladding plasmonic microdisk resonator filter and coupler,” Phys. Plasmas 20(2), 020701 (2013).
[Crossref]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[Crossref]

Science (1)

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

H. A. Haus, Waves and Fields in Optoelectronics (Prentice, 1984).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic of the proposed vertical plasmonic resonance coupler. (b) The cross section of the device: the core of MIM waveguide is 15 nm. The period of the DBR ( Λ DBR ) is 0.46 μm with the ε mL material (tan area) width = 0.27 μm. The length of front DBR is 2.3 μm ( = 5 Λ DBR , Λ DBR , N FDBR = 5) for lossless case and 1.38 μm ( = 3 Λ DBR , N FDBR = 3) for loss case. The length of rear DBR is 6.44 μm ( = 14 Λ DBR ). The period of the GC ( Λ GC ) is 0.983 μm with the ε mL material (tan area) width = 0.577 μm and thickness = 0.0125 μm. The length of the GC is 3.932 μm ( = 4 Λ GC ). The LF and LR are 0.02 μm and 0.37 μm, respectively.
Fig. 2
Fig. 2 (a) Vertical coupling efficiency and refection spectra of the whole device under lossless condition. Red: Reflection, Green: Transmission, and Blue: coupling to free space for the lossless case, Black: coupling to free space when loss is included. The inset: Reflection spectrum of the rear DBR individually. (b) Simulated Ex field distribution at the wavelength of 1550 nm.
Fig. 3
Fig. 3 Configuration of the plasmonic add-drop device, which is composed of two vertical plasmonic resonance couplers. The top coupler is the x-axis mirror image of the bottom coupler. The grating parameters are the same with those in Fig. 1.
Fig. 4
Fig. 4 Coupling efficiency for port 2(Green), port 3(Blue) and port 4(Cyan) respectively, and the reflection spectrum for port 1(Red), assuming the materials are lossless. The locations indicated by yellow lines are the CWDM channel wavelengths (1470, 1490, 1510, 1530, 1550, 1570, 1590, 1610 nm). When the metal loss is included, the transmission peak is down to 0.23 with a 3dB bandwidth of 12 nm.
Fig. 5
Fig. 5 Coupling efficiency at port 3 in the wavelength of 1550 nm under different lengths of L coupling for the lossless case

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

K GC + K =0 ( first order )
2 K GC + K = K ( second order )
da dt =j ω o a( 1 τ 0 + 1 τ e1 + 1 τ e2 )a+ 2 τ e1 S +1 + 2 τ e2 S +2
S i = S +i + 2/ τ ei a,i=1,2
S 2 = 2/ τ e1 2/ τ e2 j(ω ω 0 )+(1/ τ 0 +1/ τ e1 +1/ τ e2 ) S +1
S 2 2 = ( 4 τ e1 τ e2 ) (ω ω 0 ) 2 +1/ τ 2 S +1 2
ε m (ω)=1 ω p 2 /( ω 2 +iωγ)

Metrics