Abstract

Arrays of metallic thermocouples in the shape of spiral nanoantennas are proposed as infrared detectors, which use the thermoelectric properties of the metallic interfaces to generate electrical DC signals. The responsivity of these types of antennas is evaluated from both theoretical and numerical perspectives pointing out its potential as infrared sensors. Moreover, the same structures can be used to characterize the state of polarization of the optical near fields with a spatial resolution comparable to the wavelength.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Polarimetric pixel using Seebeck nanoantennas

Alexander Cuadrado, Edgar Briones, Francisco J. González, and Javier Alda
Opt. Express 22(11) 13835-13845 (2014)

Design and analysis of a square spiral nano-rectenna for infrared energy harvest and conversion

Kai Wang, Haifeng Hu, Shan Lu, Lingju Guo, Tao Zhang, Yunzhong Han, Aosong Zhou, and Tao He
Opt. Mater. Express 6(12) 3977-3991 (2016)

Enhancing thermal radiation with nanoantennas to create infrared sources with high modulation rates

Emilie Sakat, Léo Wojszvzyk, Jean-Paul Hugonin, Mondher Besbes, Christophe Sauvan, and Jean-Jacques Greffet
Optica 5(2) 175-179 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref] [PubMed]
  2. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  4. F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89(25), 253104 (2006).
    [Crossref]
  5. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16(25), 20295–20305 (2008).
    [Crossref] [PubMed]
  6. S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett. 9(10), 3447–3452 (2009).
    [Crossref] [PubMed]
  7. P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
    [Crossref] [PubMed]
  8. G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
    [Crossref]
  9. Z. Ma and G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013).
    [Crossref]
  10. D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun 2, 267 (2011).
    [Crossref] [PubMed]
  11. F. J. González, B. Ilic, J. Alda, and G. D. Boreman, “Antenna-Coupled Infrared Detectors for Imaging Applications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 117–120 (2005).
    [Crossref]
  12. C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. González, and G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41(5), 271–281 (2000).
    [Crossref]
  13. F. González and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
    [Crossref]
  14. P. Krenz, J. Alda, and G. Boreman, “Orthogonal infrared dipole antenna,” Infrared Phys. Technol. 51(4), 340–343 (2008).
    [Crossref]
  15. C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39(3), 123–183 (1998).
    [Crossref]
  16. S. Rockwell, D. Lim, B. A. Bosco, J. H. Baker, B. Eliasson, K. Forsyth, and M. Cromar, “Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications”, in Proceeding of IEEE Radio Frequency Integrated Circuits Symposium, (Honolulu, HI, 2007), pp. 171–174.
    [Crossref]
  17. S. Grover and G. Moddel, “Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers,” Solid-State Electron. 67(1), 94–99 (2012).
    [Crossref]
  18. N. Alimardani and J. F. Conley., “Step tunneling enhanced asymmetry in asymmetric electrode metal-insulator-insulator-metal tunnel diodes,” Appl. Phys. Lett. 102(14), 143501 (2013).
    [Crossref]
  19. J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antennacoupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
    [Crossref]
  20. E. Briones, J. Alda, and F. J. González, “Conversion efficiency of broad-band rectennas for solar energy harvesting applications,” Opt. Express 21(3Suppl 3), A412–A418 (2013).
    [Crossref] [PubMed]
  21. Z. Zhu, S. Joshi, S. Grover, and G. Moddel, “Graphene geometric diodes for terahertz rectennas,” J. Phys. D Appl. Phys. 46(18), 185101 (2013).
    [Crossref]
  22. U. Dillner, E. Kessler, and H.-G. Meyer, “Responsivity and detectivity modeling of thermal radiation sensors based on a biased thermocouple,” J. Phys. D Appl. Phys. 44(30), 305102 (2011).
    [Crossref]
  23. G. P. Szakmany, P. M. Krenz, A. O. Orlov, G. H. Bernstein, and W. Porod, “Antenna-Coupled Nanowire Thermocouples for Infrared Detection,” IEEE Trans. NanoTechnol. 12(2), 163–167 (2013).
    [Crossref]
  24. G. P. Szakmany, P. M. Krenz, L. C. Schneider, A. O. Orlov, G. H. Bernstein, and W. Porod, “Nanowire Thermocouple Characterization Platform,” IEEE Trans. NanoTechnol. 12(3), 309–313 (2013).
    [Crossref]
  25. M. Bareis, P. M. Krenz, G. P. Szakmany, B. N. Tiwari, D. Kalblein, A. O. Orlov, G. H. Bernstein, G. Scarpa, B. Fabel, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “Rectennas Revisited,” IEEE Trans. NanoTechnol. 12(6), 1144–1150 (2013).
    [Crossref]
  26. D. M. Rowe, Thermoelectrics Handbook: Macro to Nano (Taylor and Francis, UK, 2006).
  27. A. Graf, M. Arndt, M. Sauer, and G. Gerlach, “Review of micromachined thermopiles for infrared detection,” Meas. Sci. Technol. 18(7), R59–R75 (2007).
    [Crossref]
  28. C. Fumeaux, G. D. Boreman, W. Herrmann, H. Rothuizen, and F. K. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt. 36(25), 6485–6490 (1997).
    [Crossref] [PubMed]
  29. L. J. A. Kaiser, “The Archimedean two-wire spiral antenna,” IRE Trans. Antennas Propag. 8(3), 312–323 (1960).
    [Crossref]
  30. C. A. Balanis, Antenna Theory (John Willey and Sons, 1997).
  31. E. D. Palik, Handbook of Optical Constants of Solids 3 (New York, USA, 1997).
  32. G. Baffou, C. Girard, and R. Quidant, “Mapping Heat Origin in Plasmonic Structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
    [Crossref] [PubMed]
  33. J. Alda, C. Fumeaux, I. Codreanu, J. A. Schaefer, and G. D. Boreman, “Deconvolution method for two-dimensional spatial-response mapping of lithographic infrared antennas,” Appl. Opt. 38(19), 3993–4000 (1999).
    [Crossref] [PubMed]
  34. F. J. González, “Thermal-impedance simulations of antenna-coupled microbolometers,” Infrared Phys. Technol. 48(3), 223–226 (2006).
    [Crossref]
  35. W. Ma and X. Zhang, “Study of the thermal, electrical and thermoelectric properties of metallic nanofilms,” Int. J. Heat Mass Transfer 58(1-2), 639–651 (2013).
    [Crossref]
  36. K. Ono and R. O. Suzuki, “Thermoelectric power generation: Converting low-grade heat into electricity,” JOM 50(12), 49–51 (1998).
    [Crossref]
  37. J. P. Carmo, L. M. Gonçalves, and J. H. Correia, Micro and Nanodevices for Thermoelectric Converters, in Scanning Probe Microscopy in Nanoscience and Nanotechnology 2 (Springer, Berlin, 2012).

2013 (8)

Z. Ma and G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013).
[Crossref]

N. Alimardani and J. F. Conley., “Step tunneling enhanced asymmetry in asymmetric electrode metal-insulator-insulator-metal tunnel diodes,” Appl. Phys. Lett. 102(14), 143501 (2013).
[Crossref]

G. P. Szakmany, P. M. Krenz, A. O. Orlov, G. H. Bernstein, and W. Porod, “Antenna-Coupled Nanowire Thermocouples for Infrared Detection,” IEEE Trans. NanoTechnol. 12(2), 163–167 (2013).
[Crossref]

G. P. Szakmany, P. M. Krenz, L. C. Schneider, A. O. Orlov, G. H. Bernstein, and W. Porod, “Nanowire Thermocouple Characterization Platform,” IEEE Trans. NanoTechnol. 12(3), 309–313 (2013).
[Crossref]

M. Bareis, P. M. Krenz, G. P. Szakmany, B. N. Tiwari, D. Kalblein, A. O. Orlov, G. H. Bernstein, G. Scarpa, B. Fabel, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “Rectennas Revisited,” IEEE Trans. NanoTechnol. 12(6), 1144–1150 (2013).
[Crossref]

Z. Zhu, S. Joshi, S. Grover, and G. Moddel, “Graphene geometric diodes for terahertz rectennas,” J. Phys. D Appl. Phys. 46(18), 185101 (2013).
[Crossref]

W. Ma and X. Zhang, “Study of the thermal, electrical and thermoelectric properties of metallic nanofilms,” Int. J. Heat Mass Transfer 58(1-2), 639–651 (2013).
[Crossref]

E. Briones, J. Alda, and F. J. González, “Conversion efficiency of broad-band rectennas for solar energy harvesting applications,” Opt. Express 21(3Suppl 3), A412–A418 (2013).
[Crossref] [PubMed]

2012 (3)

S. Grover and G. Moddel, “Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers,” Solid-State Electron. 67(1), 94–99 (2012).
[Crossref]

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
[Crossref]

2011 (3)

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun 2, 267 (2011).
[Crossref] [PubMed]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

U. Dillner, E. Kessler, and H.-G. Meyer, “Responsivity and detectivity modeling of thermal radiation sensors based on a biased thermocouple,” J. Phys. D Appl. Phys. 44(30), 305102 (2011).
[Crossref]

2010 (1)

G. Baffou, C. Girard, and R. Quidant, “Mapping Heat Origin in Plasmonic Structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

2009 (2)

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antennacoupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[Crossref]

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett. 9(10), 3447–3452 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (1)

A. Graf, M. Arndt, M. Sauer, and G. Gerlach, “Review of micromachined thermopiles for infrared detection,” Meas. Sci. Technol. 18(7), R59–R75 (2007).
[Crossref]

2006 (2)

F. J. González, “Thermal-impedance simulations of antenna-coupled microbolometers,” Infrared Phys. Technol. 48(3), 223–226 (2006).
[Crossref]

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89(25), 253104 (2006).
[Crossref]

2005 (3)

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

F. González and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
[Crossref]

F. J. González, B. Ilic, J. Alda, and G. D. Boreman, “Antenna-Coupled Infrared Detectors for Imaging Applications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 117–120 (2005).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2000 (1)

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. González, and G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41(5), 271–281 (2000).
[Crossref]

1999 (1)

1998 (2)

K. Ono and R. O. Suzuki, “Thermoelectric power generation: Converting low-grade heat into electricity,” JOM 50(12), 49–51 (1998).
[Crossref]

C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39(3), 123–183 (1998).
[Crossref]

1997 (1)

1960 (1)

L. J. A. Kaiser, “The Archimedean two-wire spiral antenna,” IRE Trans. Antennas Propag. 8(3), 312–323 (1960).
[Crossref]

Aizpurua, J.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89(25), 253104 (2006).
[Crossref]

Alda, J.

E. Briones, J. Alda, and F. J. González, “Conversion efficiency of broad-band rectennas for solar energy harvesting applications,” Opt. Express 21(3Suppl 3), A412–A418 (2013).
[Crossref] [PubMed]

P. Krenz, J. Alda, and G. Boreman, “Orthogonal infrared dipole antenna,” Infrared Phys. Technol. 51(4), 340–343 (2008).
[Crossref]

F. J. González, B. Ilic, J. Alda, and G. D. Boreman, “Antenna-Coupled Infrared Detectors for Imaging Applications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 117–120 (2005).
[Crossref]

J. Alda, C. Fumeaux, I. Codreanu, J. A. Schaefer, and G. D. Boreman, “Deconvolution method for two-dimensional spatial-response mapping of lithographic infrared antennas,” Appl. Opt. 38(19), 3993–4000 (1999).
[Crossref] [PubMed]

Alimardani, N.

N. Alimardani and J. F. Conley., “Step tunneling enhanced asymmetry in asymmetric electrode metal-insulator-insulator-metal tunnel diodes,” Appl. Phys. Lett. 102(14), 143501 (2013).
[Crossref]

Arndt, M.

A. Graf, M. Arndt, M. Sauer, and G. Gerlach, “Review of micromachined thermopiles for infrared detection,” Meas. Sci. Technol. 18(7), R59–R75 (2007).
[Crossref]

Baffou, G.

G. Baffou, C. Girard, and R. Quidant, “Mapping Heat Origin in Plasmonic Structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

Baker, J. H.

S. Rockwell, D. Lim, B. A. Bosco, J. H. Baker, B. Eliasson, K. Forsyth, and M. Cromar, “Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications”, in Proceeding of IEEE Radio Frequency Integrated Circuits Symposium, (Honolulu, HI, 2007), pp. 171–174.
[Crossref]

Bareis, M.

M. Bareis, P. M. Krenz, G. P. Szakmany, B. N. Tiwari, D. Kalblein, A. O. Orlov, G. H. Bernstein, G. Scarpa, B. Fabel, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “Rectennas Revisited,” IEEE Trans. NanoTechnol. 12(6), 1144–1150 (2013).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bean, J. A.

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antennacoupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[Crossref]

Bernstein, G. H.

G. P. Szakmany, P. M. Krenz, A. O. Orlov, G. H. Bernstein, and W. Porod, “Antenna-Coupled Nanowire Thermocouples for Infrared Detection,” IEEE Trans. NanoTechnol. 12(2), 163–167 (2013).
[Crossref]

G. P. Szakmany, P. M. Krenz, L. C. Schneider, A. O. Orlov, G. H. Bernstein, and W. Porod, “Nanowire Thermocouple Characterization Platform,” IEEE Trans. NanoTechnol. 12(3), 309–313 (2013).
[Crossref]

M. Bareis, P. M. Krenz, G. P. Szakmany, B. N. Tiwari, D. Kalblein, A. O. Orlov, G. H. Bernstein, G. Scarpa, B. Fabel, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “Rectennas Revisited,” IEEE Trans. NanoTechnol. 12(6), 1144–1150 (2013).
[Crossref]

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antennacoupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[Crossref]

Biagioni, P.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Boreman, G.

P. Krenz, J. Alda, and G. Boreman, “Orthogonal infrared dipole antenna,” Infrared Phys. Technol. 51(4), 340–343 (2008).
[Crossref]

F. González and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
[Crossref]

Boreman, G. D.

Bosco, B. A.

S. Rockwell, D. Lim, B. A. Bosco, J. H. Baker, B. Eliasson, K. Forsyth, and M. Cromar, “Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications”, in Proceeding of IEEE Radio Frequency Integrated Circuits Symposium, (Honolulu, HI, 2007), pp. 171–174.
[Crossref]

Briones, E.

Codreanu, I.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. González, and G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41(5), 271–281 (2000).
[Crossref]

J. Alda, C. Fumeaux, I. Codreanu, J. A. Schaefer, and G. D. Boreman, “Deconvolution method for two-dimensional spatial-response mapping of lithographic infrared antennas,” Appl. Opt. 38(19), 3993–4000 (1999).
[Crossref] [PubMed]

Conley, J. F.

N. Alimardani and J. F. Conley., “Step tunneling enhanced asymmetry in asymmetric electrode metal-insulator-insulator-metal tunnel diodes,” Appl. Phys. Lett. 102(14), 143501 (2013).
[Crossref]

Conway, J.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett. 9(10), 3447–3452 (2009).
[Crossref] [PubMed]

Cornelius, T. W.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89(25), 253104 (2006).
[Crossref]

Cromar, M.

S. Rockwell, D. Lim, B. A. Bosco, J. H. Baker, B. Eliasson, K. Forsyth, and M. Cromar, “Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications”, in Proceeding of IEEE Radio Frequency Integrated Circuits Symposium, (Honolulu, HI, 2007), pp. 171–174.
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dillner, U.

U. Dillner, E. Kessler, and H.-G. Meyer, “Responsivity and detectivity modeling of thermal radiation sensors based on a biased thermocouple,” J. Phys. D Appl. Phys. 44(30), 305102 (2011).
[Crossref]

Dorfmüller, J.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun 2, 267 (2011).
[Crossref] [PubMed]

Dregely, D.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun 2, 267 (2011).
[Crossref] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Eisler, H. J.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Eliasson, B.

S. Rockwell, D. Lim, B. A. Bosco, J. H. Baker, B. Eliasson, K. Forsyth, and M. Cromar, “Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications”, in Proceeding of IEEE Radio Frequency Integrated Circuits Symposium, (Honolulu, HI, 2007), pp. 171–174.
[Crossref]

Fabel, B.

M. Bareis, P. M. Krenz, G. P. Szakmany, B. N. Tiwari, D. Kalblein, A. O. Orlov, G. H. Bernstein, G. Scarpa, B. Fabel, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “Rectennas Revisited,” IEEE Trans. NanoTechnol. 12(6), 1144–1150 (2013).
[Crossref]

Fahsold, G.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89(25), 253104 (2006).
[Crossref]

Fay, P.

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antennacoupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[Crossref]

Forsyth, K.

S. Rockwell, D. Lim, B. A. Bosco, J. H. Baker, B. Eliasson, K. Forsyth, and M. Cromar, “Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications”, in Proceeding of IEEE Radio Frequency Integrated Circuits Symposium, (Honolulu, HI, 2007), pp. 171–174.
[Crossref]

Fumeaux, C.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. González, and G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41(5), 271–281 (2000).
[Crossref]

J. Alda, C. Fumeaux, I. Codreanu, J. A. Schaefer, and G. D. Boreman, “Deconvolution method for two-dimensional spatial-response mapping of lithographic infrared antennas,” Appl. Opt. 38(19), 3993–4000 (1999).
[Crossref] [PubMed]

C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39(3), 123–183 (1998).
[Crossref]

C. Fumeaux, G. D. Boreman, W. Herrmann, H. Rothuizen, and F. K. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt. 36(25), 6485–6490 (1997).
[Crossref] [PubMed]

Gerlach, G.

A. Graf, M. Arndt, M. Sauer, and G. Gerlach, “Review of micromachined thermopiles for infrared detection,” Meas. Sci. Technol. 18(7), R59–R75 (2007).
[Crossref]

Giessen, H.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun 2, 267 (2011).
[Crossref] [PubMed]

Girard, C.

G. Baffou, C. Girard, and R. Quidant, “Mapping Heat Origin in Plasmonic Structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

González, F.

F. González and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
[Crossref]

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. González, and G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41(5), 271–281 (2000).
[Crossref]

González, F. J.

E. Briones, J. Alda, and F. J. González, “Conversion efficiency of broad-band rectennas for solar energy harvesting applications,” Opt. Express 21(3Suppl 3), A412–A418 (2013).
[Crossref] [PubMed]

F. J. González, “Thermal-impedance simulations of antenna-coupled microbolometers,” Infrared Phys. Technol. 48(3), 223–226 (2006).
[Crossref]

F. J. González, B. Ilic, J. Alda, and G. D. Boreman, “Antenna-Coupled Infrared Detectors for Imaging Applications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 117–120 (2005).
[Crossref]

Graf, A.

A. Graf, M. Arndt, M. Sauer, and G. Gerlach, “Review of micromachined thermopiles for infrared detection,” Meas. Sci. Technol. 18(7), R59–R75 (2007).
[Crossref]

Gritz, M. A.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. González, and G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41(5), 271–281 (2000).
[Crossref]

Grover, S.

Z. Zhu, S. Joshi, S. Grover, and G. Moddel, “Graphene geometric diodes for terahertz rectennas,” J. Phys. D Appl. Phys. 46(18), 185101 (2013).
[Crossref]

S. Grover and G. Moddel, “Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers,” Solid-State Electron. 67(1), 94–99 (2012).
[Crossref]

Hecht, B.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Herrmann, W.

C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39(3), 123–183 (1998).
[Crossref]

C. Fumeaux, G. D. Boreman, W. Herrmann, H. Rothuizen, and F. K. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt. 36(25), 6485–6490 (1997).
[Crossref] [PubMed]

Huang, J. S.

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Ilic, B.

F. J. González, B. Ilic, J. Alda, and G. D. Boreman, “Antenna-Coupled Infrared Detectors for Imaging Applications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 117–120 (2005).
[Crossref]

Jones, A. C.

Joshi, S.

Z. Zhu, S. Joshi, S. Grover, and G. Moddel, “Graphene geometric diodes for terahertz rectennas,” J. Phys. D Appl. Phys. 46(18), 185101 (2013).
[Crossref]

Kaiser, L. J. A.

L. J. A. Kaiser, “The Archimedean two-wire spiral antenna,” IRE Trans. Antennas Propag. 8(3), 312–323 (1960).
[Crossref]

Kalblein, D.

M. Bareis, P. M. Krenz, G. P. Szakmany, B. N. Tiwari, D. Kalblein, A. O. Orlov, G. H. Bernstein, G. Scarpa, B. Fabel, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “Rectennas Revisited,” IEEE Trans. NanoTechnol. 12(6), 1144–1150 (2013).
[Crossref]

Karim, S.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89(25), 253104 (2006).
[Crossref]

Kern, K.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun 2, 267 (2011).
[Crossref] [PubMed]

Kessler, E.

U. Dillner, E. Kessler, and H.-G. Meyer, “Responsivity and detectivity modeling of thermal radiation sensors based on a biased thermocouple,” J. Phys. D Appl. Phys. 44(30), 305102 (2011).
[Crossref]

Klauk, H.

M. Bareis, P. M. Krenz, G. P. Szakmany, B. N. Tiwari, D. Kalblein, A. O. Orlov, G. H. Bernstein, G. Scarpa, B. Fabel, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “Rectennas Revisited,” IEEE Trans. NanoTechnol. 12(6), 1144–1150 (2013).
[Crossref]

Kneubühl, F.

C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39(3), 123–183 (1998).
[Crossref]

Kneubühl, F. K.

Kolb, T.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89(25), 253104 (2006).
[Crossref]

Krenz, P.

P. Krenz, J. Alda, and G. Boreman, “Orthogonal infrared dipole antenna,” Infrared Phys. Technol. 51(4), 340–343 (2008).
[Crossref]

Krenz, P. M.

M. Bareis, P. M. Krenz, G. P. Szakmany, B. N. Tiwari, D. Kalblein, A. O. Orlov, G. H. Bernstein, G. Scarpa, B. Fabel, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “Rectennas Revisited,” IEEE Trans. NanoTechnol. 12(6), 1144–1150 (2013).
[Crossref]

G. P. Szakmany, P. M. Krenz, L. C. Schneider, A. O. Orlov, G. H. Bernstein, and W. Porod, “Nanowire Thermocouple Characterization Platform,” IEEE Trans. NanoTechnol. 12(3), 309–313 (2013).
[Crossref]

G. P. Szakmany, P. M. Krenz, A. O. Orlov, G. H. Bernstein, and W. Porod, “Antenna-Coupled Nanowire Thermocouples for Infrared Detection,” IEEE Trans. NanoTechnol. 12(2), 163–167 (2013).
[Crossref]

R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16(25), 20295–20305 (2008).
[Crossref] [PubMed]

Lee, H.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett. 9(10), 3447–3452 (2009).
[Crossref] [PubMed]

Lim, D.

S. Rockwell, D. Lim, B. A. Bosco, J. H. Baker, B. Eliasson, K. Forsyth, and M. Cromar, “Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications”, in Proceeding of IEEE Radio Frequency Integrated Circuits Symposium, (Honolulu, HI, 2007), pp. 171–174.
[Crossref]

Lovrincic, R.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89(25), 253104 (2006).
[Crossref]

Lugli, P.

M. Bareis, P. M. Krenz, G. P. Szakmany, B. N. Tiwari, D. Kalblein, A. O. Orlov, G. H. Bernstein, G. Scarpa, B. Fabel, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “Rectennas Revisited,” IEEE Trans. NanoTechnol. 12(6), 1144–1150 (2013).
[Crossref]

Ma, W.

W. Ma and X. Zhang, “Study of the thermal, electrical and thermoelectric properties of metallic nanofilms,” Int. J. Heat Mass Transfer 58(1-2), 639–651 (2013).
[Crossref]

Ma, Z.

Z. Ma and G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013).
[Crossref]

G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
[Crossref]

Martin, O. J. F.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Meyer, H.-G.

U. Dillner, E. Kessler, and H.-G. Meyer, “Responsivity and detectivity modeling of thermal radiation sensors based on a biased thermocouple,” J. Phys. D Appl. Phys. 44(30), 305102 (2011).
[Crossref]

Moddel, G.

Z. Zhu, S. Joshi, S. Grover, and G. Moddel, “Graphene geometric diodes for terahertz rectennas,” J. Phys. D Appl. Phys. 46(18), 185101 (2013).
[Crossref]

S. Grover and G. Moddel, “Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers,” Solid-State Electron. 67(1), 94–99 (2012).
[Crossref]

Mühlschlegel, P.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Neubrech, F.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89(25), 253104 (2006).
[Crossref]

Neumann, R.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89(25), 253104 (2006).
[Crossref]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Olmon, R. L.

Ono, K.

K. Ono and R. O. Suzuki, “Thermoelectric power generation: Converting low-grade heat into electricity,” JOM 50(12), 49–51 (1998).
[Crossref]

Orlov, A. O.

G. P. Szakmany, P. M. Krenz, A. O. Orlov, G. H. Bernstein, and W. Porod, “Antenna-Coupled Nanowire Thermocouples for Infrared Detection,” IEEE Trans. NanoTechnol. 12(2), 163–167 (2013).
[Crossref]

G. P. Szakmany, P. M. Krenz, L. C. Schneider, A. O. Orlov, G. H. Bernstein, and W. Porod, “Nanowire Thermocouple Characterization Platform,” IEEE Trans. NanoTechnol. 12(3), 309–313 (2013).
[Crossref]

M. Bareis, P. M. Krenz, G. P. Szakmany, B. N. Tiwari, D. Kalblein, A. O. Orlov, G. H. Bernstein, G. Scarpa, B. Fabel, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “Rectennas Revisited,” IEEE Trans. NanoTechnol. 12(6), 1144–1150 (2013).
[Crossref]

Pohl, D. W.

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Porod, W.

M. Bareis, P. M. Krenz, G. P. Szakmany, B. N. Tiwari, D. Kalblein, A. O. Orlov, G. H. Bernstein, G. Scarpa, B. Fabel, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “Rectennas Revisited,” IEEE Trans. NanoTechnol. 12(6), 1144–1150 (2013).
[Crossref]

G. P. Szakmany, P. M. Krenz, L. C. Schneider, A. O. Orlov, G. H. Bernstein, and W. Porod, “Nanowire Thermocouple Characterization Platform,” IEEE Trans. NanoTechnol. 12(3), 309–313 (2013).
[Crossref]

G. P. Szakmany, P. M. Krenz, A. O. Orlov, G. H. Bernstein, and W. Porod, “Antenna-Coupled Nanowire Thermocouples for Infrared Detection,” IEEE Trans. NanoTechnol. 12(2), 163–167 (2013).
[Crossref]

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antennacoupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[Crossref]

Pucci, A.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89(25), 253104 (2006).
[Crossref]

Quidant, R.

G. Baffou, C. Girard, and R. Quidant, “Mapping Heat Origin in Plasmonic Structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

Raschke, M. B.

Rockwell, S.

S. Rockwell, D. Lim, B. A. Bosco, J. H. Baker, B. Eliasson, K. Forsyth, and M. Cromar, “Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications”, in Proceeding of IEEE Radio Frequency Integrated Circuits Symposium, (Honolulu, HI, 2007), pp. 171–174.
[Crossref]

Rothuizen, H.

C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39(3), 123–183 (1998).
[Crossref]

C. Fumeaux, G. D. Boreman, W. Herrmann, H. Rothuizen, and F. K. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt. 36(25), 6485–6490 (1997).
[Crossref] [PubMed]

Sauer, M.

A. Graf, M. Arndt, M. Sauer, and G. Gerlach, “Review of micromachined thermopiles for infrared detection,” Meas. Sci. Technol. 18(7), R59–R75 (2007).
[Crossref]

Scarpa, G.

M. Bareis, P. M. Krenz, G. P. Szakmany, B. N. Tiwari, D. Kalblein, A. O. Orlov, G. H. Bernstein, G. Scarpa, B. Fabel, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “Rectennas Revisited,” IEEE Trans. NanoTechnol. 12(6), 1144–1150 (2013).
[Crossref]

Schaefer, J. A.

Schaich, W. L.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. González, and G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41(5), 271–281 (2000).
[Crossref]

Schneider, L. C.

G. P. Szakmany, P. M. Krenz, L. C. Schneider, A. O. Orlov, G. H. Bernstein, and W. Porod, “Nanowire Thermocouple Characterization Platform,” IEEE Trans. NanoTechnol. 12(3), 309–313 (2013).
[Crossref]

Staffaroni, M.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett. 9(10), 3447–3452 (2009).
[Crossref] [PubMed]

Suzuki, R. O.

K. Ono and R. O. Suzuki, “Thermoelectric power generation: Converting low-grade heat into electricity,” JOM 50(12), 49–51 (1998).
[Crossref]

Szakmany, G. P.

G. P. Szakmany, P. M. Krenz, A. O. Orlov, G. H. Bernstein, and W. Porod, “Antenna-Coupled Nanowire Thermocouples for Infrared Detection,” IEEE Trans. NanoTechnol. 12(2), 163–167 (2013).
[Crossref]

G. P. Szakmany, P. M. Krenz, L. C. Schneider, A. O. Orlov, G. H. Bernstein, and W. Porod, “Nanowire Thermocouple Characterization Platform,” IEEE Trans. NanoTechnol. 12(3), 309–313 (2013).
[Crossref]

M. Bareis, P. M. Krenz, G. P. Szakmany, B. N. Tiwari, D. Kalblein, A. O. Orlov, G. H. Bernstein, G. Scarpa, B. Fabel, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “Rectennas Revisited,” IEEE Trans. NanoTechnol. 12(6), 1144–1150 (2013).
[Crossref]

Tang, J.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett. 9(10), 3447–3452 (2009).
[Crossref] [PubMed]

Taubert, R.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun 2, 267 (2011).
[Crossref] [PubMed]

Tiwari, B.

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antennacoupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[Crossref]

Tiwari, B. N.

M. Bareis, P. M. Krenz, G. P. Szakmany, B. N. Tiwari, D. Kalblein, A. O. Orlov, G. H. Bernstein, G. Scarpa, B. Fabel, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “Rectennas Revisited,” IEEE Trans. NanoTechnol. 12(6), 1144–1150 (2013).
[Crossref]

Toimil-Molares, M. E.

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89(25), 253104 (2006).
[Crossref]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Vandenbosch, G. A. E.

Z. Ma and G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013).
[Crossref]

G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
[Crossref]

Vedantam, S.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett. 9(10), 3447–3452 (2009).
[Crossref] [PubMed]

Vogelgesang, R.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun 2, 267 (2011).
[Crossref] [PubMed]

Yablonovitch, E.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett. 9(10), 3447–3452 (2009).
[Crossref] [PubMed]

Zhang, X.

W. Ma and X. Zhang, “Study of the thermal, electrical and thermoelectric properties of metallic nanofilms,” Int. J. Heat Mass Transfer 58(1-2), 639–651 (2013).
[Crossref]

Zhu, Z.

Z. Zhu, S. Joshi, S. Grover, and G. Moddel, “Graphene geometric diodes for terahertz rectennas,” J. Phys. D Appl. Phys. 46(18), 185101 (2013).
[Crossref]

Zschieschang, U.

M. Bareis, P. M. Krenz, G. P. Szakmany, B. N. Tiwari, D. Kalblein, A. O. Orlov, G. H. Bernstein, G. Scarpa, B. Fabel, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “Rectennas Revisited,” IEEE Trans. NanoTechnol. 12(6), 1144–1150 (2013).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, “Resonances of individual metal nanowires in the infrared,” Appl. Phys. Lett. 89(25), 253104 (2006).
[Crossref]

N. Alimardani and J. F. Conley., “Step tunneling enhanced asymmetry in asymmetric electrode metal-insulator-insulator-metal tunnel diodes,” Appl. Phys. Lett. 102(14), 143501 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

F. J. González, B. Ilic, J. Alda, and G. D. Boreman, “Antenna-Coupled Infrared Detectors for Imaging Applications,” IEEE J. Sel. Top. Quantum Electron. 11(1), 117–120 (2005).
[Crossref]

IEEE Trans. NanoTechnol. (3)

G. P. Szakmany, P. M. Krenz, A. O. Orlov, G. H. Bernstein, and W. Porod, “Antenna-Coupled Nanowire Thermocouples for Infrared Detection,” IEEE Trans. NanoTechnol. 12(2), 163–167 (2013).
[Crossref]

G. P. Szakmany, P. M. Krenz, L. C. Schneider, A. O. Orlov, G. H. Bernstein, and W. Porod, “Nanowire Thermocouple Characterization Platform,” IEEE Trans. NanoTechnol. 12(3), 309–313 (2013).
[Crossref]

M. Bareis, P. M. Krenz, G. P. Szakmany, B. N. Tiwari, D. Kalblein, A. O. Orlov, G. H. Bernstein, G. Scarpa, B. Fabel, U. Zschieschang, H. Klauk, W. Porod, and P. Lugli, “Rectennas Revisited,” IEEE Trans. NanoTechnol. 12(6), 1144–1150 (2013).
[Crossref]

Infrared Phys. Technol. (5)

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. González, and G. D. Boreman, “Measurement of the resonant lengths of infrared dipole antennas,” Infrared Phys. Technol. 41(5), 271–281 (2000).
[Crossref]

F. González and G. Boreman, “Comparison of dipole, bowtie, spiral and log-periodic IR antennas,” Infrared Phys. Technol. 46(5), 418–428 (2005).
[Crossref]

P. Krenz, J. Alda, and G. Boreman, “Orthogonal infrared dipole antenna,” Infrared Phys. Technol. 51(4), 340–343 (2008).
[Crossref]

C. Fumeaux, W. Herrmann, F. Kneubühl, and H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39(3), 123–183 (1998).
[Crossref]

F. J. González, “Thermal-impedance simulations of antenna-coupled microbolometers,” Infrared Phys. Technol. 48(3), 223–226 (2006).
[Crossref]

Int. J. Heat Mass Transfer (1)

W. Ma and X. Zhang, “Study of the thermal, electrical and thermoelectric properties of metallic nanofilms,” Int. J. Heat Mass Transfer 58(1-2), 639–651 (2013).
[Crossref]

IRE Trans. Antennas Propag. (1)

L. J. A. Kaiser, “The Archimedean two-wire spiral antenna,” IRE Trans. Antennas Propag. 8(3), 312–323 (1960).
[Crossref]

J. Phys. D Appl. Phys. (2)

Z. Zhu, S. Joshi, S. Grover, and G. Moddel, “Graphene geometric diodes for terahertz rectennas,” J. Phys. D Appl. Phys. 46(18), 185101 (2013).
[Crossref]

U. Dillner, E. Kessler, and H.-G. Meyer, “Responsivity and detectivity modeling of thermal radiation sensors based on a biased thermocouple,” J. Phys. D Appl. Phys. 44(30), 305102 (2011).
[Crossref]

J. Vac. Sci. Technol. B (1)

J. A. Bean, B. Tiwari, G. H. Bernstein, P. Fay, and W. Porod, “Thermal infrared detection using dipole antennacoupled metal-oxide-metal diodes,” J. Vac. Sci. Technol. B 27(1), 11–14 (2009).
[Crossref]

JOM (1)

K. Ono and R. O. Suzuki, “Thermoelectric power generation: Converting low-grade heat into electricity,” JOM 50(12), 49–51 (1998).
[Crossref]

Meas. Sci. Technol. (1)

A. Graf, M. Arndt, M. Sauer, and G. Gerlach, “Review of micromachined thermopiles for infrared detection,” Meas. Sci. Technol. 18(7), R59–R75 (2007).
[Crossref]

Nano Energy (1)

G. A. E. Vandenbosch and Z. Ma, “Upper bounds for the solar energy harvesting efficiency of nano-antennas,” Nano Energy 1(3), 494–502 (2012).
[Crossref]

Nano Lett. (1)

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A Plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett. 9(10), 3447–3452 (2009).
[Crossref] [PubMed]

Nat Commun (1)

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern, and H. Giessen, “3D optical Yagi-Uda nanoantenna array,” Nat Commun 2, 267 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. Lett. (1)

G. Baffou, C. Girard, and R. Quidant, “Mapping Heat Origin in Plasmonic Structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. Biagioni, J. S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Science (1)

P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant Optical Antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Sol. Energy (1)

Z. Ma and G. A. E. Vandenbosch, “Optimal solar energy harvesting efficiency of nano-rectenna systems,” Sol. Energy 88, 163–174 (2013).
[Crossref]

Solid-State Electron. (1)

S. Grover and G. Moddel, “Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers,” Solid-State Electron. 67(1), 94–99 (2012).
[Crossref]

Other (5)

D. M. Rowe, Thermoelectrics Handbook: Macro to Nano (Taylor and Francis, UK, 2006).

S. Rockwell, D. Lim, B. A. Bosco, J. H. Baker, B. Eliasson, K. Forsyth, and M. Cromar, “Characterization and modeling of metal/double-insulator/metal diodes for millimeter wave wireless receiver applications”, in Proceeding of IEEE Radio Frequency Integrated Circuits Symposium, (Honolulu, HI, 2007), pp. 171–174.
[Crossref]

C. A. Balanis, Antenna Theory (John Willey and Sons, 1997).

E. D. Palik, Handbook of Optical Constants of Solids 3 (New York, USA, 1997).

J. P. Carmo, L. M. Gonçalves, and J. H. Correia, Micro and Nanodevices for Thermoelectric Converters, in Scanning Probe Microscopy in Nanoscience and Nanotechnology 2 (Springer, Berlin, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Schematic diagram of the proposed Seebeck spiral nanoantennas, (a) Square spiral configuration, (b) Archimedean spiral array and (c) Single closed-loop nanoantenna.
Fig. 2
Fig. 2 Top: Temperature map of three different spiral nanoantennas due to Joule heating when illuminated under different polarizations (taken in a plane at the mid-height of structures, z = 50nm). Middle: Temperature profile along the arms of the square spiral nanoantenna. Junctions are represented as vertical lines and numbered being junction #8 the one located at the center of the structure. Bottom: Differences in temperature for the three states of polarization considered and for the two possible choices to produce a Seebeck voltage.
Fig. 3
Fig. 3 Temperatures map (right) and profile (left) for the Archimedean spiral for right-handed circular polarization.
Fig. 4
Fig. 4 (a) temperature maps of the square closed-loop single antenna for four different polarization states; (b) temperature profile of the square closed-loop single antenna and (c) Voltage values for several choices of consecutive junctions; the dots represent the voltage values for several choices of consecutive juntions. The connecting lines are only presented to group the values for the four different polarizations states.

Tables (2)

Tables Icon

Table 1 Voltage Response of the Square Spirals Thermocouples

Tables Icon

Table 2 Efficiency of three types of Seebeck nanoantennas at λ = 10.6µm

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

V OC = n ( S A S B )Δ T n ,
L n ={ a, for n=1, 2a(n1), for n=2,3,...
r= r 0 φ+ r 1 and r= r 0 (φπ)+ r 1 ,
q(r)=1/2σ(ω)| E (r) | 2
(κT(r))=q(r), inside the antennas (κT(r))=0, outside the antennas.
V = V OC P inc ,

Metrics