Abstract

We report a new simple and inexpensive sub-micrometer two dimensional patterning technique. This technique combines a use of a photomask featured with self-organized particles in the micro- to nano-meter size range and a photoresist-covered substrate. The photomask was prepared by depositing monodispersed silicon dioxide (SiO2)- or polystyrene- spheres on a quartz substrate to form a close-packed pattern. The patterning technique can be realized in two configurations: a hard-contact mode or a soft-contact mode. In the first configuration, each sphere acts as a micro ball-lens that focuses light and exposes the photoresist underneath the sphere. The developed pattern therefore reproduces exactly the same spatial arrangement as the close-packed spheres but with a feature size of developed hole smaller than the diameter of the sphere. In the soft-contact mode, an air gap of few micrometers thick is introduced between the 2D array of self-organized spheres and the photoresist-covered substrate. In this case, a phase mask behavior is obtained which results in an exposure area with a lattice period being half of the sphere diameter. A 2D lattice structure with period and feature size of a developed hole as small as 750 nm and 420 nm, respectively, was realized in this configuration. We further applied this technique to host the deposition of organic films into the 2D nanostructure and demonstrated the realization of green and red nano-structured OLEDs.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improvement of the light extraction efficiency of top-emitting organic light-emitting diodes by a two-dimensional diffraction layer fabricated using self-assembled nanoparticles

Tsutomu Nakanishi, Toshiro Hiraoka, Akira Fujimoto, Shigeru Matake, Satoshi Okutani, Hiroshi Sano, and Koji Asakawa
Appl. Opt. 48(31) 5889-5896 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. P. Price, J. Henzie, and T. W. Odom, “Addressable, large-area nanoscale organic light-emitting diodes,” Small 3(3), 372–374 (2007).
    [Crossref] [PubMed]
  2. M. Vasilopoulou, D. G. Georgiadou, L. C. Palilis, A. Botsialas, P. S. Petrou, S. E. Kakabakos, and P. Argitis, “Photopatterned PLED arrays for biosensing applications,” Microelectron. Eng. 86(4-6), 1511–1514 (2009).
    [Crossref]
  3. H. Yamamoto, J. Wilkinson, J. P. Long, K. Bussman, J. A. Christodoulides, and Z. H. Kafafi, “Nanoscale organic light-emitting diodes,” Nano Lett. 5(12), 2485–2488 (2005).
    [Crossref] [PubMed]
  4. J. Lu, H. W. Lin, H. Y. Chen, Y. C. Yang, and S. Gwo, “Single InGaN nanodisk light emitting diodes as full-color subwavelength light sources,” Appl. Phys. Lett. 98(23), 233101 (2011).
    [Crossref]
  5. S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
    [Crossref]
  6. F. A. Boroumand, P. W. Fry, and D. G. Lidzey, “Nanoscale conjugated-polymer light-emitting diodes,” Nano Lett. 5(1), 67–71 (2005).
    [Crossref] [PubMed]
  7. W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “A novel self-aligned and maskless process for formation of highly uniform arrays of nanoholes and nanopillars,”',” Nanoscale Res. Lett. 3(3), 123–127 (2008).
    [Crossref]
  8. C. O’Connell, R. Sherlock, and T. J. Glynn, “Fabrication of a reusable microlens array for laser-based structuring,” Opt. Eng. 49(1), 014201 (2010).
    [Crossref]
  9. M. H. Wu and G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as lenses for projection photolithography,” Appl. Phys. Lett. 78(16), 2273 (2001).
    [Crossref]
  10. H. Yamamoto, J. Wilkinson, J. P. Long, K. Bussman, J. A. Christodoulides, and Z. H. Kafafi, “Nanoscale organic light-emitting diodes,” Nano Lett. 5(12), 2485–2488 (2005).
    [Crossref] [PubMed]
  11. K. Trivedi, U. S. Bhansali, B. Gnade, and W. Hu, “The fabrication of high density nanochannel organic light emitting diodes with reduced charge spreading,” Nanotechnology 20(40), 405204 (2009).
    [Crossref] [PubMed]
  12. X. Cheng, Y. Hong, J. Kanicki, and L. J. Guo, “High-resolution organic polymer light-emitting pixels fabricated by imprinting technique,” J. Vac. Sci. Technol. B 20(6), 2877 (2002).
    [Crossref]
  13. C. Piliego, M. Mazzeo, B. Cortese, R. Cingolani, and G. Gigli, “Organic light emitting diodes with highly conductive micropatterned polymer anodes,” Org. Electron. 9(3), 401–406 (2008).
    [Crossref]
  14. Y.-C. Kim and Y. R. Do, “Nanohole-templated organic light-emitting diodes fabricated using laser-interfering lithography: moth-eye lighting,” Opt. Express 13(5), 1598–1603 (2005).
    [Crossref] [PubMed]
  15. J. G. C. Veinot, H. Yan, S. M. Smith, J. Cui, Q. Huang, and T. J. Marks, “Fabrication and properties of organic light-emitting nanodiode arrays,” Nano Lett. 2(4), 333–335 (2002).
    [Crossref]
  16. A. Bolognesi, C. Botta, and S. Yunus, “Micro-patterning of organic light emitting diodes using self-organised honeycomb ordered polymer films,” Thin Solid Films 492(1-2), 307–312 (2005).
    [Crossref]
  17. H. Zappe, Fundamentals of Micro-Optics, (Cambridge University, 2010).
  18. W. Stöber, A. Fink, and E. J. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
    [Crossref]
  19. C.-H. Chan, A. Fischer, A. Martinez-Gil, P. Taillepierre, C.-C. Lee, S.-L. Yang, C.-H. Hou, H.-T. Chien, D.-P. Cai, K.-C. Hsu, and C.-C. Chen, “Anti-reflection layer formed by monolayer of microspheres,” Appl. Phys. B 100(3), 547–551 (2010).
    [Crossref]
  20. C.-H. Chan, C.-H. Hou, C.-K. Huang, T.-J. Chen, S.-Z. Tseng, H.-T. Chien, C.-H. Kuo, K.-H. Hsieh, Y.-L. Tsai, K.-C. Hsu, and C.-C. Chen, “Patterning periodical motif on substrates by monolayer of microspheres: Application on GaN light-emitting diodes,” Jpn. J. Appl. Phys. 48, 020212 (2009).
    [Crossref]
  21. C.-H. Hou, S.-Z. Tseng, C.-H. Chan, T.-J. Chen, H.-T. Chien, F.-L. Hsiao, H.-K. Chiu, C.-C. Lee, Y.-L. Tsai, and C.-C. Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres,” Appl. Phys. Lett. 95(13), 133105 (2009).
    [Crossref]

2011 (1)

J. Lu, H. W. Lin, H. Y. Chen, Y. C. Yang, and S. Gwo, “Single InGaN nanodisk light emitting diodes as full-color subwavelength light sources,” Appl. Phys. Lett. 98(23), 233101 (2011).
[Crossref]

2010 (2)

C. O’Connell, R. Sherlock, and T. J. Glynn, “Fabrication of a reusable microlens array for laser-based structuring,” Opt. Eng. 49(1), 014201 (2010).
[Crossref]

C.-H. Chan, A. Fischer, A. Martinez-Gil, P. Taillepierre, C.-C. Lee, S.-L. Yang, C.-H. Hou, H.-T. Chien, D.-P. Cai, K.-C. Hsu, and C.-C. Chen, “Anti-reflection layer formed by monolayer of microspheres,” Appl. Phys. B 100(3), 547–551 (2010).
[Crossref]

2009 (4)

C.-H. Chan, C.-H. Hou, C.-K. Huang, T.-J. Chen, S.-Z. Tseng, H.-T. Chien, C.-H. Kuo, K.-H. Hsieh, Y.-L. Tsai, K.-C. Hsu, and C.-C. Chen, “Patterning periodical motif on substrates by monolayer of microspheres: Application on GaN light-emitting diodes,” Jpn. J. Appl. Phys. 48, 020212 (2009).
[Crossref]

C.-H. Hou, S.-Z. Tseng, C.-H. Chan, T.-J. Chen, H.-T. Chien, F.-L. Hsiao, H.-K. Chiu, C.-C. Lee, Y.-L. Tsai, and C.-C. Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres,” Appl. Phys. Lett. 95(13), 133105 (2009).
[Crossref]

M. Vasilopoulou, D. G. Georgiadou, L. C. Palilis, A. Botsialas, P. S. Petrou, S. E. Kakabakos, and P. Argitis, “Photopatterned PLED arrays for biosensing applications,” Microelectron. Eng. 86(4-6), 1511–1514 (2009).
[Crossref]

K. Trivedi, U. S. Bhansali, B. Gnade, and W. Hu, “The fabrication of high density nanochannel organic light emitting diodes with reduced charge spreading,” Nanotechnology 20(40), 405204 (2009).
[Crossref] [PubMed]

2008 (2)

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “A novel self-aligned and maskless process for formation of highly uniform arrays of nanoholes and nanopillars,”',” Nanoscale Res. Lett. 3(3), 123–127 (2008).
[Crossref]

C. Piliego, M. Mazzeo, B. Cortese, R. Cingolani, and G. Gigli, “Organic light emitting diodes with highly conductive micropatterned polymer anodes,” Org. Electron. 9(3), 401–406 (2008).
[Crossref]

2007 (1)

S. P. Price, J. Henzie, and T. W. Odom, “Addressable, large-area nanoscale organic light-emitting diodes,” Small 3(3), 372–374 (2007).
[Crossref] [PubMed]

2005 (5)

F. A. Boroumand, P. W. Fry, and D. G. Lidzey, “Nanoscale conjugated-polymer light-emitting diodes,” Nano Lett. 5(1), 67–71 (2005).
[Crossref] [PubMed]

H. Yamamoto, J. Wilkinson, J. P. Long, K. Bussman, J. A. Christodoulides, and Z. H. Kafafi, “Nanoscale organic light-emitting diodes,” Nano Lett. 5(12), 2485–2488 (2005).
[Crossref] [PubMed]

A. Bolognesi, C. Botta, and S. Yunus, “Micro-patterning of organic light emitting diodes using self-organised honeycomb ordered polymer films,” Thin Solid Films 492(1-2), 307–312 (2005).
[Crossref]

H. Yamamoto, J. Wilkinson, J. P. Long, K. Bussman, J. A. Christodoulides, and Z. H. Kafafi, “Nanoscale organic light-emitting diodes,” Nano Lett. 5(12), 2485–2488 (2005).
[Crossref] [PubMed]

Y.-C. Kim and Y. R. Do, “Nanohole-templated organic light-emitting diodes fabricated using laser-interfering lithography: moth-eye lighting,” Opt. Express 13(5), 1598–1603 (2005).
[Crossref] [PubMed]

2002 (2)

X. Cheng, Y. Hong, J. Kanicki, and L. J. Guo, “High-resolution organic polymer light-emitting pixels fabricated by imprinting technique,” J. Vac. Sci. Technol. B 20(6), 2877 (2002).
[Crossref]

J. G. C. Veinot, H. Yan, S. M. Smith, J. Cui, Q. Huang, and T. J. Marks, “Fabrication and properties of organic light-emitting nanodiode arrays,” Nano Lett. 2(4), 333–335 (2002).
[Crossref]

2001 (1)

M. H. Wu and G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as lenses for projection photolithography,” Appl. Phys. Lett. 78(16), 2273 (2001).
[Crossref]

2000 (1)

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[Crossref]

1968 (1)

W. Stöber, A. Fink, and E. J. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Argitis, P.

M. Vasilopoulou, D. G. Georgiadou, L. C. Palilis, A. Botsialas, P. S. Petrou, S. E. Kakabakos, and P. Argitis, “Photopatterned PLED arrays for biosensing applications,” Microelectron. Eng. 86(4-6), 1511–1514 (2009).
[Crossref]

Bhansali, U. S.

K. Trivedi, U. S. Bhansali, B. Gnade, and W. Hu, “The fabrication of high density nanochannel organic light emitting diodes with reduced charge spreading,” Nanotechnology 20(40), 405204 (2009).
[Crossref] [PubMed]

Bohn, E. J.

W. Stöber, A. Fink, and E. J. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Bolognesi, A.

A. Bolognesi, C. Botta, and S. Yunus, “Micro-patterning of organic light emitting diodes using self-organised honeycomb ordered polymer films,” Thin Solid Films 492(1-2), 307–312 (2005).
[Crossref]

Boroumand, F. A.

F. A. Boroumand, P. W. Fry, and D. G. Lidzey, “Nanoscale conjugated-polymer light-emitting diodes,” Nano Lett. 5(1), 67–71 (2005).
[Crossref] [PubMed]

Botsialas, A.

M. Vasilopoulou, D. G. Georgiadou, L. C. Palilis, A. Botsialas, P. S. Petrou, S. E. Kakabakos, and P. Argitis, “Photopatterned PLED arrays for biosensing applications,” Microelectron. Eng. 86(4-6), 1511–1514 (2009).
[Crossref]

Botta, C.

A. Bolognesi, C. Botta, and S. Yunus, “Micro-patterning of organic light emitting diodes using self-organised honeycomb ordered polymer films,” Thin Solid Films 492(1-2), 307–312 (2005).
[Crossref]

Bussman, K.

H. Yamamoto, J. Wilkinson, J. P. Long, K. Bussman, J. A. Christodoulides, and Z. H. Kafafi, “Nanoscale organic light-emitting diodes,” Nano Lett. 5(12), 2485–2488 (2005).
[Crossref] [PubMed]

H. Yamamoto, J. Wilkinson, J. P. Long, K. Bussman, J. A. Christodoulides, and Z. H. Kafafi, “Nanoscale organic light-emitting diodes,” Nano Lett. 5(12), 2485–2488 (2005).
[Crossref] [PubMed]

Cai, D.-P.

C.-H. Chan, A. Fischer, A. Martinez-Gil, P. Taillepierre, C.-C. Lee, S.-L. Yang, C.-H. Hou, H.-T. Chien, D.-P. Cai, K.-C. Hsu, and C.-C. Chen, “Anti-reflection layer formed by monolayer of microspheres,” Appl. Phys. B 100(3), 547–551 (2010).
[Crossref]

Chan, C.-H.

C.-H. Chan, A. Fischer, A. Martinez-Gil, P. Taillepierre, C.-C. Lee, S.-L. Yang, C.-H. Hou, H.-T. Chien, D.-P. Cai, K.-C. Hsu, and C.-C. Chen, “Anti-reflection layer formed by monolayer of microspheres,” Appl. Phys. B 100(3), 547–551 (2010).
[Crossref]

C.-H. Chan, C.-H. Hou, C.-K. Huang, T.-J. Chen, S.-Z. Tseng, H.-T. Chien, C.-H. Kuo, K.-H. Hsieh, Y.-L. Tsai, K.-C. Hsu, and C.-C. Chen, “Patterning periodical motif on substrates by monolayer of microspheres: Application on GaN light-emitting diodes,” Jpn. J. Appl. Phys. 48, 020212 (2009).
[Crossref]

C.-H. Hou, S.-Z. Tseng, C.-H. Chan, T.-J. Chen, H.-T. Chien, F.-L. Hsiao, H.-K. Chiu, C.-C. Lee, Y.-L. Tsai, and C.-C. Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres,” Appl. Phys. Lett. 95(13), 133105 (2009).
[Crossref]

Chen, C.-C.

C.-H. Chan, A. Fischer, A. Martinez-Gil, P. Taillepierre, C.-C. Lee, S.-L. Yang, C.-H. Hou, H.-T. Chien, D.-P. Cai, K.-C. Hsu, and C.-C. Chen, “Anti-reflection layer formed by monolayer of microspheres,” Appl. Phys. B 100(3), 547–551 (2010).
[Crossref]

C.-H. Chan, C.-H. Hou, C.-K. Huang, T.-J. Chen, S.-Z. Tseng, H.-T. Chien, C.-H. Kuo, K.-H. Hsieh, Y.-L. Tsai, K.-C. Hsu, and C.-C. Chen, “Patterning periodical motif on substrates by monolayer of microspheres: Application on GaN light-emitting diodes,” Jpn. J. Appl. Phys. 48, 020212 (2009).
[Crossref]

C.-H. Hou, S.-Z. Tseng, C.-H. Chan, T.-J. Chen, H.-T. Chien, F.-L. Hsiao, H.-K. Chiu, C.-C. Lee, Y.-L. Tsai, and C.-C. Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres,” Appl. Phys. Lett. 95(13), 133105 (2009).
[Crossref]

Chen, H. Y.

J. Lu, H. W. Lin, H. Y. Chen, Y. C. Yang, and S. Gwo, “Single InGaN nanodisk light emitting diodes as full-color subwavelength light sources,” Appl. Phys. Lett. 98(23), 233101 (2011).
[Crossref]

Chen, T.-J.

C.-H. Hou, S.-Z. Tseng, C.-H. Chan, T.-J. Chen, H.-T. Chien, F.-L. Hsiao, H.-K. Chiu, C.-C. Lee, Y.-L. Tsai, and C.-C. Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres,” Appl. Phys. Lett. 95(13), 133105 (2009).
[Crossref]

C.-H. Chan, C.-H. Hou, C.-K. Huang, T.-J. Chen, S.-Z. Tseng, H.-T. Chien, C.-H. Kuo, K.-H. Hsieh, Y.-L. Tsai, K.-C. Hsu, and C.-C. Chen, “Patterning periodical motif on substrates by monolayer of microspheres: Application on GaN light-emitting diodes,” Jpn. J. Appl. Phys. 48, 020212 (2009).
[Crossref]

Cheng, X.

X. Cheng, Y. Hong, J. Kanicki, and L. J. Guo, “High-resolution organic polymer light-emitting pixels fabricated by imprinting technique,” J. Vac. Sci. Technol. B 20(6), 2877 (2002).
[Crossref]

Chien, H.-T.

C.-H. Chan, A. Fischer, A. Martinez-Gil, P. Taillepierre, C.-C. Lee, S.-L. Yang, C.-H. Hou, H.-T. Chien, D.-P. Cai, K.-C. Hsu, and C.-C. Chen, “Anti-reflection layer formed by monolayer of microspheres,” Appl. Phys. B 100(3), 547–551 (2010).
[Crossref]

C.-H. Hou, S.-Z. Tseng, C.-H. Chan, T.-J. Chen, H.-T. Chien, F.-L. Hsiao, H.-K. Chiu, C.-C. Lee, Y.-L. Tsai, and C.-C. Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres,” Appl. Phys. Lett. 95(13), 133105 (2009).
[Crossref]

C.-H. Chan, C.-H. Hou, C.-K. Huang, T.-J. Chen, S.-Z. Tseng, H.-T. Chien, C.-H. Kuo, K.-H. Hsieh, Y.-L. Tsai, K.-C. Hsu, and C.-C. Chen, “Patterning periodical motif on substrates by monolayer of microspheres: Application on GaN light-emitting diodes,” Jpn. J. Appl. Phys. 48, 020212 (2009).
[Crossref]

Chiu, H.-K.

C.-H. Hou, S.-Z. Tseng, C.-H. Chan, T.-J. Chen, H.-T. Chien, F.-L. Hsiao, H.-K. Chiu, C.-C. Lee, Y.-L. Tsai, and C.-C. Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres,” Appl. Phys. Lett. 95(13), 133105 (2009).
[Crossref]

Christodoulides, J. A.

H. Yamamoto, J. Wilkinson, J. P. Long, K. Bussman, J. A. Christodoulides, and Z. H. Kafafi, “Nanoscale organic light-emitting diodes,” Nano Lett. 5(12), 2485–2488 (2005).
[Crossref] [PubMed]

H. Yamamoto, J. Wilkinson, J. P. Long, K. Bussman, J. A. Christodoulides, and Z. H. Kafafi, “Nanoscale organic light-emitting diodes,” Nano Lett. 5(12), 2485–2488 (2005).
[Crossref] [PubMed]

Cingolani, R.

C. Piliego, M. Mazzeo, B. Cortese, R. Cingolani, and G. Gigli, “Organic light emitting diodes with highly conductive micropatterned polymer anodes,” Org. Electron. 9(3), 401–406 (2008).
[Crossref]

Cortese, B.

C. Piliego, M. Mazzeo, B. Cortese, R. Cingolani, and G. Gigli, “Organic light emitting diodes with highly conductive micropatterned polymer anodes,” Org. Electron. 9(3), 401–406 (2008).
[Crossref]

Cui, J.

J. G. C. Veinot, H. Yan, S. M. Smith, J. Cui, Q. Huang, and T. J. Marks, “Fabrication and properties of organic light-emitting nanodiode arrays,” Nano Lett. 2(4), 333–335 (2002).
[Crossref]

Dey, D.

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “A novel self-aligned and maskless process for formation of highly uniform arrays of nanoholes and nanopillars,”',” Nanoscale Res. Lett. 3(3), 123–127 (2008).
[Crossref]

Do, Y. R.

Feldmann, J.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[Crossref]

Fink, A.

W. Stöber, A. Fink, and E. J. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Fischer, A.

C.-H. Chan, A. Fischer, A. Martinez-Gil, P. Taillepierre, C.-C. Lee, S.-L. Yang, C.-H. Hou, H.-T. Chien, D.-P. Cai, K.-C. Hsu, and C.-C. Chen, “Anti-reflection layer formed by monolayer of microspheres,” Appl. Phys. B 100(3), 547–551 (2010).
[Crossref]

Fry, P. W.

F. A. Boroumand, P. W. Fry, and D. G. Lidzey, “Nanoscale conjugated-polymer light-emitting diodes,” Nano Lett. 5(1), 67–71 (2005).
[Crossref] [PubMed]

Georgiadou, D. G.

M. Vasilopoulou, D. G. Georgiadou, L. C. Palilis, A. Botsialas, P. S. Petrou, S. E. Kakabakos, and P. Argitis, “Photopatterned PLED arrays for biosensing applications,” Microelectron. Eng. 86(4-6), 1511–1514 (2009).
[Crossref]

Gigli, G.

C. Piliego, M. Mazzeo, B. Cortese, R. Cingolani, and G. Gigli, “Organic light emitting diodes with highly conductive micropatterned polymer anodes,” Org. Electron. 9(3), 401–406 (2008).
[Crossref]

Glynn, T. J.

C. O’Connell, R. Sherlock, and T. J. Glynn, “Fabrication of a reusable microlens array for laser-based structuring,” Opt. Eng. 49(1), 014201 (2010).
[Crossref]

Gnade, B.

K. Trivedi, U. S. Bhansali, B. Gnade, and W. Hu, “The fabrication of high density nanochannel organic light emitting diodes with reduced charge spreading,” Nanotechnology 20(40), 405204 (2009).
[Crossref] [PubMed]

Gombert, A.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[Crossref]

Guo, L. J.

X. Cheng, Y. Hong, J. Kanicki, and L. J. Guo, “High-resolution organic polymer light-emitting pixels fabricated by imprinting technique,” J. Vac. Sci. Technol. B 20(6), 2877 (2002).
[Crossref]

Gwo, S.

J. Lu, H. W. Lin, H. Y. Chen, Y. C. Yang, and S. Gwo, “Single InGaN nanodisk light emitting diodes as full-color subwavelength light sources,” Appl. Phys. Lett. 98(23), 233101 (2011).
[Crossref]

Henzie, J.

S. P. Price, J. Henzie, and T. W. Odom, “Addressable, large-area nanoscale organic light-emitting diodes,” Small 3(3), 372–374 (2007).
[Crossref] [PubMed]

Hong, Y.

X. Cheng, Y. Hong, J. Kanicki, and L. J. Guo, “High-resolution organic polymer light-emitting pixels fabricated by imprinting technique,” J. Vac. Sci. Technol. B 20(6), 2877 (2002).
[Crossref]

Hou, C.-H.

C.-H. Chan, A. Fischer, A. Martinez-Gil, P. Taillepierre, C.-C. Lee, S.-L. Yang, C.-H. Hou, H.-T. Chien, D.-P. Cai, K.-C. Hsu, and C.-C. Chen, “Anti-reflection layer formed by monolayer of microspheres,” Appl. Phys. B 100(3), 547–551 (2010).
[Crossref]

C.-H. Chan, C.-H. Hou, C.-K. Huang, T.-J. Chen, S.-Z. Tseng, H.-T. Chien, C.-H. Kuo, K.-H. Hsieh, Y.-L. Tsai, K.-C. Hsu, and C.-C. Chen, “Patterning periodical motif on substrates by monolayer of microspheres: Application on GaN light-emitting diodes,” Jpn. J. Appl. Phys. 48, 020212 (2009).
[Crossref]

C.-H. Hou, S.-Z. Tseng, C.-H. Chan, T.-J. Chen, H.-T. Chien, F.-L. Hsiao, H.-K. Chiu, C.-C. Lee, Y.-L. Tsai, and C.-C. Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres,” Appl. Phys. Lett. 95(13), 133105 (2009).
[Crossref]

Hsiao, F.-L.

C.-H. Hou, S.-Z. Tseng, C.-H. Chan, T.-J. Chen, H.-T. Chien, F.-L. Hsiao, H.-K. Chiu, C.-C. Lee, Y.-L. Tsai, and C.-C. Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres,” Appl. Phys. Lett. 95(13), 133105 (2009).
[Crossref]

Hsieh, K.-H.

C.-H. Chan, C.-H. Hou, C.-K. Huang, T.-J. Chen, S.-Z. Tseng, H.-T. Chien, C.-H. Kuo, K.-H. Hsieh, Y.-L. Tsai, K.-C. Hsu, and C.-C. Chen, “Patterning periodical motif on substrates by monolayer of microspheres: Application on GaN light-emitting diodes,” Jpn. J. Appl. Phys. 48, 020212 (2009).
[Crossref]

Hsu, K.-C.

C.-H. Chan, A. Fischer, A. Martinez-Gil, P. Taillepierre, C.-C. Lee, S.-L. Yang, C.-H. Hou, H.-T. Chien, D.-P. Cai, K.-C. Hsu, and C.-C. Chen, “Anti-reflection layer formed by monolayer of microspheres,” Appl. Phys. B 100(3), 547–551 (2010).
[Crossref]

C.-H. Chan, C.-H. Hou, C.-K. Huang, T.-J. Chen, S.-Z. Tseng, H.-T. Chien, C.-H. Kuo, K.-H. Hsieh, Y.-L. Tsai, K.-C. Hsu, and C.-C. Chen, “Patterning periodical motif on substrates by monolayer of microspheres: Application on GaN light-emitting diodes,” Jpn. J. Appl. Phys. 48, 020212 (2009).
[Crossref]

Hu, W.

K. Trivedi, U. S. Bhansali, B. Gnade, and W. Hu, “The fabrication of high density nanochannel organic light emitting diodes with reduced charge spreading,” Nanotechnology 20(40), 405204 (2009).
[Crossref] [PubMed]

Huang, C.-K.

C.-H. Chan, C.-H. Hou, C.-K. Huang, T.-J. Chen, S.-Z. Tseng, H.-T. Chien, C.-H. Kuo, K.-H. Hsieh, Y.-L. Tsai, K.-C. Hsu, and C.-C. Chen, “Patterning periodical motif on substrates by monolayer of microspheres: Application on GaN light-emitting diodes,” Jpn. J. Appl. Phys. 48, 020212 (2009).
[Crossref]

Huang, Q.

J. G. C. Veinot, H. Yan, S. M. Smith, J. Cui, Q. Huang, and T. J. Marks, “Fabrication and properties of organic light-emitting nanodiode arrays,” Nano Lett. 2(4), 333–335 (2002).
[Crossref]

Kafafi, Z. H.

H. Yamamoto, J. Wilkinson, J. P. Long, K. Bussman, J. A. Christodoulides, and Z. H. Kafafi, “Nanoscale organic light-emitting diodes,” Nano Lett. 5(12), 2485–2488 (2005).
[Crossref] [PubMed]

H. Yamamoto, J. Wilkinson, J. P. Long, K. Bussman, J. A. Christodoulides, and Z. H. Kafafi, “Nanoscale organic light-emitting diodes,” Nano Lett. 5(12), 2485–2488 (2005).
[Crossref] [PubMed]

Kakabakos, S. E.

M. Vasilopoulou, D. G. Georgiadou, L. C. Palilis, A. Botsialas, P. S. Petrou, S. E. Kakabakos, and P. Argitis, “Photopatterned PLED arrays for biosensing applications,” Microelectron. Eng. 86(4-6), 1511–1514 (2009).
[Crossref]

Kallinger, C.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[Crossref]

Kanicki, J.

X. Cheng, Y. Hong, J. Kanicki, and L. J. Guo, “High-resolution organic polymer light-emitting pixels fabricated by imprinting technique,” J. Vac. Sci. Technol. B 20(6), 2877 (2002).
[Crossref]

Katsnelson, A.

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “A novel self-aligned and maskless process for formation of highly uniform arrays of nanoholes and nanopillars,”',” Nanoscale Res. Lett. 3(3), 123–127 (2008).
[Crossref]

Kim, Y.-C.

Kuo, C.-H.

C.-H. Chan, C.-H. Hou, C.-K. Huang, T.-J. Chen, S.-Z. Tseng, H.-T. Chien, C.-H. Kuo, K.-H. Hsieh, Y.-L. Tsai, K.-C. Hsu, and C.-C. Chen, “Patterning periodical motif on substrates by monolayer of microspheres: Application on GaN light-emitting diodes,” Jpn. J. Appl. Phys. 48, 020212 (2009).
[Crossref]

Lee, C.-C.

C.-H. Chan, A. Fischer, A. Martinez-Gil, P. Taillepierre, C.-C. Lee, S.-L. Yang, C.-H. Hou, H.-T. Chien, D.-P. Cai, K.-C. Hsu, and C.-C. Chen, “Anti-reflection layer formed by monolayer of microspheres,” Appl. Phys. B 100(3), 547–551 (2010).
[Crossref]

C.-H. Hou, S.-Z. Tseng, C.-H. Chan, T.-J. Chen, H.-T. Chien, F.-L. Hsiao, H.-K. Chiu, C.-C. Lee, Y.-L. Tsai, and C.-C. Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres,” Appl. Phys. Lett. 95(13), 133105 (2009).
[Crossref]

Lemmer, U.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[Crossref]

Lidzey, D. G.

F. A. Boroumand, P. W. Fry, and D. G. Lidzey, “Nanoscale conjugated-polymer light-emitting diodes,” Nano Lett. 5(1), 67–71 (2005).
[Crossref] [PubMed]

Lin, H. W.

J. Lu, H. W. Lin, H. Y. Chen, Y. C. Yang, and S. Gwo, “Single InGaN nanodisk light emitting diodes as full-color subwavelength light sources,” Appl. Phys. Lett. 98(23), 233101 (2011).
[Crossref]

Long, J. P.

H. Yamamoto, J. Wilkinson, J. P. Long, K. Bussman, J. A. Christodoulides, and Z. H. Kafafi, “Nanoscale organic light-emitting diodes,” Nano Lett. 5(12), 2485–2488 (2005).
[Crossref] [PubMed]

H. Yamamoto, J. Wilkinson, J. P. Long, K. Bussman, J. A. Christodoulides, and Z. H. Kafafi, “Nanoscale organic light-emitting diodes,” Nano Lett. 5(12), 2485–2488 (2005).
[Crossref] [PubMed]

Lu, J.

J. Lu, H. W. Lin, H. Y. Chen, Y. C. Yang, and S. Gwo, “Single InGaN nanodisk light emitting diodes as full-color subwavelength light sources,” Appl. Phys. Lett. 98(23), 233101 (2011).
[Crossref]

Marks, T. J.

J. G. C. Veinot, H. Yan, S. M. Smith, J. Cui, Q. Huang, and T. J. Marks, “Fabrication and properties of organic light-emitting nanodiode arrays,” Nano Lett. 2(4), 333–335 (2002).
[Crossref]

Martinez-Gil, A.

C.-H. Chan, A. Fischer, A. Martinez-Gil, P. Taillepierre, C.-C. Lee, S.-L. Yang, C.-H. Hou, H.-T. Chien, D.-P. Cai, K.-C. Hsu, and C.-C. Chen, “Anti-reflection layer formed by monolayer of microspheres,” Appl. Phys. B 100(3), 547–551 (2010).
[Crossref]

Mazzeo, M.

C. Piliego, M. Mazzeo, B. Cortese, R. Cingolani, and G. Gigli, “Organic light emitting diodes with highly conductive micropatterned polymer anodes,” Org. Electron. 9(3), 401–406 (2008).
[Crossref]

Memis, O. G.

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “A novel self-aligned and maskless process for formation of highly uniform arrays of nanoholes and nanopillars,”',” Nanoscale Res. Lett. 3(3), 123–127 (2008).
[Crossref]

Mohseni, H.

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “A novel self-aligned and maskless process for formation of highly uniform arrays of nanoholes and nanopillars,”',” Nanoscale Res. Lett. 3(3), 123–127 (2008).
[Crossref]

O’Connell, C.

C. O’Connell, R. Sherlock, and T. J. Glynn, “Fabrication of a reusable microlens array for laser-based structuring,” Opt. Eng. 49(1), 014201 (2010).
[Crossref]

Odom, T. W.

S. P. Price, J. Henzie, and T. W. Odom, “Addressable, large-area nanoscale organic light-emitting diodes,” Small 3(3), 372–374 (2007).
[Crossref] [PubMed]

Palilis, L. C.

M. Vasilopoulou, D. G. Georgiadou, L. C. Palilis, A. Botsialas, P. S. Petrou, S. E. Kakabakos, and P. Argitis, “Photopatterned PLED arrays for biosensing applications,” Microelectron. Eng. 86(4-6), 1511–1514 (2009).
[Crossref]

Petrou, P. S.

M. Vasilopoulou, D. G. Georgiadou, L. C. Palilis, A. Botsialas, P. S. Petrou, S. E. Kakabakos, and P. Argitis, “Photopatterned PLED arrays for biosensing applications,” Microelectron. Eng. 86(4-6), 1511–1514 (2009).
[Crossref]

Piliego, C.

C. Piliego, M. Mazzeo, B. Cortese, R. Cingolani, and G. Gigli, “Organic light emitting diodes with highly conductive micropatterned polymer anodes,” Org. Electron. 9(3), 401–406 (2008).
[Crossref]

Price, S. P.

S. P. Price, J. Henzie, and T. W. Odom, “Addressable, large-area nanoscale organic light-emitting diodes,” Small 3(3), 372–374 (2007).
[Crossref] [PubMed]

Riechel, S.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[Crossref]

Scherf, U.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[Crossref]

Sherlock, R.

C. O’Connell, R. Sherlock, and T. J. Glynn, “Fabrication of a reusable microlens array for laser-based structuring,” Opt. Eng. 49(1), 014201 (2010).
[Crossref]

Smith, S. M.

J. G. C. Veinot, H. Yan, S. M. Smith, J. Cui, Q. Huang, and T. J. Marks, “Fabrication and properties of organic light-emitting nanodiode arrays,” Nano Lett. 2(4), 333–335 (2002).
[Crossref]

Stöber, W.

W. Stöber, A. Fink, and E. J. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Taillepierre, P.

C.-H. Chan, A. Fischer, A. Martinez-Gil, P. Taillepierre, C.-C. Lee, S.-L. Yang, C.-H. Hou, H.-T. Chien, D.-P. Cai, K.-C. Hsu, and C.-C. Chen, “Anti-reflection layer formed by monolayer of microspheres,” Appl. Phys. B 100(3), 547–551 (2010).
[Crossref]

Trivedi, K.

K. Trivedi, U. S. Bhansali, B. Gnade, and W. Hu, “The fabrication of high density nanochannel organic light emitting diodes with reduced charge spreading,” Nanotechnology 20(40), 405204 (2009).
[Crossref] [PubMed]

Tsai, Y.-L.

C.-H. Hou, S.-Z. Tseng, C.-H. Chan, T.-J. Chen, H.-T. Chien, F.-L. Hsiao, H.-K. Chiu, C.-C. Lee, Y.-L. Tsai, and C.-C. Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres,” Appl. Phys. Lett. 95(13), 133105 (2009).
[Crossref]

C.-H. Chan, C.-H. Hou, C.-K. Huang, T.-J. Chen, S.-Z. Tseng, H.-T. Chien, C.-H. Kuo, K.-H. Hsieh, Y.-L. Tsai, K.-C. Hsu, and C.-C. Chen, “Patterning periodical motif on substrates by monolayer of microspheres: Application on GaN light-emitting diodes,” Jpn. J. Appl. Phys. 48, 020212 (2009).
[Crossref]

Tseng, S.-Z.

C.-H. Hou, S.-Z. Tseng, C.-H. Chan, T.-J. Chen, H.-T. Chien, F.-L. Hsiao, H.-K. Chiu, C.-C. Lee, Y.-L. Tsai, and C.-C. Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres,” Appl. Phys. Lett. 95(13), 133105 (2009).
[Crossref]

C.-H. Chan, C.-H. Hou, C.-K. Huang, T.-J. Chen, S.-Z. Tseng, H.-T. Chien, C.-H. Kuo, K.-H. Hsieh, Y.-L. Tsai, K.-C. Hsu, and C.-C. Chen, “Patterning periodical motif on substrates by monolayer of microspheres: Application on GaN light-emitting diodes,” Jpn. J. Appl. Phys. 48, 020212 (2009).
[Crossref]

Vasilopoulou, M.

M. Vasilopoulou, D. G. Georgiadou, L. C. Palilis, A. Botsialas, P. S. Petrou, S. E. Kakabakos, and P. Argitis, “Photopatterned PLED arrays for biosensing applications,” Microelectron. Eng. 86(4-6), 1511–1514 (2009).
[Crossref]

Veinot, J. G. C.

J. G. C. Veinot, H. Yan, S. M. Smith, J. Cui, Q. Huang, and T. J. Marks, “Fabrication and properties of organic light-emitting nanodiode arrays,” Nano Lett. 2(4), 333–335 (2002).
[Crossref]

Whitesides, G. M.

M. H. Wu and G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as lenses for projection photolithography,” Appl. Phys. Lett. 78(16), 2273 (2001).
[Crossref]

Wilkinson, J.

H. Yamamoto, J. Wilkinson, J. P. Long, K. Bussman, J. A. Christodoulides, and Z. H. Kafafi, “Nanoscale organic light-emitting diodes,” Nano Lett. 5(12), 2485–2488 (2005).
[Crossref] [PubMed]

H. Yamamoto, J. Wilkinson, J. P. Long, K. Bussman, J. A. Christodoulides, and Z. H. Kafafi, “Nanoscale organic light-emitting diodes,” Nano Lett. 5(12), 2485–2488 (2005).
[Crossref] [PubMed]

Wittwer, V.

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[Crossref]

Wu, M. H.

M. H. Wu and G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as lenses for projection photolithography,” Appl. Phys. Lett. 78(16), 2273 (2001).
[Crossref]

Wu, W.

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “A novel self-aligned and maskless process for formation of highly uniform arrays of nanoholes and nanopillars,”',” Nanoscale Res. Lett. 3(3), 123–127 (2008).
[Crossref]

Yamamoto, H.

H. Yamamoto, J. Wilkinson, J. P. Long, K. Bussman, J. A. Christodoulides, and Z. H. Kafafi, “Nanoscale organic light-emitting diodes,” Nano Lett. 5(12), 2485–2488 (2005).
[Crossref] [PubMed]

H. Yamamoto, J. Wilkinson, J. P. Long, K. Bussman, J. A. Christodoulides, and Z. H. Kafafi, “Nanoscale organic light-emitting diodes,” Nano Lett. 5(12), 2485–2488 (2005).
[Crossref] [PubMed]

Yan, H.

J. G. C. Veinot, H. Yan, S. M. Smith, J. Cui, Q. Huang, and T. J. Marks, “Fabrication and properties of organic light-emitting nanodiode arrays,” Nano Lett. 2(4), 333–335 (2002).
[Crossref]

Yang, S.-L.

C.-H. Chan, A. Fischer, A. Martinez-Gil, P. Taillepierre, C.-C. Lee, S.-L. Yang, C.-H. Hou, H.-T. Chien, D.-P. Cai, K.-C. Hsu, and C.-C. Chen, “Anti-reflection layer formed by monolayer of microspheres,” Appl. Phys. B 100(3), 547–551 (2010).
[Crossref]

Yang, Y. C.

J. Lu, H. W. Lin, H. Y. Chen, Y. C. Yang, and S. Gwo, “Single InGaN nanodisk light emitting diodes as full-color subwavelength light sources,” Appl. Phys. Lett. 98(23), 233101 (2011).
[Crossref]

Yunus, S.

A. Bolognesi, C. Botta, and S. Yunus, “Micro-patterning of organic light emitting diodes using self-organised honeycomb ordered polymer films,” Thin Solid Films 492(1-2), 307–312 (2005).
[Crossref]

Appl. Phys. B (1)

C.-H. Chan, A. Fischer, A. Martinez-Gil, P. Taillepierre, C.-C. Lee, S.-L. Yang, C.-H. Hou, H.-T. Chien, D.-P. Cai, K.-C. Hsu, and C.-C. Chen, “Anti-reflection layer formed by monolayer of microspheres,” Appl. Phys. B 100(3), 547–551 (2010).
[Crossref]

Appl. Phys. Lett. (4)

J. Lu, H. W. Lin, H. Y. Chen, Y. C. Yang, and S. Gwo, “Single InGaN nanodisk light emitting diodes as full-color subwavelength light sources,” Appl. Phys. Lett. 98(23), 233101 (2011).
[Crossref]

S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000).
[Crossref]

M. H. Wu and G. M. Whitesides, “Fabrication of arrays of two-dimensional micropatterns using microspheres as lenses for projection photolithography,” Appl. Phys. Lett. 78(16), 2273 (2001).
[Crossref]

C.-H. Hou, S.-Z. Tseng, C.-H. Chan, T.-J. Chen, H.-T. Chien, F.-L. Hsiao, H.-K. Chiu, C.-C. Lee, Y.-L. Tsai, and C.-C. Chen, “Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres,” Appl. Phys. Lett. 95(13), 133105 (2009).
[Crossref]

J. Colloid Interface Sci. (1)

W. Stöber, A. Fink, and E. J. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

J. Vac. Sci. Technol. B (1)

X. Cheng, Y. Hong, J. Kanicki, and L. J. Guo, “High-resolution organic polymer light-emitting pixels fabricated by imprinting technique,” J. Vac. Sci. Technol. B 20(6), 2877 (2002).
[Crossref]

Jpn. J. Appl. Phys. (1)

C.-H. Chan, C.-H. Hou, C.-K. Huang, T.-J. Chen, S.-Z. Tseng, H.-T. Chien, C.-H. Kuo, K.-H. Hsieh, Y.-L. Tsai, K.-C. Hsu, and C.-C. Chen, “Patterning periodical motif on substrates by monolayer of microspheres: Application on GaN light-emitting diodes,” Jpn. J. Appl. Phys. 48, 020212 (2009).
[Crossref]

Microelectron. Eng. (1)

M. Vasilopoulou, D. G. Georgiadou, L. C. Palilis, A. Botsialas, P. S. Petrou, S. E. Kakabakos, and P. Argitis, “Photopatterned PLED arrays for biosensing applications,” Microelectron. Eng. 86(4-6), 1511–1514 (2009).
[Crossref]

Nano Lett. (4)

H. Yamamoto, J. Wilkinson, J. P. Long, K. Bussman, J. A. Christodoulides, and Z. H. Kafafi, “Nanoscale organic light-emitting diodes,” Nano Lett. 5(12), 2485–2488 (2005).
[Crossref] [PubMed]

H. Yamamoto, J. Wilkinson, J. P. Long, K. Bussman, J. A. Christodoulides, and Z. H. Kafafi, “Nanoscale organic light-emitting diodes,” Nano Lett. 5(12), 2485–2488 (2005).
[Crossref] [PubMed]

F. A. Boroumand, P. W. Fry, and D. G. Lidzey, “Nanoscale conjugated-polymer light-emitting diodes,” Nano Lett. 5(1), 67–71 (2005).
[Crossref] [PubMed]

J. G. C. Veinot, H. Yan, S. M. Smith, J. Cui, Q. Huang, and T. J. Marks, “Fabrication and properties of organic light-emitting nanodiode arrays,” Nano Lett. 2(4), 333–335 (2002).
[Crossref]

Nanoscale Res. Lett. (1)

W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “A novel self-aligned and maskless process for formation of highly uniform arrays of nanoholes and nanopillars,”',” Nanoscale Res. Lett. 3(3), 123–127 (2008).
[Crossref]

Nanotechnology (1)

K. Trivedi, U. S. Bhansali, B. Gnade, and W. Hu, “The fabrication of high density nanochannel organic light emitting diodes with reduced charge spreading,” Nanotechnology 20(40), 405204 (2009).
[Crossref] [PubMed]

Opt. Eng. (1)

C. O’Connell, R. Sherlock, and T. J. Glynn, “Fabrication of a reusable microlens array for laser-based structuring,” Opt. Eng. 49(1), 014201 (2010).
[Crossref]

Opt. Express (1)

Org. Electron. (1)

C. Piliego, M. Mazzeo, B. Cortese, R. Cingolani, and G. Gigli, “Organic light emitting diodes with highly conductive micropatterned polymer anodes,” Org. Electron. 9(3), 401–406 (2008).
[Crossref]

Small (1)

S. P. Price, J. Henzie, and T. W. Odom, “Addressable, large-area nanoscale organic light-emitting diodes,” Small 3(3), 372–374 (2007).
[Crossref] [PubMed]

Thin Solid Films (1)

A. Bolognesi, C. Botta, and S. Yunus, “Micro-patterning of organic light emitting diodes using self-organised honeycomb ordered polymer films,” Thin Solid Films 492(1-2), 307–312 (2005).
[Crossref]

Other (1)

H. Zappe, Fundamentals of Micro-Optics, (Cambridge University, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 FDTD simulation illustrating the principle of microsphere based photolithography: NP: nanoparticles, SP: Spacing, PR: photoresist, SB: Substrate. The light is focused by the microspheres (a) Electric field distribution in the hard-contact mode. The green line indicates where the intensity profile is calculated. (b) Intensity profile in the hard contact mode. (c) Electric field distribution in the soft-contact mode. The green line indicates where the intensity profile is calculated; (d) Intensity profile in the soft-contact mode.
Fig. 2
Fig. 2 (a) Schematic showing the optical path and the interference conditions. MS1, MS2: Microspheres (center O1 and O2), D: diameter and lattice, BFL: back focal length, h: distance from the plane of focus to the plan of interference. (b) The aperture Angles θmax and the phase-mask angle of the orders ± θ1 as a function of the diameter D of the microspheres. (c) Effective distance S for the existence of the interference between the orders + 1 and −1 calculated from Eq. (8).
Fig. 3
Fig. 3 Fabrication process of micro-nanoOLEDs. (a) schematic of the contour mask (left) and of the photomask made of self-organized micro-nanoparticles (right). (b) the different steps of the process.
Fig. 4
Fig. 4 Band diagram of the organic heterostructures (a) organic heterostructure for green emission (b) organic heterostructure for red emission.
Fig. 5
Fig. 5 (a) Optical microscope image of the 17x25mm photomask covered with 1.68 µm self-organized polystyrene micro-nanoparticles. (b) SEM image of the self-organized polystyrene micro-nanoparticles (1.68 µm-diameter) (c) SEM image of the patterned photoresist (1.68 µm lattice). (d) Atomic force microscope image of a patterned photoresist (1.68 µm lattice). (e) Unpatterned glass substrate with the ITO layer (f), (g) (h) different diffracted colors of the patterned substrate for different viewing angles.
Fig. 6
Fig. 6 Red and green Micro-OLEDs. (a) Optical microscope image of an array of red OLEDs (λ = 620 nm, diameter is 1.2 µm, size of PS micro-nanoparticles is 1.68 µm) (b) Optical microscope image of an array green OLEDs (λ = 520m OLED diameter is 1.2 µm, size of PS micro nanoparticle is 1.68 µm), (c) Optical microscope image of large area of a green OLED (OLED diameter is 1.2 µm, size of PS micro nanoparticles is 1.68 µm).
Fig. 7
Fig. 7 IVL curves of the green patterned and unpatterned OLEDs. Current as function of the voltage (IV) (left). Luminance as a function of the voltage (LV)(Right).
Fig. 8
Fig. 8 Optical microscope image showing a patterned photoresist with an irregular thickness. The pattern exhibits two lattice periods. D = 1.68 µm (unreduced) and D/2 = 840 nm (reduced) periods created on the same sample with the same photomask. (size of spheres is 1.68 µm).
Fig. 9
Fig. 9 The dependence of the lattice and of the size of holes as a function of the micro nanoparticle diameter: ● The period of the pattern in the hard-contact mode (unreduced period), ○ Diameter of the holes in the hard-contact mode, ■ Reduced period of the pattern in the soft-contact mode, □ The diameter of holes in the soft-contact mode.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

mλ= ( n a r sin ( θ i ) + n m sin ( θ 1 ) ) D
BFL=EFL D 2 = n bl D 4( n bl 1 ) D 2
NA=2a ( n bl 1 ) n bl D
sin( θ max ) = 1 n m 2( n bl 1 ) n bl
sin( θ max ) = sin( θ 1 ) = m λ n m D
D θ = m n bl λ 2( n bl 1 )
h = D 2.tan( θ max )
S = BFL + h
S = D ( n bl 4( n bl 1 ) 1 2 + ( n m n bl 2( n bl 1 ) ) 2 1 )

Metrics