Abstract

We present a multi-objective genetic algorithm we developed for the optimization of a flat-plate solar thermal collector. This collector consists of a waffle-shaped Al substrate with NiCrOx cermet and SnO2 anti-reflection conformal coatings. Optimal geometrical parameters are determined in order to (i) maximize the solar absorptance α and (ii) minimize the thermal emittance ε. The multi-objective genetic algorithm eventually provides a whole set of Pareto-optimal solutions for the optimization of α and ε, which turn out to be competitive with record values found in the literature. In particular, a solution that enables α = 97.8% and ε = 4.8% was found.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and global optimization of high-efficiency solar thermal systems with tungsten cermets

David Chester, Peter Bermel, John D. Joannopoulos, Marin Soljacic, and Ivan Celanovic
Opt. Express 19(S3) A245-A257 (2011)

Modeling the absorption behavior of solar thermal collector coatings utilizing graded α-C:H/TiC layers

D. P. Gruber, G. Engel, H. Sormann, A. Schüler, and W. Papousek
Appl. Opt. 48(8) 1514-1519 (2009)

Multi-objective optimization genetic algorithm for multi-point light focusing in wavefront shaping

Qi Feng, Fan Yang, Xinyu Xu, Bin Zhang, Yingchun Ding, and Qiang Liu
Opt. Express 27(25) 36459-36473 (2019)

References

  • View by:
  • |
  • |
  • |

  1. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermophotovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit,” Opt. Express 17(17), 15145–15159 (2009).
    [Crossref] [PubMed]
  2. N.P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17(25), 22800–22812 (2009).
    [Crossref]
  3. H.L. Zhang, J. Baeyens, J. Degrève, and G. Cacères, “Concentrated solar power plants: Review and design methodology,” Renewable and Sustainable Energy Reviews 22, 466–481 (2013).
    [Crossref]
  4. E. Wäckelgård, G.A. Niklasson, and C.G. Granqvist, “Selectively solar-absorbing coatings,” in Solar Energy: The State of the Art, J. Gordon, ed. (Science, 2001), chap. 3.
  5. X.-F. Li, Y.-R. Chen, J. Miao, P. Zhou, Y.-X. Zheng, L.-Y. Chen, and Y.-P. Lee, “High solar absorption of a multilayered thin film structure,” Opt. Express 15(4), 1907–1912 (2007).
    [Crossref] [PubMed]
  6. F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7, 1615–1627 (2014).
    [Crossref]
  7. C.E. Kennedy, “Review of Mid- to High-Temperature Solar Selective Absorber Materials,” NREL/TP-520-31267, National Renewable Energy Laboratory, Colorado, July 2002.
  8. R.A. Buhrman, “Physics of solar selective surfaces,” in Physics of Solar Selective Surfaces, K.W. Böer, ed. (Springer, 1986, vol. 3), chap. 4.
  9. M. Langlais, J.-P. Hugonin, M. Besbes, and Ph. Ben-Abdallah, “Cooperative electromagnetic interactions between nanoparticles for solar energy harvesting,” Opt. Express 22(S3), A577–A588 (2014).
    [Crossref] [PubMed]
  10. T. Boström, E. Wäckelgård, and G. Westin, “Solution chemical route to nickel-alumina coatings for thermal solar absorbers,” Sol. Energy 74, 497–503 (2003).
    [Crossref]
  11. V. Teixeira, E. Sousa, M.F. Costa, C. Nunes, L. Rosa, and M.J. Carvalho, “Spectrally selective composite coatings of Cr-Cr2O3 and Mo-Al2O3 for solar energy applications,” Thin Solid Films 392, 320–326 (2001).
    [Crossref]
  12. S. Zhao and E. Wäckelgård, “The optical properties of sputtered composite of Al-AlN,” Sol. Energ. Mat. Sol. C. 90(13), 1861–1874 (2006).
    [Crossref]
  13. S. Zhao and E. Wäckelgård, “Optimization of solar absorbing three-layer coatings,” Sol. Energ. Mat. Sol. C. 90(3), 243–261 (2006).
    [Crossref]
  14. L. Gaouyat, F. Mirabella, and O. Deparis, “Critical tuning of magnetron sputtering process parameters for optimized solar selective absorption of NiCrOx cermet coatings on aluminium substrate,” Appl. Surf. Sci. 271, 113–117 (2013).
    [Crossref]
  15. L. Gaouyat, Z. He, J.-F. Colomer, Ph. Lambin, F. Mirabella, D. Schryvers, and O. Deparis, “Revealing the innermost nanostructure of sputtered NiCrOx solar absorber cermets,” Sol. Energ. Mat. Sol. C. 122, 303–308 (2014).
    [Crossref]
  16. D. Chester, P. Bermel, J.D. Joannopoulos, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency solar thermal systems with tungsten cermets,” Opt. Express 19(53), A245–A257 (2011).
    [Crossref] [PubMed]
  17. A. Lasagni, M. Nejati, R. Clasen, and F. Mücklich, “Periodic surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater. 8(6), 580–584 (2006).
    [Crossref]
  18. J.J. Cuomo, J.F. Ziegler, and J.M. Woodall, “A new concept for solar energy thermal conversion,” Appl. Phys. Lett. 26(10), 557–559 (1975).
    [Crossref]
  19. M. Shimizu, K. Takeuchi, H. Sai, F. Iguchi, N. Sata, and H. Yugami, “High-temperature solar selective absorber material using surface microcavity structures,” Proc. ASME 5, 783–787 (2011).
  20. J.H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan, 1975).
  21. K.A. De Jong, An analysis of the behaviors of genetic adaptative systems, PhD thesis (University of Michigan, 1975).
  22. D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Weley, 1989).
  23. R. Judson, “Genetic Algorithms and their use in Chemistry,” in Reviews in Computational Chemistry, K.B. Lipkowitz and D.B. Boyd, eds. (VCH, 1997), vol. 10, chap. 1.
  24. R.L. Haupt and D.H. Werner, Genetic Algorithms in Electromagnetics (Wiley and Sons, 2007).
    [Crossref]
  25. K. Deb, “Multi-objective evolutionary algorithms: Introducing bias among Pareto-optimal solutions,” in Advances in Evolutionary Computing (Springer-Verlag, 2003), pp. 263–292.
    [Crossref]
  26. D. Nicolay, Modélisation et apprentissage des réseaux de neurones artificiels, Master thesis (University of Namur, 2012).
  27. J.-P. Vigneron, F. Forati, D. André, A. Castiaux, I. Derycke, and A. Dereux, “Theory of electromagnetic energy transfer in three-dimensional structures,” Ultramicroscopy 61, 21–27 (1995).
    [Crossref]
  28. J.-P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the miller indices of the exposed surface,” Proc. SPIE 6128, 61281G (2006).
    [Crossref]
  29. O. Stenzel, The Physics of Thin Film Optical Spectra: An Introduction (Springer, 2005).

2014 (3)

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7, 1615–1627 (2014).
[Crossref]

M. Langlais, J.-P. Hugonin, M. Besbes, and Ph. Ben-Abdallah, “Cooperative electromagnetic interactions between nanoparticles for solar energy harvesting,” Opt. Express 22(S3), A577–A588 (2014).
[Crossref] [PubMed]

L. Gaouyat, Z. He, J.-F. Colomer, Ph. Lambin, F. Mirabella, D. Schryvers, and O. Deparis, “Revealing the innermost nanostructure of sputtered NiCrOx solar absorber cermets,” Sol. Energ. Mat. Sol. C. 122, 303–308 (2014).
[Crossref]

2013 (2)

H.L. Zhang, J. Baeyens, J. Degrève, and G. Cacères, “Concentrated solar power plants: Review and design methodology,” Renewable and Sustainable Energy Reviews 22, 466–481 (2013).
[Crossref]

L. Gaouyat, F. Mirabella, and O. Deparis, “Critical tuning of magnetron sputtering process parameters for optimized solar selective absorption of NiCrOx cermet coatings on aluminium substrate,” Appl. Surf. Sci. 271, 113–117 (2013).
[Crossref]

2011 (2)

D. Chester, P. Bermel, J.D. Joannopoulos, M. Soljacic, and I. Celanovic, “Design and global optimization of high-efficiency solar thermal systems with tungsten cermets,” Opt. Express 19(53), A245–A257 (2011).
[Crossref] [PubMed]

M. Shimizu, K. Takeuchi, H. Sai, F. Iguchi, N. Sata, and H. Yugami, “High-temperature solar selective absorber material using surface microcavity structures,” Proc. ASME 5, 783–787 (2011).

2009 (2)

2007 (1)

2006 (4)

S. Zhao and E. Wäckelgård, “The optical properties of sputtered composite of Al-AlN,” Sol. Energ. Mat. Sol. C. 90(13), 1861–1874 (2006).
[Crossref]

S. Zhao and E. Wäckelgård, “Optimization of solar absorbing three-layer coatings,” Sol. Energ. Mat. Sol. C. 90(3), 243–261 (2006).
[Crossref]

A. Lasagni, M. Nejati, R. Clasen, and F. Mücklich, “Periodic surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater. 8(6), 580–584 (2006).
[Crossref]

J.-P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the miller indices of the exposed surface,” Proc. SPIE 6128, 61281G (2006).
[Crossref]

2003 (1)

T. Boström, E. Wäckelgård, and G. Westin, “Solution chemical route to nickel-alumina coatings for thermal solar absorbers,” Sol. Energy 74, 497–503 (2003).
[Crossref]

2001 (1)

V. Teixeira, E. Sousa, M.F. Costa, C. Nunes, L. Rosa, and M.J. Carvalho, “Spectrally selective composite coatings of Cr-Cr2O3 and Mo-Al2O3 for solar energy applications,” Thin Solid Films 392, 320–326 (2001).
[Crossref]

1995 (1)

J.-P. Vigneron, F. Forati, D. André, A. Castiaux, I. Derycke, and A. Dereux, “Theory of electromagnetic energy transfer in three-dimensional structures,” Ultramicroscopy 61, 21–27 (1995).
[Crossref]

1975 (1)

J.J. Cuomo, J.F. Ziegler, and J.M. Woodall, “A new concept for solar energy thermal conversion,” Appl. Phys. Lett. 26(10), 557–559 (1975).
[Crossref]

Agrawal, M.

André, D.

J.-P. Vigneron, F. Forati, D. André, A. Castiaux, I. Derycke, and A. Dereux, “Theory of electromagnetic energy transfer in three-dimensional structures,” Ultramicroscopy 61, 21–27 (1995).
[Crossref]

Baeyens, J.

H.L. Zhang, J. Baeyens, J. Degrève, and G. Cacères, “Concentrated solar power plants: Review and design methodology,” Renewable and Sustainable Energy Reviews 22, 466–481 (2013).
[Crossref]

Ben-Abdallah, Ph.

Bermel, P.

Besbes, M.

Boström, T.

T. Boström, E. Wäckelgård, and G. Westin, “Solution chemical route to nickel-alumina coatings for thermal solar absorbers,” Sol. Energy 74, 497–503 (2003).
[Crossref]

Buhrman, R.A.

R.A. Buhrman, “Physics of solar selective surfaces,” in Physics of Solar Selective Surfaces, K.W. Böer, ed. (Springer, 1986, vol. 3), chap. 4.

Cacères, G.

H.L. Zhang, J. Baeyens, J. Degrève, and G. Cacères, “Concentrated solar power plants: Review and design methodology,” Renewable and Sustainable Energy Reviews 22, 466–481 (2013).
[Crossref]

Cao, F.

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7, 1615–1627 (2014).
[Crossref]

Carvalho, M.J.

V. Teixeira, E. Sousa, M.F. Costa, C. Nunes, L. Rosa, and M.J. Carvalho, “Spectrally selective composite coatings of Cr-Cr2O3 and Mo-Al2O3 for solar energy applications,” Thin Solid Films 392, 320–326 (2001).
[Crossref]

Castiaux, A.

J.-P. Vigneron, F. Forati, D. André, A. Castiaux, I. Derycke, and A. Dereux, “Theory of electromagnetic energy transfer in three-dimensional structures,” Ultramicroscopy 61, 21–27 (1995).
[Crossref]

Celanovic, I.

Chen, G.

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7, 1615–1627 (2014).
[Crossref]

Chen, L.-Y.

Chen, Y.-R.

Chester, D.

Clasen, R.

A. Lasagni, M. Nejati, R. Clasen, and F. Mücklich, “Periodic surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater. 8(6), 580–584 (2006).
[Crossref]

Colomer, J.-F.

L. Gaouyat, Z. He, J.-F. Colomer, Ph. Lambin, F. Mirabella, D. Schryvers, and O. Deparis, “Revealing the innermost nanostructure of sputtered NiCrOx solar absorber cermets,” Sol. Energ. Mat. Sol. C. 122, 303–308 (2014).
[Crossref]

Costa, M.F.

V. Teixeira, E. Sousa, M.F. Costa, C. Nunes, L. Rosa, and M.J. Carvalho, “Spectrally selective composite coatings of Cr-Cr2O3 and Mo-Al2O3 for solar energy applications,” Thin Solid Films 392, 320–326 (2001).
[Crossref]

Cuomo, J.J.

J.J. Cuomo, J.F. Ziegler, and J.M. Woodall, “A new concept for solar energy thermal conversion,” Appl. Phys. Lett. 26(10), 557–559 (1975).
[Crossref]

De Jong, K.A.

K.A. De Jong, An analysis of the behaviors of genetic adaptative systems, PhD thesis (University of Michigan, 1975).

Deb, K.

K. Deb, “Multi-objective evolutionary algorithms: Introducing bias among Pareto-optimal solutions,” in Advances in Evolutionary Computing (Springer-Verlag, 2003), pp. 263–292.
[Crossref]

Degrève, J.

H.L. Zhang, J. Baeyens, J. Degrève, and G. Cacères, “Concentrated solar power plants: Review and design methodology,” Renewable and Sustainable Energy Reviews 22, 466–481 (2013).
[Crossref]

Deparis, O.

L. Gaouyat, Z. He, J.-F. Colomer, Ph. Lambin, F. Mirabella, D. Schryvers, and O. Deparis, “Revealing the innermost nanostructure of sputtered NiCrOx solar absorber cermets,” Sol. Energ. Mat. Sol. C. 122, 303–308 (2014).
[Crossref]

L. Gaouyat, F. Mirabella, and O. Deparis, “Critical tuning of magnetron sputtering process parameters for optimized solar selective absorption of NiCrOx cermet coatings on aluminium substrate,” Appl. Surf. Sci. 271, 113–117 (2013).
[Crossref]

Dereux, A.

J.-P. Vigneron, F. Forati, D. André, A. Castiaux, I. Derycke, and A. Dereux, “Theory of electromagnetic energy transfer in three-dimensional structures,” Ultramicroscopy 61, 21–27 (1995).
[Crossref]

Derycke, I.

J.-P. Vigneron, F. Forati, D. André, A. Castiaux, I. Derycke, and A. Dereux, “Theory of electromagnetic energy transfer in three-dimensional structures,” Ultramicroscopy 61, 21–27 (1995).
[Crossref]

Fan, S.

Forati, F.

J.-P. Vigneron, F. Forati, D. André, A. Castiaux, I. Derycke, and A. Dereux, “Theory of electromagnetic energy transfer in three-dimensional structures,” Ultramicroscopy 61, 21–27 (1995).
[Crossref]

Gaouyat, L.

L. Gaouyat, Z. He, J.-F. Colomer, Ph. Lambin, F. Mirabella, D. Schryvers, and O. Deparis, “Revealing the innermost nanostructure of sputtered NiCrOx solar absorber cermets,” Sol. Energ. Mat. Sol. C. 122, 303–308 (2014).
[Crossref]

L. Gaouyat, F. Mirabella, and O. Deparis, “Critical tuning of magnetron sputtering process parameters for optimized solar selective absorption of NiCrOx cermet coatings on aluminium substrate,” Appl. Surf. Sci. 271, 113–117 (2013).
[Crossref]

Goldberg, D.E.

D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Weley, 1989).

Granqvist, C.G.

E. Wäckelgård, G.A. Niklasson, and C.G. Granqvist, “Selectively solar-absorbing coatings,” in Solar Energy: The State of the Art, J. Gordon, ed. (Science, 2001), chap. 3.

Haupt, R.L.

R.L. Haupt and D.H. Werner, Genetic Algorithms in Electromagnetics (Wiley and Sons, 2007).
[Crossref]

He, Z.

L. Gaouyat, Z. He, J.-F. Colomer, Ph. Lambin, F. Mirabella, D. Schryvers, and O. Deparis, “Revealing the innermost nanostructure of sputtered NiCrOx solar absorber cermets,” Sol. Energ. Mat. Sol. C. 122, 303–308 (2014).
[Crossref]

Holland, J.H.

J.H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan, 1975).

Hugonin, J.-P.

Iguchi, F.

M. Shimizu, K. Takeuchi, H. Sai, F. Iguchi, N. Sata, and H. Yugami, “High-temperature solar selective absorber material using surface microcavity structures,” Proc. ASME 5, 783–787 (2011).

Joannopoulos, J.D.

Judson, R.

R. Judson, “Genetic Algorithms and their use in Chemistry,” in Reviews in Computational Chemistry, K.B. Lipkowitz and D.B. Boyd, eds. (VCH, 1997), vol. 10, chap. 1.

Kennedy, C.E.

C.E. Kennedy, “Review of Mid- to High-Temperature Solar Selective Absorber Materials,” NREL/TP-520-31267, National Renewable Energy Laboratory, Colorado, July 2002.

Lambin, Ph.

L. Gaouyat, Z. He, J.-F. Colomer, Ph. Lambin, F. Mirabella, D. Schryvers, and O. Deparis, “Revealing the innermost nanostructure of sputtered NiCrOx solar absorber cermets,” Sol. Energ. Mat. Sol. C. 122, 303–308 (2014).
[Crossref]

Langlais, M.

Lasagni, A.

A. Lasagni, M. Nejati, R. Clasen, and F. Mücklich, “Periodic surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater. 8(6), 580–584 (2006).
[Crossref]

Lee, Y.-P.

Li, X.-F.

Lousse, V.

J.-P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the miller indices of the exposed surface,” Proc. SPIE 6128, 61281G (2006).
[Crossref]

McEnaney, K.

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7, 1615–1627 (2014).
[Crossref]

Miao, J.

Mirabella, F.

L. Gaouyat, Z. He, J.-F. Colomer, Ph. Lambin, F. Mirabella, D. Schryvers, and O. Deparis, “Revealing the innermost nanostructure of sputtered NiCrOx solar absorber cermets,” Sol. Energ. Mat. Sol. C. 122, 303–308 (2014).
[Crossref]

L. Gaouyat, F. Mirabella, and O. Deparis, “Critical tuning of magnetron sputtering process parameters for optimized solar selective absorption of NiCrOx cermet coatings on aluminium substrate,” Appl. Surf. Sci. 271, 113–117 (2013).
[Crossref]

Mücklich, F.

A. Lasagni, M. Nejati, R. Clasen, and F. Mücklich, “Periodic surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater. 8(6), 580–584 (2006).
[Crossref]

Nejati, M.

A. Lasagni, M. Nejati, R. Clasen, and F. Mücklich, “Periodic surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater. 8(6), 580–584 (2006).
[Crossref]

Nicolay, D.

D. Nicolay, Modélisation et apprentissage des réseaux de neurones artificiels, Master thesis (University of Namur, 2012).

Niklasson, G.A.

E. Wäckelgård, G.A. Niklasson, and C.G. Granqvist, “Selectively solar-absorbing coatings,” in Solar Energy: The State of the Art, J. Gordon, ed. (Science, 2001), chap. 3.

Nunes, C.

V. Teixeira, E. Sousa, M.F. Costa, C. Nunes, L. Rosa, and M.J. Carvalho, “Spectrally selective composite coatings of Cr-Cr2O3 and Mo-Al2O3 for solar energy applications,” Thin Solid Films 392, 320–326 (2001).
[Crossref]

Peumans, P.

Pincon, O.

Ren, Z.

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7, 1615–1627 (2014).
[Crossref]

Rephaeli, E.

Rosa, L.

V. Teixeira, E. Sousa, M.F. Costa, C. Nunes, L. Rosa, and M.J. Carvalho, “Spectrally selective composite coatings of Cr-Cr2O3 and Mo-Al2O3 for solar energy applications,” Thin Solid Films 392, 320–326 (2001).
[Crossref]

Sai, H.

M. Shimizu, K. Takeuchi, H. Sai, F. Iguchi, N. Sata, and H. Yugami, “High-temperature solar selective absorber material using surface microcavity structures,” Proc. ASME 5, 783–787 (2011).

Sata, N.

M. Shimizu, K. Takeuchi, H. Sai, F. Iguchi, N. Sata, and H. Yugami, “High-temperature solar selective absorber material using surface microcavity structures,” Proc. ASME 5, 783–787 (2011).

Schryvers, D.

L. Gaouyat, Z. He, J.-F. Colomer, Ph. Lambin, F. Mirabella, D. Schryvers, and O. Deparis, “Revealing the innermost nanostructure of sputtered NiCrOx solar absorber cermets,” Sol. Energ. Mat. Sol. C. 122, 303–308 (2014).
[Crossref]

Sergeant, N.P.

Shimizu, M.

M. Shimizu, K. Takeuchi, H. Sai, F. Iguchi, N. Sata, and H. Yugami, “High-temperature solar selective absorber material using surface microcavity structures,” Proc. ASME 5, 783–787 (2011).

Soljacic, M.

Sousa, E.

V. Teixeira, E. Sousa, M.F. Costa, C. Nunes, L. Rosa, and M.J. Carvalho, “Spectrally selective composite coatings of Cr-Cr2O3 and Mo-Al2O3 for solar energy applications,” Thin Solid Films 392, 320–326 (2001).
[Crossref]

Stenzel, O.

O. Stenzel, The Physics of Thin Film Optical Spectra: An Introduction (Springer, 2005).

Takeuchi, K.

M. Shimizu, K. Takeuchi, H. Sai, F. Iguchi, N. Sata, and H. Yugami, “High-temperature solar selective absorber material using surface microcavity structures,” Proc. ASME 5, 783–787 (2011).

Teixeira, V.

V. Teixeira, E. Sousa, M.F. Costa, C. Nunes, L. Rosa, and M.J. Carvalho, “Spectrally selective composite coatings of Cr-Cr2O3 and Mo-Al2O3 for solar energy applications,” Thin Solid Films 392, 320–326 (2001).
[Crossref]

Vigneron, J.-P.

J.-P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the miller indices of the exposed surface,” Proc. SPIE 6128, 61281G (2006).
[Crossref]

J.-P. Vigneron, F. Forati, D. André, A. Castiaux, I. Derycke, and A. Dereux, “Theory of electromagnetic energy transfer in three-dimensional structures,” Ultramicroscopy 61, 21–27 (1995).
[Crossref]

Wäckelgård, E.

S. Zhao and E. Wäckelgård, “Optimization of solar absorbing three-layer coatings,” Sol. Energ. Mat. Sol. C. 90(3), 243–261 (2006).
[Crossref]

S. Zhao and E. Wäckelgård, “The optical properties of sputtered composite of Al-AlN,” Sol. Energ. Mat. Sol. C. 90(13), 1861–1874 (2006).
[Crossref]

T. Boström, E. Wäckelgård, and G. Westin, “Solution chemical route to nickel-alumina coatings for thermal solar absorbers,” Sol. Energy 74, 497–503 (2003).
[Crossref]

E. Wäckelgård, G.A. Niklasson, and C.G. Granqvist, “Selectively solar-absorbing coatings,” in Solar Energy: The State of the Art, J. Gordon, ed. (Science, 2001), chap. 3.

Werner, D.H.

R.L. Haupt and D.H. Werner, Genetic Algorithms in Electromagnetics (Wiley and Sons, 2007).
[Crossref]

Westin, G.

T. Boström, E. Wäckelgård, and G. Westin, “Solution chemical route to nickel-alumina coatings for thermal solar absorbers,” Sol. Energy 74, 497–503 (2003).
[Crossref]

Woodall, J.M.

J.J. Cuomo, J.F. Ziegler, and J.M. Woodall, “A new concept for solar energy thermal conversion,” Appl. Phys. Lett. 26(10), 557–559 (1975).
[Crossref]

Yugami, H.

M. Shimizu, K. Takeuchi, H. Sai, F. Iguchi, N. Sata, and H. Yugami, “High-temperature solar selective absorber material using surface microcavity structures,” Proc. ASME 5, 783–787 (2011).

Zhang, H.L.

H.L. Zhang, J. Baeyens, J. Degrève, and G. Cacères, “Concentrated solar power plants: Review and design methodology,” Renewable and Sustainable Energy Reviews 22, 466–481 (2013).
[Crossref]

Zhao, S.

S. Zhao and E. Wäckelgård, “Optimization of solar absorbing three-layer coatings,” Sol. Energ. Mat. Sol. C. 90(3), 243–261 (2006).
[Crossref]

S. Zhao and E. Wäckelgård, “The optical properties of sputtered composite of Al-AlN,” Sol. Energ. Mat. Sol. C. 90(13), 1861–1874 (2006).
[Crossref]

Zheng, Y.-X.

Zhou, P.

Ziegler, J.F.

J.J. Cuomo, J.F. Ziegler, and J.M. Woodall, “A new concept for solar energy thermal conversion,” Appl. Phys. Lett. 26(10), 557–559 (1975).
[Crossref]

Adv. Eng. Mater. (1)

A. Lasagni, M. Nejati, R. Clasen, and F. Mücklich, “Periodic surface structuring of metals by laser interference metallurgy as a new fabrication method of textured solar selective absorbers,” Adv. Eng. Mater. 8(6), 580–584 (2006).
[Crossref]

Appl. Phys. Lett. (1)

J.J. Cuomo, J.F. Ziegler, and J.M. Woodall, “A new concept for solar energy thermal conversion,” Appl. Phys. Lett. 26(10), 557–559 (1975).
[Crossref]

Appl. Surf. Sci. (1)

L. Gaouyat, F. Mirabella, and O. Deparis, “Critical tuning of magnetron sputtering process parameters for optimized solar selective absorption of NiCrOx cermet coatings on aluminium substrate,” Appl. Surf. Sci. 271, 113–117 (2013).
[Crossref]

Energy Environ. Sci. (1)

F. Cao, K. McEnaney, G. Chen, and Z. Ren, “A review of cermet-based spectrally selective solar absorbers,” Energy Environ. Sci. 7, 1615–1627 (2014).
[Crossref]

Opt. Express (5)

Proc. ASME (1)

M. Shimizu, K. Takeuchi, H. Sai, F. Iguchi, N. Sata, and H. Yugami, “High-temperature solar selective absorber material using surface microcavity structures,” Proc. ASME 5, 783–787 (2011).

Proc. SPIE (1)

J.-P. Vigneron and V. Lousse, “Variation of a photonic crystal color with the miller indices of the exposed surface,” Proc. SPIE 6128, 61281G (2006).
[Crossref]

Renewable and Sustainable Energy Reviews (1)

H.L. Zhang, J. Baeyens, J. Degrève, and G. Cacères, “Concentrated solar power plants: Review and design methodology,” Renewable and Sustainable Energy Reviews 22, 466–481 (2013).
[Crossref]

Sol. Energ. Mat. Sol. C. (3)

L. Gaouyat, Z. He, J.-F. Colomer, Ph. Lambin, F. Mirabella, D. Schryvers, and O. Deparis, “Revealing the innermost nanostructure of sputtered NiCrOx solar absorber cermets,” Sol. Energ. Mat. Sol. C. 122, 303–308 (2014).
[Crossref]

S. Zhao and E. Wäckelgård, “The optical properties of sputtered composite of Al-AlN,” Sol. Energ. Mat. Sol. C. 90(13), 1861–1874 (2006).
[Crossref]

S. Zhao and E. Wäckelgård, “Optimization of solar absorbing three-layer coatings,” Sol. Energ. Mat. Sol. C. 90(3), 243–261 (2006).
[Crossref]

Sol. Energy (1)

T. Boström, E. Wäckelgård, and G. Westin, “Solution chemical route to nickel-alumina coatings for thermal solar absorbers,” Sol. Energy 74, 497–503 (2003).
[Crossref]

Thin Solid Films (1)

V. Teixeira, E. Sousa, M.F. Costa, C. Nunes, L. Rosa, and M.J. Carvalho, “Spectrally selective composite coatings of Cr-Cr2O3 and Mo-Al2O3 for solar energy applications,” Thin Solid Films 392, 320–326 (2001).
[Crossref]

Ultramicroscopy (1)

J.-P. Vigneron, F. Forati, D. André, A. Castiaux, I. Derycke, and A. Dereux, “Theory of electromagnetic energy transfer in three-dimensional structures,” Ultramicroscopy 61, 21–27 (1995).
[Crossref]

Other (11)

O. Stenzel, The Physics of Thin Film Optical Spectra: An Introduction (Springer, 2005).

C.E. Kennedy, “Review of Mid- to High-Temperature Solar Selective Absorber Materials,” NREL/TP-520-31267, National Renewable Energy Laboratory, Colorado, July 2002.

R.A. Buhrman, “Physics of solar selective surfaces,” in Physics of Solar Selective Surfaces, K.W. Böer, ed. (Springer, 1986, vol. 3), chap. 4.

E. Wäckelgård, G.A. Niklasson, and C.G. Granqvist, “Selectively solar-absorbing coatings,” in Solar Energy: The State of the Art, J. Gordon, ed. (Science, 2001), chap. 3.

J.H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan, 1975).

K.A. De Jong, An analysis of the behaviors of genetic adaptative systems, PhD thesis (University of Michigan, 1975).

D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning (Addison-Weley, 1989).

R. Judson, “Genetic Algorithms and their use in Chemistry,” in Reviews in Computational Chemistry, K.B. Lipkowitz and D.B. Boyd, eds. (VCH, 1997), vol. 10, chap. 1.

R.L. Haupt and D.H. Werner, Genetic Algorithms in Electromagnetics (Wiley and Sons, 2007).
[Crossref]

K. Deb, “Multi-objective evolutionary algorithms: Introducing bias among Pareto-optimal solutions,” in Advances in Evolutionary Computing (Springer-Verlag, 2003), pp. 263–292.
[Crossref]

D. Nicolay, Modélisation et apprentissage des réseaux de neurones artificiels, Master thesis (University of Namur, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1 Waffle-shaped Al structure with NiCrOx and SnO2 conformal coatings. This corrugated structure sits on a semi-infinite Al substrate. This structure is considered for the development of high-performance flat-plate solar thermal collectors.
Fig. 2
Fig. 2 Left: number of Pareto-optimal solutions when searching for P, H, f, r, t1 and t2 with the objective of optimizing the parameters α and ε of a solar thermal collector; Right: reflectance spectrum of the waffle-shaped Al/NiCrOx/SnO2 structure that provides α = 97.8% and ε = 4.8% (solid), a flat Al/NiCrOx/SnO2 structure with t1 = t2 = 50 nm (dashed) and a flat uncoated Al (dot-dashed). The figure includes the normalized solar irradiance spectrum BS(λ) and the normalized black-body spectrum Ba(λ) of the absorber at 373 K.

Tables (1)

Tables Icon

Table 1 Parameters relevant to the optimization of α and ε of a solar thermal collector. The first line corresponds to the solution that maximizes f1 + f2. The next three lines correspond to selected Pareto-optimal solutions.

Metrics