Abstract

A new modulation technique for Continuous Wave (CW) Lidar is presented based on Binary Phase Shift Keying (BPSK) using orthogonal carriers closely spaced in frequency, modulated by Maximum Length (ML) sequences, which have a theoretical autocorrelation function with no sidelobes. This makes it possible to conduct multi-channel atmospheric differential absorption measurements in the presence of thin clouds without the need for further processing to remove errors caused by sidelobe interference while sharing the same modulation bandwidth. Flight tests were performed and data were collected using both BPSK and linear swept frequency modulation. This research shows there is minimal or no sidelobe interference in the presence of thin clouds for BPSK compared to linear swept frequency with significant sidelobe levels. Comparisons between of CO2 optical depth Signal to Noise (SNR) between the BPSK and linear swept frequency cases indicate a 21% drop in SNR for BPSK experimentally using the instrument under consideration.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Advanced sine wave modulation of continuous wave laser system for atmospheric CO2 differential absorption measurements

Joel F. Campbell, Bing Lin, and Amin R. Nehrir
Appl. Opt. 53(5) 816-829 (2014)

Modeling of intensity-modulated continuous-wave laser absorption spectrometer systems for atmospheric CO2 column measurements

Bing Lin, Syed Ismail, F. Wallace Harrison, Edward V. Browell, Amin R. Nehrir, Jeremy Dobler, Berrien Moore, Tamer Refaat, and Susan A. Kooi
Appl. Opt. 52(29) 7062-7077 (2013)

Nonlinear swept frequency technique for CO2 measurements using a CW laser system

Joel F. Campbell
Appl. Opt. 52(13) 3100-3107 (2013)

References

  • View by:
  • |
  • |
  • |

  1. NRC, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, “The National Academies Press, Washington, D.C., 2007
  2. J. F. Campbell, B. Lin, and A. R. Nehrir, “Advanced sine wave modulation of continuous wave laser system for atmospheric CO2 differential absorption measurements,” Appl. Opt. 53(5), 816–829 (2014).
    [Crossref] [PubMed]
  3. J. F. Campbell, N. S. Prasad, and M. A. Flood, “Pseudorandom noise code–based technique for thin-cloud discrimination with CO2 and O2 absorption measurements,” Opt. Eng. 50(12), 126002 (2011).
    [Crossref]
  4. J. F. Campbell, M. A. Flood, N. S. Prasad, and W. D. Hodson, “A low cost remote sensing system using PC and stereo equipment,” Am. J. Phys. 79(12), 1240–1245 (2011).
    [Crossref]
  5. B. Lin, S. Ismail, F. Wallace Harrison, E. V. Browell, A. R. Nehrir, J. Dobler, B. Moore, T. Refaat, and S. A. Kooi, “Modeling of intensity-modulated continuous-wave laser absorption spectrometer systems for atmospheric CO2 column measurements,” Appl. Opt. 52(29), 7062–7077 (2013).
    [Crossref] [PubMed]
  6. J. T. Dobler, F. W. Harrison, E. V. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar,” Appl. Opt. 52(12), 2874–2892 (2013).
    [Crossref] [PubMed]
  7. J. F. Campbell, “Nonlinear swept frequency technique for CO2 measurements using a CW laser system,” Appl. Opt. 52(13), 3100–3107 (2013).
    [Crossref] [PubMed]
  8. M. Obland, C. Antill, E. V. Browell, J. Campbell, S. Chen, C. Cleckner, M. Dijoseph, F. Harrison, S. Ismail, B. Lin, B. Meadows, C. Mills, A. Nehrir, A. Notari, N. Prasad, S. Kooi, N. Vitullo, J. Dobler, J. Bender, N. Blume, M. Braun, S. Horney, D. McGregor, M. Neal, M. Shure, T. Zaccheo, B. Moore, S. Crowell, P. Rayner, and W. Welch, “Technology advancement for the ASCENDS mission using the ASCENDS CarbonHawk Experiment Simulator (ACES),” 2013 AGU Fall Meeting, San Francisco, CA, December 9–13, 2013.
  9. J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).
    [Crossref]
  10. E. Dufour and F. M. Bréon, “Spaceborne estimate of atmospheric CO2 column by use of the differential absorption method: Error analysis,” Appl. Opt. 42(18), 3595–3609 (2003).
    [Crossref] [PubMed]
  11. G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: A sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
    [Crossref]
  12. J. F. Campbell, B. Lin, A. R. Nehrir, F. W. Harrison, and M. D. Obland, “High resolution CW lidar altimetry using repeating intensity modulated waveforms and fourier transform reordering,” Accepted for publication, Opt. Lett. (2014).

2014 (2)

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).
[Crossref]

J. F. Campbell, B. Lin, and A. R. Nehrir, “Advanced sine wave modulation of continuous wave laser system for atmospheric CO2 differential absorption measurements,” Appl. Opt. 53(5), 816–829 (2014).
[Crossref] [PubMed]

2013 (3)

2011 (2)

J. F. Campbell, N. S. Prasad, and M. A. Flood, “Pseudorandom noise code–based technique for thin-cloud discrimination with CO2 and O2 absorption measurements,” Opt. Eng. 50(12), 126002 (2011).
[Crossref]

J. F. Campbell, M. A. Flood, N. S. Prasad, and W. D. Hodson, “A low cost remote sensing system using PC and stereo equipment,” Am. J. Phys. 79(12), 1240–1245 (2011).
[Crossref]

2008 (1)

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: A sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

2003 (1)

Abshire, J. B.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).
[Crossref]

Allan, G. R.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).
[Crossref]

Amediek, A.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: A sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Bréon, F. M.

Browell, E. V.

Campbell, J. F.

J. F. Campbell, B. Lin, and A. R. Nehrir, “Advanced sine wave modulation of continuous wave laser system for atmospheric CO2 differential absorption measurements,” Appl. Opt. 53(5), 816–829 (2014).
[Crossref] [PubMed]

J. F. Campbell, “Nonlinear swept frequency technique for CO2 measurements using a CW laser system,” Appl. Opt. 52(13), 3100–3107 (2013).
[Crossref] [PubMed]

J. F. Campbell, N. S. Prasad, and M. A. Flood, “Pseudorandom noise code–based technique for thin-cloud discrimination with CO2 and O2 absorption measurements,” Opt. Eng. 50(12), 126002 (2011).
[Crossref]

J. F. Campbell, M. A. Flood, N. S. Prasad, and W. D. Hodson, “A low cost remote sensing system using PC and stereo equipment,” Am. J. Phys. 79(12), 1240–1245 (2011).
[Crossref]

J. F. Campbell, B. Lin, A. R. Nehrir, F. W. Harrison, and M. D. Obland, “High resolution CW lidar altimetry using repeating intensity modulated waveforms and fourier transform reordering,” Accepted for publication, Opt. Lett. (2014).

Choi, Y.

Dobler, J.

Dobler, J. T.

Dufour, E.

Ehret, G.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: A sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Fix, A.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: A sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Flood, M. A.

J. F. Campbell, M. A. Flood, N. S. Prasad, and W. D. Hodson, “A low cost remote sensing system using PC and stereo equipment,” Am. J. Phys. 79(12), 1240–1245 (2011).
[Crossref]

J. F. Campbell, N. S. Prasad, and M. A. Flood, “Pseudorandom noise code–based technique for thin-cloud discrimination with CO2 and O2 absorption measurements,” Opt. Eng. 50(12), 126002 (2011).
[Crossref]

Harrison, F. W.

J. T. Dobler, F. W. Harrison, E. V. Browell, B. Lin, D. McGregor, S. Kooi, Y. Choi, and S. Ismail, “Atmospheric CO2 column measurements with an airborne intensity-modulated continuous wave 1.57 μm fiber laser lidar,” Appl. Opt. 52(12), 2874–2892 (2013).
[Crossref] [PubMed]

J. F. Campbell, B. Lin, A. R. Nehrir, F. W. Harrison, and M. D. Obland, “High resolution CW lidar altimetry using repeating intensity modulated waveforms and fourier transform reordering,” Accepted for publication, Opt. Lett. (2014).

Hasselbrack, W. E.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).
[Crossref]

Hodson, W. D.

J. F. Campbell, M. A. Flood, N. S. Prasad, and W. D. Hodson, “A low cost remote sensing system using PC and stereo equipment,” Am. J. Phys. 79(12), 1240–1245 (2011).
[Crossref]

Houweling, S.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: A sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Ismail, S.

Kiemle, C.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: A sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Kooi, S.

Kooi, S. A.

Lin, B.

Mao, J.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).
[Crossref]

McGregor, D.

Moore, B.

Nehrir, A. R.

Obland, M. D.

J. F. Campbell, B. Lin, A. R. Nehrir, F. W. Harrison, and M. D. Obland, “High resolution CW lidar altimetry using repeating intensity modulated waveforms and fourier transform reordering,” Accepted for publication, Opt. Lett. (2014).

Prasad, N. S.

J. F. Campbell, M. A. Flood, N. S. Prasad, and W. D. Hodson, “A low cost remote sensing system using PC and stereo equipment,” Am. J. Phys. 79(12), 1240–1245 (2011).
[Crossref]

J. F. Campbell, N. S. Prasad, and M. A. Flood, “Pseudorandom noise code–based technique for thin-cloud discrimination with CO2 and O2 absorption measurements,” Opt. Eng. 50(12), 126002 (2011).
[Crossref]

Ramanathan, A.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).
[Crossref]

Refaat, T.

Riris, H.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).
[Crossref]

Wallace Harrison, F.

Weaver, C. J.

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).
[Crossref]

Wirth, M.

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: A sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Am. J. Phys. (1)

J. F. Campbell, M. A. Flood, N. S. Prasad, and W. D. Hodson, “A low cost remote sensing system using PC and stereo equipment,” Am. J. Phys. 79(12), 1240–1245 (2011).
[Crossref]

Appl. Opt. (5)

Appl. Phys. B (1)

G. Ehret, C. Kiemle, M. Wirth, A. Amediek, A. Fix, and S. Houweling, “Space-borne remote sensing of CO2, CH4, and N2O by integrated path differential absorption lidar: A sensitivity analysis,” Appl. Phys. B 90(3-4), 593–608 (2008).
[Crossref]

Opt. Eng. (1)

J. F. Campbell, N. S. Prasad, and M. A. Flood, “Pseudorandom noise code–based technique for thin-cloud discrimination with CO2 and O2 absorption measurements,” Opt. Eng. 50(12), 126002 (2011).
[Crossref]

Remote Sens. (1)

J. B. Abshire, A. Ramanathan, H. Riris, J. Mao, G. R. Allan, W. E. Hasselbrack, C. J. Weaver, and E. V. Browell, “Airborne measurements of CO2 column concentration and range using a pulsed direct-detection IPDA lidar,” Remote Sens. 6(1), 443–469 (2014).
[Crossref]

Other (3)

NRC, Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond, “The National Academies Press, Washington, D.C., 2007

M. Obland, C. Antill, E. V. Browell, J. Campbell, S. Chen, C. Cleckner, M. Dijoseph, F. Harrison, S. Ismail, B. Lin, B. Meadows, C. Mills, A. Nehrir, A. Notari, N. Prasad, S. Kooi, N. Vitullo, J. Dobler, J. Bender, N. Blume, M. Braun, S. Horney, D. McGregor, M. Neal, M. Shure, T. Zaccheo, B. Moore, S. Crowell, P. Rayner, and W. Welch, “Technology advancement for the ASCENDS mission using the ASCENDS CarbonHawk Experiment Simulator (ACES),” 2013 AGU Fall Meeting, San Francisco, CA, December 9–13, 2013.

J. F. Campbell, B. Lin, A. R. Nehrir, F. W. Harrison, and M. D. Obland, “High resolution CW lidar altimetry using repeating intensity modulated waveforms and fourier transform reordering,” Accepted for publication, Opt. Lett. (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Baseline instrument block diagram. Here the TIA is the transimpendence amplifier and DAQ is the data acquisition unit..
Fig. 2
Fig. 2 Autocorrelation function using the BPSK reference waveform represented by Eq. (9) is completely lacking in sidelobes or other artifacts, which is the key advantage for using BPSK modulation.
Fig. 3
Fig. 3 Comparison of range profiles from aircraft measurement for swept frequency linear scale (a) and log scale (c) vs. BPSK linear scale (b) and log scale (d) through clouds shows dramatic reduction in side lobe level. Measurements for each case were taken over different altitudes and flight legs.
Fig. 4
Fig. 4 Optical depth measurement for clear sky case for linear swept frequency (a) vs BPSK (b) at 11.4 km altitude using 203200 point frames. Each used the exact same center frequencies for each channel. Optical depth SNR is about 267 for linear swept frequency vs 212 for BPSK over water using 0.1 sec averages. The difference is mainly due to more of the BPSK signal being filtered out because of its wider total bandwidth.

Tables (1)

Tables Icon

Table 1 Modulation parameters used in flight tests. The frequencies f1-f4 represent the center modulation frequency of each channel.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Λ off =1+m ξ off ( t ), Λ on =1+m ξ on ( t ),
P on,k R ( t )= K k r 2   P on,k T ¯ exp( 2S 0 r β( r' )dr' )exp( 2τ )exp( 2τ' )( 1+m ξ on ( t2r/c ) ), P off,k R ( t )= K k r 2   P off,k T ¯ exp( 2S 0 r β( r' )dr' )exp( 2τ )( 1+m ξ off ( t2r/c ) ),
s( t )= k [ C 1k m ξ on ( t2 r k /c )+ C 2k m ξ off ( t2 r k /c ) ] ,
C 1k = K k ' r 2   P on T ¯ exp( 2S 0 r k β( r' )dr' )exp( 2 τ k )exp( 2 τ k ' ), C 2k = K k ' r 2   P off T ¯ exp( 2S 0 r k β( r' )dr' )exp( 2 τ k ),
τ g '= 1 2 ln( C 2g P on T ¯ C 1g P off T ¯ ) 1 2 ln( P off, g R ¯ P on T ¯ P on, g R ¯ P off T ¯ ),
ξ on ( n )=( 2Z( n )1 )cos( 2πn  f on / f s ), ξ off ( n )=( 2Z( n )1 )cos( 2πn  f off / f s ),
f 01 = n 1 2PT , f 02 = n 2 2PT ,..., f 0K = n K 2PT ,
Γ on ( n )=( 2Z( n )1 )exp( 2πin f on / f s ), Γ off ( n )=( 2Z( n )1 )exp( 2πin f off / f s ).
Γ ' on ( n )=Z( n )exp( 2πin f on / f s ),Γ ' off ( n )=Z( n )exp( 2πin f off / f s ).
R( ref,data )= 1 N m=0 N1 re f * ( m )  data( m+n )     =DF T 1 ( DF T * ( re f * )DFT( data ) ),

Metrics