Abstract

We introduce a maskless lithography tool and optically-initiated diffusive photopolymer that enable arbitrary two-dimensional gradient index (GRIN) polymer lens profiles. The lithography tool uses a pulse-width modulated deformable mirror device (DMD) to control the 8-bit gray-scale intensity pattern on the material. The custom polymer responds with a self-developing refractive index profile that is non-linear with optical dose. We show that this nonlinear material response can be corrected with pre-compensation of the intensity pattern to yield high fidelity, optically induced index profiles. The process is demonstrated with quadratic, millimeter aperture GRIN lenses, Zernike polynomials and GRIN Fresnel lenses.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
GRIN lens and lens array fabrication with diffusion-driven photopolymer

Chunfang Ye and Robert R. McLeod
Opt. Lett. 33(22) 2575-2577 (2008)

Direct photolithographic deforming of organomodified siloxane films for micro-optics fabrication

Ari H. O. Kärkkäinen, John M. Tamkin, Jeremy D. Rogers, Daniel R. Neal, Osmo E. Hormi, Ghassan E. Jabbour, Juha T. Rantala, and Michael R. Descour
Appl. Opt. 41(19) 3988-3998 (2002)

Selective formation of gradient-index profiles inside a planar polymer substrate by a lithographic technique

Shuji Eguchi, Hideki Asano, Atushi Kannke, and Masahiko Ibamoto
Appl. Opt. 33(34) 8078-8086 (1994)

References

  • View by:
  • |
  • |
  • |

  1. D. T. Moore, “Gradient-index optics: a review,” Appl. Opt. 19, 1035–1038 (1980).
    [Crossref] [PubMed]
  2. P. Sinai, “Correction of optical aberrations by neutron irradiation,” Appl. Opt. 10, 99–104 (1971).
    [Crossref] [PubMed]
  3. M. A. Pickering, R. L. Taylor, and D. T. Moore, “Gradient infrared optical material prepared by a chemical vapor deposition process,” Appl. Opt. 25, 3364–3372 (1986).
    [Crossref] [PubMed]
  4. S. Ohmi, H. Sakai, Y. Asahara, S. Nakayama, Y. Yoneda, and T. Izumitani, “Gradient-index rod lens made by a double ion-exchange process,” Appl. Opt. 27, 496–499 (1988).
    [Crossref] [PubMed]
  5. B. Messerschmidt, T. Possner, and R. Goering, “Colorless gradient-index cylindrical lenses with high numerical apertures produced by silver-ion exchange,” Appl. Opt. 34, 7825–7830 (1995).
    [Crossref] [PubMed]
  6. S. Ji, K. Yin, M. Mackey, A. Brister, M. Ponting, and E. Baer, “Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient refractive index ball lenses,” Opt. Eng. 52, 112105 (2013).
    [Crossref]
  7. J.-H. Liu, P.-C. Yang, and Y.-H. Chiu, “Fabrication of high-performance, gradient-refractive-index plastic rods with surfmer-cluster-stabilized nanoparticles,” J. Polym. Sci. A Polym. Chem. 44, 5933–5942 (2006).
    [Crossref]
  8. J.-H. Liu and Y.-H. Chiu, “Process equipped with a sloped uv lamp for the fabrication of gradient-refractive-index lenses,” Opt. Lett. 34, 1393–1395 (2009).
    [Crossref] [PubMed]
  9. S. P. Wu, E. Nihei, and Y. Koike, “Large radial graded-index polymer,” Appl. Opt. 35, 28–32 (1996).
    [Crossref] [PubMed]
  10. C. Ye and R. R. McLeod, “Grin lens and lens array fabrication with diffusion-driven photopolymer,” Opt. Lett. 33, 2575–2577 (2008).
    [Crossref] [PubMed]
  11. B. A. Kowalski, A. C. Urness, M.-E. Baylor, M. C. Cole, W. L. Wilson, and R. R. McLeod, “Quantitative modeling of the reaction/diffusion kinetics of two-component diffusive photopolymers,” Opt. Mater. Express (2014).
    [Crossref]
  12. P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” in “Optical Data Storage Topical Meeting 2004,” (International Society for Optics and Photonics, 2004), pp. 283–288.
    [Crossref]
  13. T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
    [Crossref]
  14. W. J. Gambogi, K. W. Steijn, S. R. Mackara, T. Duzick, B. Hamzavy, and J. Kelly, “Holographic optical element (hoe) imaging in dupont holographic photopolymers,” in “OE/LASE’94,” (International Society for Optics and Photonics, 1994), pp. 282–293.
  15. F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, D. Jurberg, M. Kogure, T. Rolle, and M.-S. Weiser, “Full-color self-processing holographic photopolymers with high sensitivity in red-the first class of instant holographic photopolymers,” Journal of Photopolymer Science and Technology 22, 257–260 (2009).
    [Crossref]
  16. L. Carretero, S. Blaya, R. Mallavia, R. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345–2354 (1998).
    [Crossref]
  17. J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerization-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407–416 (2005).
    [Crossref]
  18. C. Decker and A. Jenkins, “Kinetic approach of o2 inhibition in ultraviolet- and laser-induced polymerizations,” Macromolecules 18, 12411244 (1985).
    [Crossref]
  19. M. Neumann, W. Miranda, C. Schmitt, F. Rueggeberg, and I. Correa, “Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units,” Journal of dentistry 33, 525–532 (2005).
    [Crossref] [PubMed]
  20. G. D. Love, “Wave-front correction and production of zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36, 1517–1520 (1997).
    [Crossref] [PubMed]
  21. A. C. Urness, E. D. Moore, K. K. Kamysiak, M. C. Cole, and R. R. McLeod, “Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput,” Light: Science & Applications 2, e56 (2013).
    [Crossref]

2013 (2)

S. Ji, K. Yin, M. Mackey, A. Brister, M. Ponting, and E. Baer, “Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient refractive index ball lenses,” Opt. Eng. 52, 112105 (2013).
[Crossref]

A. C. Urness, E. D. Moore, K. K. Kamysiak, M. C. Cole, and R. R. McLeod, “Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput,” Light: Science & Applications 2, e56 (2013).
[Crossref]

2009 (2)

J.-H. Liu and Y.-H. Chiu, “Process equipped with a sloped uv lamp for the fabrication of gradient-refractive-index lenses,” Opt. Lett. 34, 1393–1395 (2009).
[Crossref] [PubMed]

F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, D. Jurberg, M. Kogure, T. Rolle, and M.-S. Weiser, “Full-color self-processing holographic photopolymers with high sensitivity in red-the first class of instant holographic photopolymers,” Journal of Photopolymer Science and Technology 22, 257–260 (2009).
[Crossref]

2008 (1)

2006 (1)

J.-H. Liu, P.-C. Yang, and Y.-H. Chiu, “Fabrication of high-performance, gradient-refractive-index plastic rods with surfmer-cluster-stabilized nanoparticles,” J. Polym. Sci. A Polym. Chem. 44, 5933–5942 (2006).
[Crossref]

2005 (2)

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerization-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407–416 (2005).
[Crossref]

M. Neumann, W. Miranda, C. Schmitt, F. Rueggeberg, and I. Correa, “Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units,” Journal of dentistry 33, 525–532 (2005).
[Crossref] [PubMed]

2000 (1)

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
[Crossref]

1998 (1)

L. Carretero, S. Blaya, R. Mallavia, R. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345–2354 (1998).
[Crossref]

1997 (1)

1996 (1)

1995 (1)

1988 (1)

1986 (1)

1985 (1)

C. Decker and A. Jenkins, “Kinetic approach of o2 inhibition in ultraviolet- and laser-induced polymerizations,” Macromolecules 18, 12411244 (1985).
[Crossref]

1980 (1)

1971 (1)

Asahara, Y.

Askham, F.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” in “Optical Data Storage Topical Meeting 2004,” (International Society for Optics and Photonics, 2004), pp. 283–288.
[Crossref]

Baer, E.

S. Ji, K. Yin, M. Mackey, A. Brister, M. Ponting, and E. Baer, “Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient refractive index ball lenses,” Opt. Eng. 52, 112105 (2013).
[Crossref]

Baylor, M.-E.

B. A. Kowalski, A. C. Urness, M.-E. Baylor, M. C. Cole, W. L. Wilson, and R. R. McLeod, “Quantitative modeling of the reaction/diffusion kinetics of two-component diffusive photopolymers,” Opt. Mater. Express (2014).
[Crossref]

Beal, D.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” in “Optical Data Storage Topical Meeting 2004,” (International Society for Optics and Photonics, 2004), pp. 283–288.
[Crossref]

Blaya, S.

L. Carretero, S. Blaya, R. Mallavia, R. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345–2354 (1998).
[Crossref]

Boyd, J. E.

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
[Crossref]

Brister, A.

S. Ji, K. Yin, M. Mackey, A. Brister, M. Ponting, and E. Baer, “Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient refractive index ball lenses,” Opt. Eng. 52, 112105 (2013).
[Crossref]

Bruder, F.-K.

F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, D. Jurberg, M. Kogure, T. Rolle, and M.-S. Weiser, “Full-color self-processing holographic photopolymers with high sensitivity in red-the first class of instant holographic photopolymers,” Journal of Photopolymer Science and Technology 22, 257–260 (2009).
[Crossref]

Carretero, L.

L. Carretero, S. Blaya, R. Mallavia, R. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345–2354 (1998).
[Crossref]

Chiu, Y.-H.

J.-H. Liu and Y.-H. Chiu, “Process equipped with a sloped uv lamp for the fabrication of gradient-refractive-index lenses,” Opt. Lett. 34, 1393–1395 (2009).
[Crossref] [PubMed]

J.-H. Liu, P.-C. Yang, and Y.-H. Chiu, “Fabrication of high-performance, gradient-refractive-index plastic rods with surfmer-cluster-stabilized nanoparticles,” J. Polym. Sci. A Polym. Chem. 44, 5933–5942 (2006).
[Crossref]

Cole, M.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” in “Optical Data Storage Topical Meeting 2004,” (International Society for Optics and Photonics, 2004), pp. 283–288.
[Crossref]

Cole, M. C.

A. C. Urness, E. D. Moore, K. K. Kamysiak, M. C. Cole, and R. R. McLeod, “Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput,” Light: Science & Applications 2, e56 (2013).
[Crossref]

B. A. Kowalski, A. C. Urness, M.-E. Baylor, M. C. Cole, W. L. Wilson, and R. R. McLeod, “Quantitative modeling of the reaction/diffusion kinetics of two-component diffusive photopolymers,” Opt. Mater. Express (2014).
[Crossref]

Colvin, V. L.

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
[Crossref]

Correa, I.

M. Neumann, W. Miranda, C. Schmitt, F. Rueggeberg, and I. Correa, “Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units,” Journal of dentistry 33, 525–532 (2005).
[Crossref] [PubMed]

Decker, C.

C. Decker and A. Jenkins, “Kinetic approach of o2 inhibition in ultraviolet- and laser-induced polymerizations,” Macromolecules 18, 12411244 (1985).
[Crossref]

Deuber, F.

F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, D. Jurberg, M. Kogure, T. Rolle, and M.-S. Weiser, “Full-color self-processing holographic photopolymers with high sensitivity in red-the first class of instant holographic photopolymers,” Journal of Photopolymer Science and Technology 22, 257–260 (2009).
[Crossref]

Dhar, L.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” in “Optical Data Storage Topical Meeting 2004,” (International Society for Optics and Photonics, 2004), pp. 283–288.
[Crossref]

Duzick, T.

W. J. Gambogi, K. W. Steijn, S. R. Mackara, T. Duzick, B. Hamzavy, and J. Kelly, “Holographic optical element (hoe) imaging in dupont holographic photopolymers,” in “OE/LASE’94,” (International Society for Optics and Photonics, 1994), pp. 282–293.

Facke, T.

F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, D. Jurberg, M. Kogure, T. Rolle, and M.-S. Weiser, “Full-color self-processing holographic photopolymers with high sensitivity in red-the first class of instant holographic photopolymers,” Journal of Photopolymer Science and Technology 22, 257–260 (2009).
[Crossref]

Fimia, A.

L. Carretero, S. Blaya, R. Mallavia, R. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345–2354 (1998).
[Crossref]

Gallego, S.

Gambogi, W. J.

W. J. Gambogi, K. W. Steijn, S. R. Mackara, T. Duzick, B. Hamzavy, and J. Kelly, “Holographic optical element (hoe) imaging in dupont holographic photopolymers,” in “OE/LASE’94,” (International Society for Optics and Photonics, 1994), pp. 282–293.

Goering, R.

Hagen, R.

F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, D. Jurberg, M. Kogure, T. Rolle, and M.-S. Weiser, “Full-color self-processing holographic photopolymers with high sensitivity in red-the first class of instant holographic photopolymers,” Journal of Photopolymer Science and Technology 22, 257–260 (2009).
[Crossref]

Hamzavy, B.

W. J. Gambogi, K. W. Steijn, S. R. Mackara, T. Duzick, B. Hamzavy, and J. Kelly, “Holographic optical element (hoe) imaging in dupont holographic photopolymers,” in “OE/LASE’94,” (International Society for Optics and Photonics, 1994), pp. 282–293.

Hill, A.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” in “Optical Data Storage Topical Meeting 2004,” (International Society for Optics and Photonics, 2004), pp. 283–288.
[Crossref]

Honel, D.

F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, D. Jurberg, M. Kogure, T. Rolle, and M.-S. Weiser, “Full-color self-processing holographic photopolymers with high sensitivity in red-the first class of instant holographic photopolymers,” Journal of Photopolymer Science and Technology 22, 257–260 (2009).
[Crossref]

Ihas, B.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” in “Optical Data Storage Topical Meeting 2004,” (International Society for Optics and Photonics, 2004), pp. 283–288.
[Crossref]

Izumitani, T.

Jenkins, A.

C. Decker and A. Jenkins, “Kinetic approach of o2 inhibition in ultraviolet- and laser-induced polymerizations,” Macromolecules 18, 12411244 (1985).
[Crossref]

Ji, S.

S. Ji, K. Yin, M. Mackey, A. Brister, M. Ponting, and E. Baer, “Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient refractive index ball lenses,” Opt. Eng. 52, 112105 (2013).
[Crossref]

Jurberg, D.

F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, D. Jurberg, M. Kogure, T. Rolle, and M.-S. Weiser, “Full-color self-processing holographic photopolymers with high sensitivity in red-the first class of instant holographic photopolymers,” Journal of Photopolymer Science and Technology 22, 257–260 (2009).
[Crossref]

Kamysiak, K. K.

A. C. Urness, E. D. Moore, K. K. Kamysiak, M. C. Cole, and R. R. McLeod, “Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput,” Light: Science & Applications 2, e56 (2013).
[Crossref]

Kelly, J.

W. J. Gambogi, K. W. Steijn, S. R. Mackara, T. Duzick, B. Hamzavy, and J. Kelly, “Holographic optical element (hoe) imaging in dupont holographic photopolymers,” in “OE/LASE’94,” (International Society for Optics and Photonics, 1994), pp. 282–293.

Kelly, J. V.

Kogure, M.

F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, D. Jurberg, M. Kogure, T. Rolle, and M.-S. Weiser, “Full-color self-processing holographic photopolymers with high sensitivity in red-the first class of instant holographic photopolymers,” Journal of Photopolymer Science and Technology 22, 257–260 (2009).
[Crossref]

Koike, Y.

Kowalski, B. A.

B. A. Kowalski, A. C. Urness, M.-E. Baylor, M. C. Cole, W. L. Wilson, and R. R. McLeod, “Quantitative modeling of the reaction/diffusion kinetics of two-component diffusive photopolymers,” Opt. Mater. Express (2014).
[Crossref]

Liu, J.-H.

J.-H. Liu and Y.-H. Chiu, “Process equipped with a sloped uv lamp for the fabrication of gradient-refractive-index lenses,” Opt. Lett. 34, 1393–1395 (2009).
[Crossref] [PubMed]

J.-H. Liu, P.-C. Yang, and Y.-H. Chiu, “Fabrication of high-performance, gradient-refractive-index plastic rods with surfmer-cluster-stabilized nanoparticles,” J. Polym. Sci. A Polym. Chem. 44, 5933–5942 (2006).
[Crossref]

Love, G. D.

Mackara, S. R.

W. J. Gambogi, K. W. Steijn, S. R. Mackara, T. Duzick, B. Hamzavy, and J. Kelly, “Holographic optical element (hoe) imaging in dupont holographic photopolymers,” in “OE/LASE’94,” (International Society for Optics and Photonics, 1994), pp. 282–293.

Mackey, M.

S. Ji, K. Yin, M. Mackey, A. Brister, M. Ponting, and E. Baer, “Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient refractive index ball lenses,” Opt. Eng. 52, 112105 (2013).
[Crossref]

Madrigal, R.

L. Carretero, S. Blaya, R. Mallavia, R. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345–2354 (1998).
[Crossref]

Mallavia, R.

L. Carretero, S. Blaya, R. Mallavia, R. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345–2354 (1998).
[Crossref]

McLeod, R. R.

A. C. Urness, E. D. Moore, K. K. Kamysiak, M. C. Cole, and R. R. McLeod, “Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput,” Light: Science & Applications 2, e56 (2013).
[Crossref]

C. Ye and R. R. McLeod, “Grin lens and lens array fabrication with diffusion-driven photopolymer,” Opt. Lett. 33, 2575–2577 (2008).
[Crossref] [PubMed]

B. A. Kowalski, A. C. Urness, M.-E. Baylor, M. C. Cole, W. L. Wilson, and R. R. McLeod, “Quantitative modeling of the reaction/diffusion kinetics of two-component diffusive photopolymers,” Opt. Mater. Express (2014).
[Crossref]

Messerschmidt, B.

Michaels, D.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” in “Optical Data Storage Topical Meeting 2004,” (International Society for Optics and Photonics, 2004), pp. 283–288.
[Crossref]

Miller, S.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” in “Optical Data Storage Topical Meeting 2004,” (International Society for Optics and Photonics, 2004), pp. 283–288.
[Crossref]

Miranda, W.

M. Neumann, W. Miranda, C. Schmitt, F. Rueggeberg, and I. Correa, “Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units,” Journal of dentistry 33, 525–532 (2005).
[Crossref] [PubMed]

Moore, D. T.

Moore, E. D.

A. C. Urness, E. D. Moore, K. K. Kamysiak, M. C. Cole, and R. R. McLeod, “Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput,” Light: Science & Applications 2, e56 (2013).
[Crossref]

Nakayama, S.

Neipp, C.

Neumann, M.

M. Neumann, W. Miranda, C. Schmitt, F. Rueggeberg, and I. Correa, “Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units,” Journal of dentistry 33, 525–532 (2005).
[Crossref] [PubMed]

Nihei, E.

O’Neill, F. T.

Ohmi, S.

Ortuno, M.

Pickering, M. A.

Ponting, M.

S. Ji, K. Yin, M. Mackey, A. Brister, M. Ponting, and E. Baer, “Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient refractive index ball lenses,” Opt. Eng. 52, 112105 (2013).
[Crossref]

Possner, T.

Quirin, S.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” in “Optical Data Storage Topical Meeting 2004,” (International Society for Optics and Photonics, 2004), pp. 283–288.
[Crossref]

Rolle, T.

F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, D. Jurberg, M. Kogure, T. Rolle, and M.-S. Weiser, “Full-color self-processing holographic photopolymers with high sensitivity in red-the first class of instant holographic photopolymers,” Journal of Photopolymer Science and Technology 22, 257–260 (2009).
[Crossref]

Rueggeberg, F.

M. Neumann, W. Miranda, C. Schmitt, F. Rueggeberg, and I. Correa, “Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units,” Journal of dentistry 33, 525–532 (2005).
[Crossref] [PubMed]

Sakai, H.

Schmitt, C.

M. Neumann, W. Miranda, C. Schmitt, F. Rueggeberg, and I. Correa, “Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units,” Journal of dentistry 33, 525–532 (2005).
[Crossref] [PubMed]

Schnoes, M.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” in “Optical Data Storage Topical Meeting 2004,” (International Society for Optics and Photonics, 2004), pp. 283–288.
[Crossref]

Setthachayanon, S.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” in “Optical Data Storage Topical Meeting 2004,” (International Society for Optics and Photonics, 2004), pp. 283–288.
[Crossref]

Sheridan, J. T.

Sinai, P.

Steijn, K. W.

W. J. Gambogi, K. W. Steijn, S. R. Mackara, T. Duzick, B. Hamzavy, and J. Kelly, “Holographic optical element (hoe) imaging in dupont holographic photopolymers,” in “OE/LASE’94,” (International Society for Optics and Photonics, 1994), pp. 282–293.

Taylor, R. L.

Trentler, T.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” in “Optical Data Storage Topical Meeting 2004,” (International Society for Optics and Photonics, 2004), pp. 283–288.
[Crossref]

Trentler, T. J.

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
[Crossref]

Urness, A. C.

A. C. Urness, E. D. Moore, K. K. Kamysiak, M. C. Cole, and R. R. McLeod, “Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput,” Light: Science & Applications 2, e56 (2013).
[Crossref]

B. A. Kowalski, A. C. Urness, M.-E. Baylor, M. C. Cole, W. L. Wilson, and R. R. McLeod, “Quantitative modeling of the reaction/diffusion kinetics of two-component diffusive photopolymers,” Opt. Mater. Express (2014).
[Crossref]

Wang, P.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” in “Optical Data Storage Topical Meeting 2004,” (International Society for Optics and Photonics, 2004), pp. 283–288.
[Crossref]

Weiser, M.-S.

F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, D. Jurberg, M. Kogure, T. Rolle, and M.-S. Weiser, “Full-color self-processing holographic photopolymers with high sensitivity in red-the first class of instant holographic photopolymers,” Journal of Photopolymer Science and Technology 22, 257–260 (2009).
[Crossref]

Wilson, W.

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” in “Optical Data Storage Topical Meeting 2004,” (International Society for Optics and Photonics, 2004), pp. 283–288.
[Crossref]

Wilson, W. L.

B. A. Kowalski, A. C. Urness, M.-E. Baylor, M. C. Cole, W. L. Wilson, and R. R. McLeod, “Quantitative modeling of the reaction/diffusion kinetics of two-component diffusive photopolymers,” Opt. Mater. Express (2014).
[Crossref]

Wu, S. P.

Yang, P.-C.

J.-H. Liu, P.-C. Yang, and Y.-H. Chiu, “Fabrication of high-performance, gradient-refractive-index plastic rods with surfmer-cluster-stabilized nanoparticles,” J. Polym. Sci. A Polym. Chem. 44, 5933–5942 (2006).
[Crossref]

Ye, C.

Yin, K.

S. Ji, K. Yin, M. Mackey, A. Brister, M. Ponting, and E. Baer, “Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient refractive index ball lenses,” Opt. Eng. 52, 112105 (2013).
[Crossref]

Yoneda, Y.

Appl. Opt. (7)

Chem. Mater. (1)

T. J. Trentler, J. E. Boyd, and V. L. Colvin, “Epoxy resin-photopolymer composites for volume holography,” Chem. Mater. 12, 1431–1438 (2000).
[Crossref]

J. Mod. Opt. (1)

L. Carretero, S. Blaya, R. Mallavia, R. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345–2354 (1998).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Polym. Sci. A Polym. Chem. (1)

J.-H. Liu, P.-C. Yang, and Y.-H. Chiu, “Fabrication of high-performance, gradient-refractive-index plastic rods with surfmer-cluster-stabilized nanoparticles,” J. Polym. Sci. A Polym. Chem. 44, 5933–5942 (2006).
[Crossref]

Journal of dentistry (1)

M. Neumann, W. Miranda, C. Schmitt, F. Rueggeberg, and I. Correa, “Molar extinction coefficients and the photon absorption efficiency of dental photoinitiators and light curing units,” Journal of dentistry 33, 525–532 (2005).
[Crossref] [PubMed]

Journal of Photopolymer Science and Technology (1)

F.-K. Bruder, F. Deuber, T. Facke, R. Hagen, D. Honel, D. Jurberg, M. Kogure, T. Rolle, and M.-S. Weiser, “Full-color self-processing holographic photopolymers with high sensitivity in red-the first class of instant holographic photopolymers,” Journal of Photopolymer Science and Technology 22, 257–260 (2009).
[Crossref]

Light: Science & Applications (1)

A. C. Urness, E. D. Moore, K. K. Kamysiak, M. C. Cole, and R. R. McLeod, “Liquid deposition photolithography for submicrometer resolution three-dimensional index structuring with large throughput,” Light: Science & Applications 2, e56 (2013).
[Crossref]

Macromolecules (1)

C. Decker and A. Jenkins, “Kinetic approach of o2 inhibition in ultraviolet- and laser-induced polymerizations,” Macromolecules 18, 12411244 (1985).
[Crossref]

Opt. Eng. (1)

S. Ji, K. Yin, M. Mackey, A. Brister, M. Ponting, and E. Baer, “Polymeric nanolayered gradient refractive index lenses: technology review and introduction of spherical gradient refractive index ball lenses,” Opt. Eng. 52, 112105 (2013).
[Crossref]

Opt. Lett. (2)

Other (3)

B. A. Kowalski, A. C. Urness, M.-E. Baylor, M. C. Cole, W. L. Wilson, and R. R. McLeod, “Quantitative modeling of the reaction/diffusion kinetics of two-component diffusive photopolymers,” Opt. Mater. Express (2014).
[Crossref]

P. Wang, B. Ihas, M. Schnoes, S. Quirin, D. Beal, S. Setthachayanon, T. Trentler, M. Cole, F. Askham, D. Michaels, S. Miller, A. Hill, W. Wilson, and L. Dhar, “Photopolymer media for holographic storage at 405 nm,” in “Optical Data Storage Topical Meeting 2004,” (International Society for Optics and Photonics, 2004), pp. 283–288.
[Crossref]

W. J. Gambogi, K. W. Steijn, S. R. Mackara, T. Duzick, B. Hamzavy, and J. Kelly, “Holographic optical element (hoe) imaging in dupont holographic photopolymers,” in “OE/LASE’94,” (International Society for Optics and Photonics, 1994), pp. 282–293.

Supplementary Material (6)

» Media 1: PDF (54 KB)     
» Media 2: PDF (31 KB)     
» Media 3: PDF (84 KB)     
» Media 4: PDF (77 KB)     
» Media 5: PDF (54 KB)     
» Media 6: PDF (56 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Exposure and metrology system. (a) Exposure system that uses a light emitting diode (LED), Thorlabs M405L2, and deformable mirror device (DMD) to modulate the 2D intensity pattern and power of the exposure. The imaging lenses, L1 and L2, were Edmunds near-UV achromats with focal lengths of 100 mm (L1) and 75 mm (L2) and the condenser, Thorlabs ACL2520-A, had a focal length of 25mm. The DMD is a TI DLP 0.7 XGA D4100 with UV coating. (b) Metrology system that measures the refractive index profile by imaging the sample under test onto a Shack-Hartmann wavefront sensor. The lenses, L1 and L2, were Spindler and Hoyer achromats with focal lengths of 50 mm (L1) and 250 mm (L2). The Clas-2D Shack-Hartmann wavefront sensor is a Clas-XP 81000-01.
Fig. 2
Fig. 2 Description of the index modulation mechanism in optically driven diffusive photopolymer media. The blue balls represent monomer, the yellow balls photointiator and the red balls are radicals. (a) Photons create radicals that initiate polymerization (conversion of writing monomer to polymer) at that location. (b) Replacement monomer diffuses into the reaction region (blue arrows) and the matrix swells out of it. (c) An optical flood exposure consumes all remaining chemistry leaving a higher density of high refractive index polymer and lower density of low-refractive matrix in the illuminated region. (d) Segregation of writing polymer and matrix creates the index distribution correlated to the optical dose.
Fig. 3
Fig. 3 Dependence of refractive index change on the optical dose, H, and the fractional photoinitiator consumption. (a) The dependence of the measured peak Δn of quadratic GRIN lenses on the exposure dose. (b) The dependence of the measured peak Δn of quadratic GRIN lenses on the fraction of photoinitiator consumed. An irradiance of 10mW/cm2 was used for every exposure.
Fig. 4
Fig. 4 Demonstration of a quadratic GRIN lens with a thickness of one millimeter fabricated in diffusive photopolymer media. (a) The index profile of the intended (black dashed), uncorrected (solid blue) and corrected (dotted red) profile. (b) Phase errors (measured in waves) of the corrected profile. (c) The simulated point spread function (PSF) at the focus of the lens. (d) The measured PSF at the focus of the lens. (e) Cross-section of the simulated (black dashed) and measured (solid red) PSF at the focus.
Fig. 5
Fig. 5 Zernike phase profiles with a thickness of one millimeter fabricated in diffusive photopolymer media. (a) Intended index profile of z[3,3]. (b) Measured index profile of z[3,3]. (c) Intended index profile of z[−1,3]. (d) Measured index profile of z[−1,3]. note: The increased pixilation in (b) and (d) compared to (a) and (c) is due to the sparser sampling of the Shack-Hartmann wavefront sensor compared to the DMD pixels.
Fig. 6
Fig. 6 Fresnel lenses with a thickness of 250 microns fabricated in diffusive photopolymer media imaged with a differential interference contrast microscope. (a) Phase micrograph of the center and the (b) edge of the Fresnel lens.

Tables (1)

Tables Icon

Table 1 Material formulation. Components are used as received, except TBPA which is purified by dissolving in methylene dichloride and filtering with a Millipore 0.5 micron pore membrane filter. Components 3–6 are mixed into the polyol at 60°C, degassed, then mixed with isocyanate and cast between millimeter thick glass slides.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

[ PI ] cons = [ PI ] 0 ( 1 exp ( k d I o t ) ) = [ PI ] 0 ( 1 exp ( k d * H ) = [ PI ] 0 ( 1 exp ( ε ϕ N a h ν H ) )
Δ n = Δ n max ( 1 e ( b * H H O 2 ) )
H corrected = ln ( 1 PI max PI pre ) / b

Metrics