Abstract

We propose a novel mode multiplexer based on phase plates followed by a Mach-Zehnder interferometer (MZI) with image inversion. After the higher-order modes are selectively converted from fundamental linear-polarized (LP) modes by the phase plates, the converted modes are coupled without fundamental loss using MZI with image inversion, in which the original spatial pattern and inverted pattern of the optical signal are interfered. Our scheme is also applicable to the coupling of degenerated LP modes such as LP11a and LP11b. First, we numerically and experimentally evaluate the performance of the mode converter based on phase plates. The mode converter is suitable as long as the five LP modes such as LP01, LP11ab and LP21ab are sustained in a few-mode fiber (FMF), although the crosstalk due to excitation of undesirable modes is unavoidable when the higher-order modes over LP02 are sustained in FMF. Next, we develop and characterize the proposed mode multiplexers based on phase plates and MZIs with image inversion. The insertion loss is suppressed to around 3 dB for mode multiplexing of LP11a and LP11b. Using a fabricated mode multiplexer for LP31a and LP31b, we measure the bit-error rate performance of single-polarization mode-multiplexed quadrature-phase shift keying optical signals.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance evaluation of selective mode conversion based on phase plates for a 10-mode fiber

Koji Igarashi, Daiki Souma, Takehiro Tsuritani, and Itsuro Morita
Opt. Express 22(17) 20881-20893 (2014)

Interferometric space-mode multiplexing based on binary phase plates and refractive phase shifters

Jesús Liñares, Xesús Prieto-Blanco, Vicente Moreno, Carlos Montero-Orille, Dolores Mouriz, María C. Nistal, and David Barral
Opt. Express 25(10) 10925-10938 (2017)

Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits

Daoxin Dai and Mao Mao
Opt. Express 23(22) 28376-28388 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J.-X. Cai, Y. Cai, C. R. Davidon, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “20 Tbit/s capacity transmission over 6,860 km,” in OFC2011, PDPB4 (2011).
  2. G. Bosco, A. Carena, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
    [Crossref]
  3. K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006).
    [Crossref]
  4. Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express 20(11), 12508–12514 (2012).
    [Crossref] [PubMed]
  5. T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Sel. Top. Quantum Electron. 12(4), 544–5554 (2006).
    [Crossref]
  6. D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” in OFC2011, PDPB5 (2011).
  7. A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawanishi, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224 x 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” in OFC2012, PDP5C.3 (2012).
  8. R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett. 24(1), 47–49 (1988).
    [Crossref]
  9. R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
    [Crossref]
  10. A. Li, A. Al Amin, X. Chen, and W. Shieh, “Reception of mode and polarization multiplexed 107-Gb/s CO-OFDM signals over a two-mode fiber,” in OFC2011, PDPB8 (2011).
  11. M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2×100Gb/s, over two modes of 40km-long prototype few-mode fiber, using LCOS-based mode multiplexer and demultiplexer,” in OFC2011, PDPB9 (2011).
  12. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, Jr., “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing,” in OFC2011, PDPB10 (2011).
  13. R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Corteselli, S. Chandrasekhar, A. H. Gnauck, C. Kie, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Grüner-Nielsen, R. V. Jensen, and R. Lingle, Jr., “32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber,” in OFC2013, PDP5A.1 (2013).
  14. E. Ip, M. Jun Li, Y.-K. Huang, A. Tanaka, E. Mateo, W. Wood, J. Hu, Y. Yano, and K. Koreshkov, “146λ x3x6x19-Gbaud wavelength- and mode-division multiplexed transmission over 10x50-km spans of few-mode fiber with a gain-equalized few-mode EDFA,” in OFC2013, PDP5A.2 (2013).
  15. R. Ryf, N. K. Fontaine, B. Guan, R.-J. Essiambre, S. Randel, A. H. Gnauck, S. Chandrasekhar, A. Adamiecki, G. Raybon, B. Ercan, R. P. Scott, S. J. Ben Yoo, T. Hayashi, T. Nagashima, and T. Sasaki, “1705-km transmission over coupled-core fibre supporting 6 spatial modes,” in ECOC2014, PD.3.2 (2014).
  16. F. Dubois, P. Emplit, and O. Hugon, “Selective mode excitation in graded-index multimode fiber by a computer-generated optical mask,” Opt. Lett. 19(7), 433–435 (1994).
    [Crossref] [PubMed]
  17. E. Alon, V. Stojanovic, J. M. Kahn, S. Boyd, and M. Horowitz, “Equalization of modal dispersion in multimode fiber using spatial light modulators,” in Proc. of Global Telecommunications Conference (GLOBECOM '04), IEEE, 2, 1023–1029 (2004).
    [Crossref]
  18. A. Okamoto, K. Aoki, Y. Wakayama, D. Soma, and T. Oda, “Multi-excitation of spatial modes using single spatial light modulator for mode division multiplexing,” in OFC2012, JW2A.38 (2012).
  19. J. von Hoyningen-Huene, R. Ryf, and P. Winzer, “LCoS-based mode shaper for few-mode fiber,” Opt. Express 21(15), 18097–18110 (2013).
    [Crossref] [PubMed]
  20. W. Q. Thornburg, B. J. Corrado, and X. D. Zhu, “Selective launching of higher-order modes into an optical fiber with an optical phase shifter,” Opt. Lett. 19(7), 454–456 (1994).
    [Crossref] [PubMed]
  21. R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, A. Sierra, S. Mumtaz, M. Esmaeelpour, E. C. Burrows, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. H. McCurdy, and R. Lingle., “Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing,” J. Lightwave Technol. 30(4), 521–531 (2012).
    [Crossref]
  22. K. Igarashi, D. Souma, T. Tsuritani, and I. Morita, “Performance evaluation of selective mode conversion based on phase plates for a 10-mode fiber,” Opt. Express 22(17), 20881–20893 (2014).
    [Crossref] [PubMed]
  23. G. Labroille, B. Denolle, P. Jian, P. Genevaux, N. Treps, and J.-F. Morizur, “Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion,” Opt. Express 22(13), 15599–15607 (2014).
    [Crossref] [PubMed]
  24. W. V. Sorin, B. Y. Kim, and H. J. Shaw, “Highly selective evanescent modal filter for two-mode optical fibers,” Opt. Lett. 11(9), 581–583 (1986).
    [Crossref] [PubMed]
  25. H. Kubota, M. Oguma, and H. Takara, “Three-mode multi/demultiplexing experiment using PLC mode multiplexer and its application to 2+1 mode bi-directional optical communication,” IEICE Electron. Express 10(12), 1–6 (2013).
    [Crossref]
  26. R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
    [Crossref] [PubMed]
  27. S. H. Chang, H. S. Chung, N. K. Fontaine, R. Ryf, K. J. Park, K. Kim, J. C. Lee, J. H. Lee, B. Y. Kim, and Y. K. Kim, “Mode division multiplexed optical transmission enabled by all-fiber mode multiplexer,” Opt. Express 22(12), 14229–14236 (2014).
    [Crossref] [PubMed]
  28. R. C. Youngquist, J. L. Brooks, and H. J. Shaw, “Two-mode fiber modal coupler,” Opt. Lett. 9(5), 177–179 (1984).
    [Crossref] [PubMed]
  29. S. G. Leon-Saval, T. A. Birks, J. Bland-Hawthorn, and M. Englund, “Multimode fiber devices with single-mode performance,” Opt. Lett. 30(19), 2545–2547 (2005).
    [Crossref] [PubMed]
  30. N. K. Fontaine, R. Ryf, J. Bland-Hawthorn, and S. G. Leon-Saval, “Geometric requirements for photonic lanterns in space division multiplexing,” Opt. Express 20(24), 27123–27132 (2012).
    [Crossref] [PubMed]
  31. S. G. Leon-Saval, N. K. Fontaine, J. R. Salazar-Gil, B. Ercan, R. Ryf, and J. Bland-Hawthorn, “Mode-selective photonic lanterns for space-division multiplexing,” Opt. Express 22(1), 1036–1044 (2014).
    [Crossref] [PubMed]
  32. D. Souma, K. Takeshima, K. Igarashi, and T. Tsuritani, “Degenerate modes multiplexer/demultiplexer using Mach-Zehnder interferometer with image inversion,” in ECOC2014, We.1.1.6 (2014)
  33. K. Okamoto, Fundamental of Optical Waveguides, 2nd ed. (Academic Press, 2005).
  34. J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Lightw. Technol. 15(1), 61–70 (2009).

2014 (5)

2013 (2)

H. Kubota, M. Oguma, and H. Takara, “Three-mode multi/demultiplexing experiment using PLC mode multiplexer and its application to 2+1 mode bi-directional optical communication,” IEICE Electron. Express 10(12), 1–6 (2013).
[Crossref]

J. von Hoyningen-Huene, R. Ryf, and P. Winzer, “LCoS-based mode shaper for few-mode fiber,” Opt. Express 21(15), 18097–18110 (2013).
[Crossref] [PubMed]

2012 (3)

2010 (2)

G. Bosco, A. Carena, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, and B. Goebel, “Capacity limits of optical fiber networks,” J. Lightwave Technol. 28(4), 662–701 (2010).
[Crossref]

2009 (1)

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Lightw. Technol. 15(1), 61–70 (2009).

2006 (2)

K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006).
[Crossref]

T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Sel. Top. Quantum Electron. 12(4), 544–5554 (2006).
[Crossref]

2005 (1)

1994 (2)

1988 (1)

R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett. 24(1), 47–49 (1988).
[Crossref]

1986 (1)

1984 (1)

Birks, T. A.

Bland-Hawthorn, J.

Blow, K. J.

R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett. 24(1), 47–49 (1988).
[Crossref]

Bolle, C.

Bosco, G.

G. Bosco, A. Carena, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Brambilla, G.

Brooks, J. L.

Burrows, E. C.

Carena, A.

G. Bosco, A. Carena, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Chang, S. H.

Chung, H. S.

Corrado, B. J.

Denolle, B.

Dubois, F.

Emplit, P.

Englund, M.

Ercan, B.

Esmaeelpour, M.

Essiambre, R.-J.

Fini, J. M.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Lightw. Technol. 15(1), 61–70 (2009).

Fontaine, N. K.

Forghieri, F.

G. Bosco, A. Carena, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Foschini, G. J.

Genevaux, P.

Gnauck, A. H.

Goebel, B.

Hugon, O.

Igarashi, K.

Ismaeel, R.

Jian, P.

Jung, Y.

Kashyap, R.

R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett. 24(1), 47–49 (1988).
[Crossref]

Kikuchi, K.

K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006).
[Crossref]

Kim, B. Y.

Kim, K.

Kim, Y. K.

Koizumi, Y.

Kramer, G.

Kubota, H.

H. Kubota, M. Oguma, and H. Takara, “Three-mode multi/demultiplexing experiment using PLC mode multiplexer and its application to 2+1 mode bi-directional optical communication,” IEICE Electron. Express 10(12), 1–6 (2013).
[Crossref]

Labroille, G.

Lee, J. C.

Lee, J. H.

Lee, T.

Leon-Saval, S. G.

Lingle, R.

McCurdy, A. H.

Mermelstein, M. D.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Lightw. Technol. 15(1), 61–70 (2009).

Mizuochi, T.

T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Sel. Top. Quantum Electron. 12(4), 544–5554 (2006).
[Crossref]

Morita, I.

Morizur, J.-F.

Mumtaz, S.

Nakazawa, M.

Nicholson, J. W.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Lightw. Technol. 15(1), 61–70 (2009).

Oduro, B.

Oguma, M.

H. Kubota, M. Oguma, and H. Takara, “Three-mode multi/demultiplexing experiment using PLC mode multiplexer and its application to 2+1 mode bi-directional optical communication,” IEICE Electron. Express 10(12), 1–6 (2013).
[Crossref]

Park, K. J.

Peckham, D. W.

Poggiolini, P.

G. Bosco, A. Carena, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Randel, S.

Ryf, R.

Salazar-Gil, J. R.

Shaw, H. J.

Sierra, A.

Sorin, W. V.

Souma, D.

Takara, H.

H. Kubota, M. Oguma, and H. Takara, “Three-mode multi/demultiplexing experiment using PLC mode multiplexer and its application to 2+1 mode bi-directional optical communication,” IEICE Electron. Express 10(12), 1–6 (2013).
[Crossref]

Thornburg, W. Q.

Toyoda, K.

Treps, N.

Tsuritani, T.

von Hoyningen-Huene, J.

Winzer, P.

Winzer, P. J.

Yablon, A. D.

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Lightw. Technol. 15(1), 61–70 (2009).

Yoshida, M.

Youngquist, R. C.

Zhu, X. D.

Electron. Lett. (1)

R. Kashyap and K. J. Blow, “Observation of catastrophic self-propelled self-focusing in optical fibers,” Electron. Lett. 24(1), 47–49 (1988).
[Crossref]

IEEE J. Lightw. Technol. (1)

J. W. Nicholson, A. D. Yablon, J. M. Fini, and M. D. Mermelstein, “Measuring the modal content of large-mode-area fibers,” IEEE J. Lightw. Technol. 15(1), 61–70 (2009).

IEEE J. Sel. Top. Quantum Electron. (2)

K. Kikuchi, “Phase-diversity homodyne detection of multilevel optical modulation with digital carrier phase estimation,” IEEE J. Sel. Top. Quantum Electron. 12(4), 563–570 (2006).
[Crossref]

T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Sel. Top. Quantum Electron. 12(4), 544–5554 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (1)

G. Bosco, A. Carena, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and CO-OFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

IEICE Electron. Express (1)

H. Kubota, M. Oguma, and H. Takara, “Three-mode multi/demultiplexing experiment using PLC mode multiplexer and its application to 2+1 mode bi-directional optical communication,” IEICE Electron. Express 10(12), 1–6 (2013).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (8)

Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express 20(11), 12508–12514 (2012).
[Crossref] [PubMed]

K. Igarashi, D. Souma, T. Tsuritani, and I. Morita, “Performance evaluation of selective mode conversion based on phase plates for a 10-mode fiber,” Opt. Express 22(17), 20881–20893 (2014).
[Crossref] [PubMed]

G. Labroille, B. Denolle, P. Jian, P. Genevaux, N. Treps, and J.-F. Morizur, “Efficient and mode selective spatial mode multiplexer based on multi-plane light conversion,” Opt. Express 22(13), 15599–15607 (2014).
[Crossref] [PubMed]

R. Ismaeel, T. Lee, B. Oduro, Y. Jung, and G. Brambilla, “All-fiber fused directional coupler for highly efficient spatial mode conversion,” Opt. Express 22(10), 11610–11619 (2014).
[Crossref] [PubMed]

S. H. Chang, H. S. Chung, N. K. Fontaine, R. Ryf, K. J. Park, K. Kim, J. C. Lee, J. H. Lee, B. Y. Kim, and Y. K. Kim, “Mode division multiplexed optical transmission enabled by all-fiber mode multiplexer,” Opt. Express 22(12), 14229–14236 (2014).
[Crossref] [PubMed]

J. von Hoyningen-Huene, R. Ryf, and P. Winzer, “LCoS-based mode shaper for few-mode fiber,” Opt. Express 21(15), 18097–18110 (2013).
[Crossref] [PubMed]

N. K. Fontaine, R. Ryf, J. Bland-Hawthorn, and S. G. Leon-Saval, “Geometric requirements for photonic lanterns in space division multiplexing,” Opt. Express 20(24), 27123–27132 (2012).
[Crossref] [PubMed]

S. G. Leon-Saval, N. K. Fontaine, J. R. Salazar-Gil, B. Ercan, R. Ryf, and J. Bland-Hawthorn, “Mode-selective photonic lanterns for space-division multiplexing,” Opt. Express 22(1), 1036–1044 (2014).
[Crossref] [PubMed]

Opt. Lett. (5)

Other (13)

E. Alon, V. Stojanovic, J. M. Kahn, S. Boyd, and M. Horowitz, “Equalization of modal dispersion in multimode fiber using spatial light modulators,” in Proc. of Global Telecommunications Conference (GLOBECOM '04), IEEE, 2, 1023–1029 (2004).
[Crossref]

A. Okamoto, K. Aoki, Y. Wakayama, D. Soma, and T. Oda, “Multi-excitation of spatial modes using single spatial light modulator for mode division multiplexing,” in OFC2012, JW2A.38 (2012).

D. Qian, M.-F. Huang, E. Ip, Y.-K. Huang, Y. Shao, J. Hu, and T. Wang, “101.7-Tb/s (370×294-Gb/s) PDM-128QAM-OFDM transmission over 3×55-km SSMF using pilot-based phase noise mitigation,” in OFC2011, PDPB5 (2011).

A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawanishi, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224 x 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” in OFC2012, PDP5C.3 (2012).

J.-X. Cai, Y. Cai, C. R. Davidon, A. Lucero, H. Zhang, D. G. Foursa, O. V. Sinkin, W. W. Patterson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “20 Tbit/s capacity transmission over 6,860 km,” in OFC2011, PDPB4 (2011).

A. Li, A. Al Amin, X. Chen, and W. Shieh, “Reception of mode and polarization multiplexed 107-Gb/s CO-OFDM signals over a two-mode fiber,” in OFC2011, PDPB8 (2011).

M. Salsi, C. Koebele, D. Sperti, P. Tran, P. Brindel, H. Mardoyan, S. Bigo, A. Boutin, F. Verluise, P. Sillard, M. Astruc, L. Provost, F. Cerou, and G. Charlet, “Transmission at 2×100Gb/s, over two modes of 40km-long prototype few-mode fiber, using LCOS-based mode multiplexer and demultiplexer,” in OFC2011, PDPB9 (2011).

R. Ryf, S. Randel, A. H. Gnauck, C. Bolle, R.-J. Essiambre, P. J. Winzer, D. W. Peckham, A. McCurdy, and R. Lingle, Jr., “Space-division multiplexing over 10 km of three-mode fiber using coherent 6 × 6 MIMO processing,” in OFC2011, PDPB10 (2011).

R. Ryf, S. Randel, N. K. Fontaine, M. Montoliu, E. Burrows, S. Corteselli, S. Chandrasekhar, A. H. Gnauck, C. Kie, R.-J. Essiambre, P. J. Winzer, R. Delbue, P. Pupalaikis, A. Sureka, Y. Sun, L. Grüner-Nielsen, R. V. Jensen, and R. Lingle, Jr., “32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber,” in OFC2013, PDP5A.1 (2013).

E. Ip, M. Jun Li, Y.-K. Huang, A. Tanaka, E. Mateo, W. Wood, J. Hu, Y. Yano, and K. Koreshkov, “146λ x3x6x19-Gbaud wavelength- and mode-division multiplexed transmission over 10x50-km spans of few-mode fiber with a gain-equalized few-mode EDFA,” in OFC2013, PDP5A.2 (2013).

R. Ryf, N. K. Fontaine, B. Guan, R.-J. Essiambre, S. Randel, A. H. Gnauck, S. Chandrasekhar, A. Adamiecki, G. Raybon, B. Ercan, R. P. Scott, S. J. Ben Yoo, T. Hayashi, T. Nagashima, and T. Sasaki, “1705-km transmission over coupled-core fibre supporting 6 spatial modes,” in ECOC2014, PD.3.2 (2014).

D. Souma, K. Takeshima, K. Igarashi, and T. Tsuritani, “Degenerate modes multiplexer/demultiplexer using Mach-Zehnder interferometer with image inversion,” in ECOC2014, We.1.1.6 (2014)

K. Okamoto, Fundamental of Optical Waveguides, 2nd ed. (Academic Press, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Configuration of a mode multiplexer.
Fig. 2
Fig. 2 (a) Configuration of our proposed mode multiplexer. (b) Phase patterns on phase plates.
Fig. 3
Fig. 3 (a) Schematic diagram and (b) free-space configuration of Mach-Zehnder interferometer with image inversion. BS: beam splitter, M: mirror.
Fig. 4
Fig. 4 Configuration of the mode multiplexer for five modes such as LP01, LP11a, LP11b, LP21a and LP21b.
Fig. 5
Fig. 5 (a) Configuration of mode converter based on the phase plate. (b) Model for excitation of modes in FMF.
Fig. 6
Fig. 6 Spatial intensity patterns of (a) ideal LP modes and (b) converted beam after phase plates.
Fig. 7
Fig. 7 The normalized efficiency coupled to each LP mode when launching the ideal (a) LP01, (b) LP11a, (c) LP21b, (d) LP02, (e) LP31b, or (f) LP12a mode of FMF. : LP01, : LP11a, : LP11b, :LP21a, : LP21b, : LP02, : LP31a, : LP31b, : LP12a, and : LP12b.
Fig. 8
Fig. 8 (a) The experimental setup for S2 measurement, and the spatial intensity patterns of the observed LP modes when the phase plate for (b) LP11 or (c) LP31 is used.
Fig. 9
Fig. 9 (a) Configuration and (b) photograph of our proposed mode multiplexer.
Fig. 10
Fig. 10 The near-field patterns of the output beams from our proposed multiplexer. (a) LP11a and LP11b, (b) LP31a and LP31b.
Fig. 11
Fig. 11 Wavelength dependence of the insertion loss of the LP11 mode multiplexer. Dots and closed triangles: LP11a and LP11b in the case of the proposed scheme using MZI with image inversion, open circles and open triangles: LP11a and LP11b in the case of the conventional scheme using the beam splitter (BS).
Fig. 12
Fig. 12 The experimental setup for BER measurement of single-polarization QPSK signals over LP31a and LP31b modes.
Fig. 13
Fig. 13 Measured bit-error rates of single-polarization QPSK signals with and without mode multiplexing of LP31a and LP31b.

Tables (1)

Tables Icon

Table 1 Classification of mode multiplexers proposed so far.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A(x,y)= i=0 m η i M i (x,y)+ j=m+1 ζ j N j (x,y) ,
| η i | 2 = | A(x,y) M i * (x,y) dxdy | 2 ,

Metrics