Abstract

The control and tailoring of infrared absorbance/emittance is a crucial task for all those applications involving thermal radiation management and detection. We theoretically investigated the peculiar absorbing/emitting behaviour of pre-fractal Cantor multilayers, in order to design a polarization-insensitive multilayer stack absorbing over a wide angular lobe in the mid wavelength infrared range (8-10 μm). Using transfer matrix method, we explored the spectral properties arising from both the material and the geometrical dispersion. We considered several combinations of the constituent materials: SiO2 was combined with TiO2 and Si, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
One-dimensional fractal photonic crystal and its characteristics

Pan Xu, HuiPing Tian, and YueFeng Ji
J. Opt. Soc. Am. B 27(4) 640-647 (2010)

Wide-angle and polarization independent perfect absorber based on one-dimensional fabrication-tolerant stacked array

Rui Feng, Jun Qiu, Yongyin Cao, Linhua Liu, Weiqiang Ding, and Lixue Chen
Opt. Express 23(16) 21023-21031 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. Mattiucci, R. Trimm, G. D’Aguanno, N. Aközbek, and M. J. Bloemer, “Tunable, narrow-band, all-metallic microwave absorber,” Appl. Phys. Lett. 101(14), 141115 (2012).
    [Crossref]
  2. Y. Nam, Y. Xiang Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophoto-voltaic energy conversion systems with two- dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
    [Crossref]
  3. P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
    [Crossref]
  4. Z. Lu, M. Zhao, Z. Y. Yang, L. Wu, P. Zhang, Y. Zheng, and J. Duan, “Broadband polarization-insensitive absorbers in 0.3–2.5 μm using helical metamaterials,” J. Opt. Soc. Am. B 30(5), 1368–1372 (2013).
    [Crossref]
  5. G. D’Aguanno, N. Mattiucci, A. Alù, C. Argyropoulos, J. V. Foreman, and M. J. Bloemer, “Thermal emission from a metamaterial wire medium slab,” Opt. Express 20(9), 9784–9789 (2012).
    [Crossref] [PubMed]
  6. I. S. Nefedov, C. A. Valaginnopoulos, and L. A. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15(11), 114003 (2013).
    [Crossref]
  7. D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
    [Crossref]
  8. D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2013).
  9. I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
    [Crossref] [PubMed]
  10. C. Sibilia, M. Scalora, M. Centini, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric photonic band gap structures,” J. Opt. A, Pure Appl. Opt. 1(4), 490–494 (1999).
    [Crossref]
  11. L.-H. Zhu, M.-R. Shao, R.-W. Peng, R.-H. Fan, X.-R. Huang, and M. Wang, “Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal,” Opt. Express 21(S3Suppl 3), A313–A323 (2013).
    [Crossref] [PubMed]
  12. M. C. Larciprete, A. Belardini, R. Voti, and C. Sibilia, “Pre-fractal multilayer structure for polarization- insensitive temporally and spatially coherent thermal emitter,” Opt. Express 21(S3Suppl 3), A576–A584 (2013).
    [Crossref] [PubMed]
  13. Handbook of Optical Constants of Solids II. Subpart 3: Insulators, Edward D. Palik ed. (Academic Press, 1985).
  14. C. T. Kirk, “Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica,” Phys. Rev. B Condens. Matter 38(2), 1255–1273 (1988).
    [Crossref] [PubMed]
  15. N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
    [Crossref] [PubMed]
  16. M. C. Larciprete, C. Sibilia, S. Paoloni, G. Leahu, R. Li Voti, M. Bertolotti, M. Scalora, and K. Panajotov, “Thermally induced transmission variations in ZnSe/MgF2 photonic band gap structures,” J. Appl. Phys. 92(5), 2251–2255 (2002).
    [Crossref]
  17. C. Sibilia, P. Masciulli, and M. Bertolotti, “Optical properties of quasiperiodic (self-similar) structures,” Pure Appl. Opt. 7(2), 383–391 (1998).
    [Crossref]
  18. S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132(2), 023301 (2010).
    [Crossref]
  19. P. Martyniuk and A. Rogalski, “Quantum-dot infrared photo-detectors: status and outlook,” Prog. Quantum Electron. 32(3-4), 89–120 (2008).
    [Crossref]

2014 (2)

Y. Nam, Y. Xiang Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophoto-voltaic energy conversion systems with two- dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

2013 (8)

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2013).

I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
[Crossref] [PubMed]

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

Z. Lu, M. Zhao, Z. Y. Yang, L. Wu, P. Zhang, Y. Zheng, and J. Duan, “Broadband polarization-insensitive absorbers in 0.3–2.5 μm using helical metamaterials,” J. Opt. Soc. Am. B 30(5), 1368–1372 (2013).
[Crossref]

I. S. Nefedov, C. A. Valaginnopoulos, and L. A. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15(11), 114003 (2013).
[Crossref]

L.-H. Zhu, M.-R. Shao, R.-W. Peng, R.-H. Fan, X.-R. Huang, and M. Wang, “Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal,” Opt. Express 21(S3Suppl 3), A313–A323 (2013).
[Crossref] [PubMed]

M. C. Larciprete, A. Belardini, R. Voti, and C. Sibilia, “Pre-fractal multilayer structure for polarization- insensitive temporally and spatially coherent thermal emitter,” Opt. Express 21(S3Suppl 3), A576–A584 (2013).
[Crossref] [PubMed]

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref] [PubMed]

2012 (2)

N. Mattiucci, R. Trimm, G. D’Aguanno, N. Aközbek, and M. J. Bloemer, “Tunable, narrow-band, all-metallic microwave absorber,” Appl. Phys. Lett. 101(14), 141115 (2012).
[Crossref]

G. D’Aguanno, N. Mattiucci, A. Alù, C. Argyropoulos, J. V. Foreman, and M. J. Bloemer, “Thermal emission from a metamaterial wire medium slab,” Opt. Express 20(9), 9784–9789 (2012).
[Crossref] [PubMed]

2010 (1)

S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132(2), 023301 (2010).
[Crossref]

2008 (1)

P. Martyniuk and A. Rogalski, “Quantum-dot infrared photo-detectors: status and outlook,” Prog. Quantum Electron. 32(3-4), 89–120 (2008).
[Crossref]

2002 (1)

M. C. Larciprete, C. Sibilia, S. Paoloni, G. Leahu, R. Li Voti, M. Bertolotti, M. Scalora, and K. Panajotov, “Thermally induced transmission variations in ZnSe/MgF2 photonic band gap structures,” J. Appl. Phys. 92(5), 2251–2255 (2002).
[Crossref]

1999 (1)

C. Sibilia, M. Scalora, M. Centini, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric photonic band gap structures,” J. Opt. A, Pure Appl. Opt. 1(4), 490–494 (1999).
[Crossref]

1998 (1)

C. Sibilia, P. Masciulli, and M. Bertolotti, “Optical properties of quasiperiodic (self-similar) structures,” Pure Appl. Opt. 7(2), 383–391 (1998).
[Crossref]

1988 (1)

C. T. Kirk, “Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica,” Phys. Rev. B Condens. Matter 38(2), 1255–1273 (1988).
[Crossref] [PubMed]

Aközbek, N.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref] [PubMed]

N. Mattiucci, R. Trimm, G. D’Aguanno, N. Aközbek, and M. J. Bloemer, “Tunable, narrow-band, all-metallic microwave absorber,” Appl. Phys. Lett. 101(14), 141115 (2012).
[Crossref]

Alù, A.

Argyropoulos, C.

Basu, S.

S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132(2), 023301 (2010).
[Crossref]

Belardini, A.

Bermel, P.

Y. Nam, Y. Xiang Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophoto-voltaic energy conversion systems with two- dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Bertolotti, M.

M. C. Larciprete, C. Sibilia, S. Paoloni, G. Leahu, R. Li Voti, M. Bertolotti, M. Scalora, and K. Panajotov, “Thermally induced transmission variations in ZnSe/MgF2 photonic band gap structures,” J. Appl. Phys. 92(5), 2251–2255 (2002).
[Crossref]

C. Sibilia, M. Scalora, M. Centini, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric photonic band gap structures,” J. Opt. A, Pure Appl. Opt. 1(4), 490–494 (1999).
[Crossref]

C. Sibilia, P. Masciulli, and M. Bertolotti, “Optical properties of quasiperiodic (self-similar) structures,” Pure Appl. Opt. 7(2), 383–391 (1998).
[Crossref]

Bloemer, M. J.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref] [PubMed]

N. Mattiucci, R. Trimm, G. D’Aguanno, N. Aközbek, and M. J. Bloemer, “Tunable, narrow-band, all-metallic microwave absorber,” Appl. Phys. Lett. 101(14), 141115 (2012).
[Crossref]

G. D’Aguanno, N. Mattiucci, A. Alù, C. Argyropoulos, J. V. Foreman, and M. J. Bloemer, “Thermal emission from a metamaterial wire medium slab,” Opt. Express 20(9), 9784–9789 (2012).
[Crossref] [PubMed]

C. Sibilia, M. Scalora, M. Centini, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric photonic band gap structures,” J. Opt. A, Pure Appl. Opt. 1(4), 490–494 (1999).
[Crossref]

Bowden, C. M.

C. Sibilia, M. Scalora, M. Centini, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric photonic band gap structures,” J. Opt. A, Pure Appl. Opt. 1(4), 490–494 (1999).
[Crossref]

Celanovic, I.

Y. Nam, Y. Xiang Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophoto-voltaic energy conversion systems with two- dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Centini, M.

C. Sibilia, M. Scalora, M. Centini, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric photonic band gap structures,” J. Opt. A, Pure Appl. Opt. 1(4), 490–494 (1999).
[Crossref]

Cheong, H.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

D’Aguanno, G.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref] [PubMed]

N. Mattiucci, R. Trimm, G. D’Aguanno, N. Aközbek, and M. J. Bloemer, “Tunable, narrow-band, all-metallic microwave absorber,” Appl. Phys. Lett. 101(14), 141115 (2012).
[Crossref]

G. D’Aguanno, N. Mattiucci, A. Alù, C. Argyropoulos, J. V. Foreman, and M. J. Bloemer, “Thermal emission from a metamaterial wire medium slab,” Opt. Express 20(9), 9784–9789 (2012).
[Crossref] [PubMed]

Duan, J.

Fan, R.-H.

Foreman, J. V.

Gan, Q.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2013).

Hashemi, S. M.

I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
[Crossref] [PubMed]

Hien, N. T.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Hu, H.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2013).

Huang, X.-R.

Jang, W. H.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

Ji, D.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2013).

Kim, K. W.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

Kirk, C. T.

C. T. Kirk, “Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica,” Phys. Rev. B Condens. Matter 38(2), 1255–1273 (1988).
[Crossref] [PubMed]

Lam, V. D.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Larciprete, M. C.

M. C. Larciprete, A. Belardini, R. Voti, and C. Sibilia, “Pre-fractal multilayer structure for polarization- insensitive temporally and spatially coherent thermal emitter,” Opt. Express 21(S3Suppl 3), A576–A584 (2013).
[Crossref] [PubMed]

M. C. Larciprete, C. Sibilia, S. Paoloni, G. Leahu, R. Li Voti, M. Bertolotti, M. Scalora, and K. Panajotov, “Thermally induced transmission variations in ZnSe/MgF2 photonic band gap structures,” J. Appl. Phys. 92(5), 2251–2255 (2002).
[Crossref]

Le, L. N.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Leahu, G.

M. C. Larciprete, C. Sibilia, S. Paoloni, G. Leahu, R. Li Voti, M. Bertolotti, M. Scalora, and K. Panajotov, “Thermally induced transmission variations in ZnSe/MgF2 photonic band gap structures,” J. Appl. Phys. 92(5), 2251–2255 (2002).
[Crossref]

Lee, B. J.

S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132(2), 023301 (2010).
[Crossref]

Lee, Y. P.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

Lenert, A.

Y. Nam, Y. Xiang Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophoto-voltaic energy conversion systems with two- dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Li Voti, R.

M. C. Larciprete, C. Sibilia, S. Paoloni, G. Leahu, R. Li Voti, M. Bertolotti, M. Scalora, and K. Panajotov, “Thermally induced transmission variations in ZnSe/MgF2 photonic band gap structures,” J. Appl. Phys. 92(5), 2251–2255 (2002).
[Crossref]

Liu, K.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2013).

Lu, Z.

Martyniuk, P.

P. Martyniuk and A. Rogalski, “Quantum-dot infrared photo-detectors: status and outlook,” Prog. Quantum Electron. 32(3-4), 89–120 (2008).
[Crossref]

Masciulli, P.

C. Sibilia, P. Masciulli, and M. Bertolotti, “Optical properties of quasiperiodic (self-similar) structures,” Pure Appl. Opt. 7(2), 383–391 (1998).
[Crossref]

Mattiucci, N.

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref] [PubMed]

G. D’Aguanno, N. Mattiucci, A. Alù, C. Argyropoulos, J. V. Foreman, and M. J. Bloemer, “Thermal emission from a metamaterial wire medium slab,” Opt. Express 20(9), 9784–9789 (2012).
[Crossref] [PubMed]

N. Mattiucci, R. Trimm, G. D’Aguanno, N. Aközbek, and M. J. Bloemer, “Tunable, narrow-band, all-metallic microwave absorber,” Appl. Phys. Lett. 101(14), 141115 (2012).
[Crossref]

Melnikov, L. A.

I. S. Nefedov, C. A. Valaginnopoulos, and L. A. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15(11), 114003 (2013).
[Crossref]

Minh, N. Q.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Nam, Y.

Y. Nam, Y. Xiang Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophoto-voltaic energy conversion systems with two- dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Nefedov, E. I.

I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
[Crossref] [PubMed]

Nefedov, I. S.

I. S. Nefedov, C. A. Valaginnopoulos, and L. A. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15(11), 114003 (2013).
[Crossref]

I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
[Crossref] [PubMed]

Panajotov, K.

M. C. Larciprete, C. Sibilia, S. Paoloni, G. Leahu, R. Li Voti, M. Bertolotti, M. Scalora, and K. Panajotov, “Thermally induced transmission variations in ZnSe/MgF2 photonic band gap structures,” J. Appl. Phys. 92(5), 2251–2255 (2002).
[Crossref]

Paoloni, S.

M. C. Larciprete, C. Sibilia, S. Paoloni, G. Leahu, R. Li Voti, M. Bertolotti, M. Scalora, and K. Panajotov, “Thermally induced transmission variations in ZnSe/MgF2 photonic band gap structures,” J. Appl. Phys. 92(5), 2251–2255 (2002).
[Crossref]

Park, J. W.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

Peng, R.-W.

Rhee, J. Y.

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

Rogalski, A.

P. Martyniuk and A. Rogalski, “Quantum-dot infrared photo-detectors: status and outlook,” Prog. Quantum Electron. 32(3-4), 89–120 (2008).
[Crossref]

Scalora, M.

M. C. Larciprete, C. Sibilia, S. Paoloni, G. Leahu, R. Li Voti, M. Bertolotti, M. Scalora, and K. Panajotov, “Thermally induced transmission variations in ZnSe/MgF2 photonic band gap structures,” J. Appl. Phys. 92(5), 2251–2255 (2002).
[Crossref]

C. Sibilia, M. Scalora, M. Centini, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric photonic band gap structures,” J. Opt. A, Pure Appl. Opt. 1(4), 490–494 (1999).
[Crossref]

Shao, M.-R.

Sibilia, C.

M. C. Larciprete, A. Belardini, R. Voti, and C. Sibilia, “Pre-fractal multilayer structure for polarization- insensitive temporally and spatially coherent thermal emitter,” Opt. Express 21(S3Suppl 3), A576–A584 (2013).
[Crossref] [PubMed]

M. C. Larciprete, C. Sibilia, S. Paoloni, G. Leahu, R. Li Voti, M. Bertolotti, M. Scalora, and K. Panajotov, “Thermally induced transmission variations in ZnSe/MgF2 photonic band gap structures,” J. Appl. Phys. 92(5), 2251–2255 (2002).
[Crossref]

C. Sibilia, M. Scalora, M. Centini, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric photonic band gap structures,” J. Opt. A, Pure Appl. Opt. 1(4), 490–494 (1999).
[Crossref]

C. Sibilia, P. Masciulli, and M. Bertolotti, “Optical properties of quasiperiodic (self-similar) structures,” Pure Appl. Opt. 7(2), 383–391 (1998).
[Crossref]

Soljacic, M.

Y. Nam, Y. Xiang Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophoto-voltaic energy conversion systems with two- dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Song, H.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2013).

Trang, P. T.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Trimm, R.

N. Mattiucci, R. Trimm, G. D’Aguanno, N. Aközbek, and M. J. Bloemer, “Tunable, narrow-band, all-metallic microwave absorber,” Appl. Phys. Lett. 101(14), 141115 (2012).
[Crossref]

Tuong, P. V.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

Valagiannopoulos, C. A.

I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
[Crossref] [PubMed]

Valaginnopoulos, C. A.

I. S. Nefedov, C. A. Valaginnopoulos, and L. A. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15(11), 114003 (2013).
[Crossref]

Viet, D. T.

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Voti, R.

Wang, E. N.

Y. Nam, Y. Xiang Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophoto-voltaic energy conversion systems with two- dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Wang, M.

Wu, L.

Xiang Yeng, Y.

Y. Nam, Y. Xiang Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophoto-voltaic energy conversion systems with two- dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Yang, Z. Y.

Zeng, X.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2013).

Zhang, N.

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2013).

Zhang, P.

Zhang, Z. M.

S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132(2), 023301 (2010).
[Crossref]

Zhao, M.

Zheng, Y.

Zhu, L.-H.

Appl. Phys. Lett. (2)

N. Mattiucci, R. Trimm, G. D’Aguanno, N. Aközbek, and M. J. Bloemer, “Tunable, narrow-band, all-metallic microwave absorber,” Appl. Phys. Lett. 101(14), 141115 (2012).
[Crossref]

P. V. Tuong, J. W. Park, J. Y. Rhee, K. W. Kim, W. H. Jang, H. Cheong, and Y. P. Lee, “Polarization-insensitive and polarization-controlled dual-band absorption in metamaterials,” Appl. Phys. Lett. 102(8), 081122 (2013).
[Crossref]

J. Appl. Phys. (1)

M. C. Larciprete, C. Sibilia, S. Paoloni, G. Leahu, R. Li Voti, M. Bertolotti, M. Scalora, and K. Panajotov, “Thermally induced transmission variations in ZnSe/MgF2 photonic band gap structures,” J. Appl. Phys. 92(5), 2251–2255 (2002).
[Crossref]

J. Heat Transfer (1)

S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132(2), 023301 (2010).
[Crossref]

J. Opt. (1)

I. S. Nefedov, C. A. Valaginnopoulos, and L. A. Melnikov, “Perfect absorption in graphene multilayers,” J. Opt. 15(11), 114003 (2013).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

C. Sibilia, M. Scalora, M. Centini, M. Bertolotti, M. J. Bloemer, and C. M. Bowden, “Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric photonic band gap structures,” J. Opt. A, Pure Appl. Opt. 1(4), 490–494 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

D. T. Viet, N. T. Hien, P. V. Tuong, N. Q. Minh, P. T. Trang, L. N. Le, Y. P. Lee, and V. D. Lam, “Perfect absorber metamaterials: peak, multi-peak and broadband absorption,” Opt. Commun. 322, 209–213 (2014).
[Crossref]

Opt. Express (3)

Phys. Rev. B Condens. Matter (1)

C. T. Kirk, “Quantitative analysis of the effect of disorder-induced mode coupling on infrared absorption in silica,” Phys. Rev. B Condens. Matter 38(2), 1255–1273 (1988).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

P. Martyniuk and A. Rogalski, “Quantum-dot infrared photo-detectors: status and outlook,” Prog. Quantum Electron. 32(3-4), 89–120 (2008).
[Crossref]

Pure Appl. Opt. (1)

C. Sibilia, P. Masciulli, and M. Bertolotti, “Optical properties of quasiperiodic (self-similar) structures,” Pure Appl. Opt. 7(2), 383–391 (1998).
[Crossref]

Sci. Rep. (3)

N. Mattiucci, M. J. Bloemer, N. Aközbek, and G. D’Aguanno, “Impedance matched thin metamaterials make metals absorbing,” Sci. Rep. 3, 3203 (2013).
[Crossref] [PubMed]

D. Ji, H. Song, X. Zeng, H. Hu, K. Liu, N. Zhang, and Q. Gan, “Broadband absorption engineering of hyperbolic metafilm patterns,” Sci. Rep. 4, 4498 (2013).

I. S. Nefedov, C. A. Valagiannopoulos, S. M. Hashemi, and E. I. Nefedov, “Total absorption in asymmetric hyperbolic media,” Sci. Rep. 3, 2662 (2013).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

Y. Nam, Y. Xiang Yeng, A. Lenert, P. Bermel, I. Celanovic, M. Soljačić, and E. N. Wang, “Solar thermophoto-voltaic energy conversion systems with two- dimensional tantalum photonic crystal absorbers and emitters,” Sol. Energy Mater. Sol. Cells 122, 287–296 (2014).
[Crossref]

Other (1)

Handbook of Optical Constants of Solids II. Subpart 3: Insulators, Edward D. Palik ed. (Academic Press, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of proposed fractal layered structure, arranged as third generation of a triadic Cantor set for thermal emission control. The substrate is silicon. (b) Calculated absorbance as a function of wavelength and incidence angle, for single thick SiO2 layer, 27 QW thick, for average polarized light.
Fig. 2
Fig. 2 Calculated absorbance as a function of wavelength and incidence angle, for a Cantor multilayer structure composed by TiO2 (initiator) and SiO2 layers, for TE (a) and TM (b) polarized light. The substrate is silicon. The inset display the dispersion law of (a, inset) refractive index and (b, inset) extinction coefficient for TiO2 (blue curves) and SiO2 (red curves) [13].
Fig. 3
Fig. 3 Calculated FOM as a function of the reference wavelength, λ0, for: (a) the Cantor stack and the periodic stack (composed by TiO2 and SiO2 layers) and the single SiO2 layer (27 QW thick). (b) the Cantor stack and the periodic stack (composed by Si and SiO2 layers). The angular range is set to θΜΙΝ = 0° and θMAX = 70° and wavelength range is set to λΜΙΝ = 8 μm and λMAX = 10 μm.
Fig. 4
Fig. 4 (a) Calculated absorbance vs wavelength and incidence angle, for the optimized Cantor multilayer structure (λ0 = 1.75 μm) composed by Si and SiO2 layers, for average polarization of light. Substrate is silicon. The inset display the dispersion law of refractive index (blue curve) and extinction coefficient (red curve) of Si. (b) Polar plot of absorbance curve calculated at λ = 9.05 μm, for the Cantor stack (red curves) and the periodic stack (black curves) composed by Si and SiO2 layers; and for the single SiO2 layer, 27 QW thick (blue curves).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

A( 1QW )/B( 1QW )/A( 1QW )/B( 3QW )/A( 1QW )/B( 1QW )/A( 1QW )
FOM= ( A TM + A TE ) 2 .
A i ( Δθ,Δλ ) = 1 ΔθΔλ θ MIN θ MAX ( λ MIN λ MAX A i dλ ) dθ; i=TE,TM

Metrics