Abstract

Designing an illumination system for a surface light source with a strict compactness requirement is quite challenging, especially for the general three-dimensional (3D) case. In accordance with the two key features of an expected illumination distribution, i.e., a well-controlled boundary and a precise illumination pattern, a two-step design method is proposed in this paper for highly compact 3D freeform illumination systems. In the first step, a target shape scaling strategy is combined with an iterative feedback modification algorithm to generate an optimized freeform optical system with a well-controlled boundary of the target distribution. In the second step, a set of selected radii of the system obtained in the first step are optimized to further improve the illuminating quality within the target region. The method is quite flexible and effective to design highly compact optical systems with almost no restriction on the shape of the desired target field. As examples, three highly compact freeform lenses with ratio of center height h of the lens and the maximum dimension D of the source ≤ 2.5:1 are designed for LED surface light sources to form a uniform illumination distribution on a rectangular, a cross-shaped and a complex cross pierced target plane respectively. High light control efficiency of η > 0.7 as well as low relative standard illumination deviation of RSD < 0.07 is obtained simultaneously for all the three design examples.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A two-step design method for high compact rotationally symmetric optical system for LED surface light source

Xianglong Mao, Hongtao Li, Yanjun Han, and Yi Luo
Opt. Express 22(S2) A233-A247 (2014)

Fast design method of smooth freeform lens with an arbitrary aperture for collimated beam shaping

Xianglong Mao, Jinpeng Li, Fengbiao Wang, Rong Gao, Xing Li, and Yongjun Xie
Appl. Opt. 58(10) 2512-2521 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Cree LED products, “Cree XLamp LEDs” (CREE 2013). http://www.cree.com/led-components-and-modules/products/xlamp
  2. R. Winston, J. C. Miñano, P. Benítez, with contributions by N. Shatz, and J. C. Bortz, Nonimaging Optics (Elsevier, 2005), Chap. 7.
  3. F. R. Fournier, “A review of beam shaping strategies for LED lighting,” Proc. SPIE 8170, 817007 (2011).
    [Crossref]
  4. H. R. Ries and R. Winston, “Tailored edge-ray reflectors for illumination,” J. Opt. Soc. Am. A 11(4), 1260–1264 (1994).
    [Crossref]
  5. A. Rabl and J. M. Gordon, “Reflector design for illumination with extended sources: the basic solutions,” Appl. Opt. 33(25), 6012–6021 (1994).
    [Crossref] [PubMed]
  6. P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
    [Crossref]
  7. R. J. Koshel, “Simplex optimization method for illumination design,” Opt. Lett. 30(6), 649–651 (2005).
    [Crossref] [PubMed]
  8. F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Optimization of single reflectors for extended sources,” Proc. SPIE 7103, 71030I (2008).
    [Crossref]
  9. P. Liu, R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimized design of LED freeform lens for uniform circular illumination,” J. Zhejiang Univ. Sci. C 13(12), 929–936 (2012).
    [Crossref]
  10. Y. Luo, Z. X. Feng, Y. J. Han, and H. T. Li, “Design of compact and smooth free-form optical system with uniform illuminance for LED source,” Opt. Express 18(9), 9055–9063 (2010).
    [Crossref] [PubMed]
  11. K. Wang, F. Chen, Z. Y. Liu, X. B. Luo, and S. Liu, “Design of compact freeform lens for application specific light-emitting diode packaging,” Opt. Express 18(2), 413–425 (2010).
    [Crossref] [PubMed]
  12. H. T. Li, S. C. Chen, Y. J. Han, and Y. Luo, “A fast feedback method to design easy-molding freeform optical system with uniform illuminance and high light control efficiency,” Opt. Express 21(1), 1258–1269 (2013).
  13. A. Bruneton, A. Bäuerle, R. Wester, J. Stollenwerk, and P. Loosen, “High resolution irradiance tailoring using multiple freeform surfaces,” Opt. Express 21(9), 10563–10571 (2013).
    [Crossref] [PubMed]
  14. K. Wang, Y. J. Han, H. T. Li, and Y. Luo, “Overlapping-based optical freeform surface construction for extended lighting source,” Opt. Express 21(17), 19750–19761 (2013).
    [Crossref] [PubMed]
  15. X. L. Mao, H. T. Li, Y. J. Han, and Y. Luo, “A two-step design method for high compact rotationally symmetric optical system for LED surface light source,” Opt. Express 22(S2Suppl 2), A233–A247 (2014).
    [Crossref] [PubMed]
  16. W. A. Parkyn, “The design of illumination lenses via extrinsic differential geometry,” Proc. SPIE 3482, 191–193 (1998).
    [Crossref]
  17. L. Wang, K. Qian, and Y. Luo, “Discontinuous free-form lens design for prescribed irradiance,” Appl. Opt. 46(18), 3716–3723 (2007).
    [Crossref] [PubMed]
  18. Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).
    [Crossref] [PubMed]
  19. M. S. Rea, The IESNA Lighting Handbook: Reference and Application, 9th ed. (IESNA, 2000).

2014 (1)

2013 (3)

2012 (1)

P. Liu, R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimized design of LED freeform lens for uniform circular illumination,” J. Zhejiang Univ. Sci. C 13(12), 929–936 (2012).
[Crossref]

2011 (1)

F. R. Fournier, “A review of beam shaping strategies for LED lighting,” Proc. SPIE 8170, 817007 (2011).
[Crossref]

2010 (2)

2008 (2)

Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).
[Crossref] [PubMed]

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Optimization of single reflectors for extended sources,” Proc. SPIE 7103, 71030I (2008).
[Crossref]

2007 (1)

2005 (1)

2004 (1)

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

1998 (1)

W. A. Parkyn, “The design of illumination lenses via extrinsic differential geometry,” Proc. SPIE 3482, 191–193 (1998).
[Crossref]

1994 (2)

Bäuerle, A.

Benítez, P.

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Blen, J.

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Bruneton, A.

Cassarly, W. J.

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Optimization of single reflectors for extended sources,” Proc. SPIE 7103, 71030I (2008).
[Crossref]

Chaves, J.

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Chen, F.

Chen, S. C.

Ding, Y.

Dross, O.

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Falicoff, W.

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Feng, Z. X.

Fournier, F. R.

F. R. Fournier, “A review of beam shaping strategies for LED lighting,” Proc. SPIE 8170, 817007 (2011).
[Crossref]

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Optimization of single reflectors for extended sources,” Proc. SPIE 7103, 71030I (2008).
[Crossref]

Gordon, J. M.

Gu, P. F.

Han, Y. J.

Hernández, M.

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Koshel, R. J.

Li, H. F.

P. Liu, R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimized design of LED freeform lens for uniform circular illumination,” J. Zhejiang Univ. Sci. C 13(12), 929–936 (2012).
[Crossref]

Li, H. T.

Liu, P.

P. Liu, R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimized design of LED freeform lens for uniform circular illumination,” J. Zhejiang Univ. Sci. C 13(12), 929–936 (2012).
[Crossref]

Liu, S.

Liu, X.

P. Liu, R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimized design of LED freeform lens for uniform circular illumination,” J. Zhejiang Univ. Sci. C 13(12), 929–936 (2012).
[Crossref]

Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).
[Crossref] [PubMed]

Liu, Z. Y.

Loosen, P.

Luo, X. B.

Luo, Y.

Mao, X. L.

Minano, J. C.

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Mohedano, R.

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Parkyn, W. A.

W. A. Parkyn, “The design of illumination lenses via extrinsic differential geometry,” Proc. SPIE 3482, 191–193 (1998).
[Crossref]

Qian, K.

Rabl, A.

Ries, H. R.

Rolland, J. P.

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Optimization of single reflectors for extended sources,” Proc. SPIE 7103, 71030I (2008).
[Crossref]

Stollenwerk, J.

Wang, K.

Wang, L.

Wester, R.

Winston, R.

Wu, R. M.

P. Liu, R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimized design of LED freeform lens for uniform circular illumination,” J. Zhejiang Univ. Sci. C 13(12), 929–936 (2012).
[Crossref]

Zheng, Z. R.

P. Liu, R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimized design of LED freeform lens for uniform circular illumination,” J. Zhejiang Univ. Sci. C 13(12), 929–936 (2012).
[Crossref]

Y. Ding, X. Liu, Z. R. Zheng, and P. F. Gu, “Freeform LED lens for uniform illumination,” Opt. Express 16(17), 12958–12966 (2008).
[Crossref] [PubMed]

Appl. Opt. (2)

J. Opt. Soc. Am. A (1)

J. Zhejiang Univ. Sci. C (1)

P. Liu, R. M. Wu, Z. R. Zheng, H. F. Li, and X. Liu, “Optimized design of LED freeform lens for uniform circular illumination,” J. Zhejiang Univ. Sci. C 13(12), 929–936 (2012).
[Crossref]

Opt. Eng. (1)

P. Benítez, J. C. Miňano, J. Blen, R. Mohedano, J. Chaves, O. Dross, M. Hernández, and W. Falicoff, “Simultaneous multiple surface optical design method in three dimensions,” Opt. Eng. 43(7), 1489–1502 (2004).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Proc. SPIE (3)

F. R. Fournier, W. J. Cassarly, and J. P. Rolland, “Optimization of single reflectors for extended sources,” Proc. SPIE 7103, 71030I (2008).
[Crossref]

F. R. Fournier, “A review of beam shaping strategies for LED lighting,” Proc. SPIE 8170, 817007 (2011).
[Crossref]

W. A. Parkyn, “The design of illumination lenses via extrinsic differential geometry,” Proc. SPIE 3482, 191–193 (1998).
[Crossref]

Other (3)

Cree LED products, “Cree XLamp LEDs” (CREE 2013). http://www.cree.com/led-components-and-modules/products/xlamp

R. Winston, J. C. Miñano, P. Benítez, with contributions by N. Shatz, and J. C. Bortz, Nonimaging Optics (Elsevier, 2005), Chap. 7.

M. S. Rea, The IESNA Lighting Handbook: Reference and Application, 9th ed. (IESNA, 2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 Two key points for illumination design and the corresponding two-step optimization strategy.
Fig. 2
Fig. 2 A flow diagram of the two-step optimization process. The first step (in the red box) is a combination of two algorithms: iterative feedback modification of the illumination and target shape scaling. The second step (in the blue box) is realized by optimizing a set of selected radii of the initial optimal lens model obtained in the first step.
Fig. 3
Fig. 3 Establish the source-target mapping using an assumed point source which is at the geometric center of the surface light source with the same luminous intensity distribution as the surface source. For a point source, a point on the lens profile will generate a single point on the target plane.
Fig. 4
Fig. 4 For a surface light source, a point on the lens profile will create a finite-size light spot on the target plane. Through the overlapping of all the spots, a target distribution is obtained.
Fig. 5
Fig. 5 Numerical configuration of the profile by geometrical construction method.
Fig. 6
Fig. 6 Optimize the preset shape of the target plane.
Fig. 7
Fig. 7 Second-step optimization: optimize the polar radii of the freeform lens obtained in the first-step optimization in selected directions.
Fig. 8
Fig. 8 Sketch of the setting for designing freeform lens for LED square surface light source to form a uniform illumination pattern within a far-field rectangular region.
Fig. 9
Fig. 9 Simulated illumination distributions of the optical systems generated by (a) point source assumption, (b) the first-step optimization, and (c) the second-step optimization.
Fig. 10
Fig. 10 (a) Models and (b) cross-sectional profiles of the optimal freeform lens.
Fig. 11
Fig. 11 Sketch of the setting for designing freeform lens for discoid LED surface light source to form a uniform illumination pattern within a far-field cross-shaped region.
Fig. 12
Fig. 12 Simulated illumination distributions of the optical systems obtained after (a) the first-step optimization, and (b) the second-step optimization.
Fig. 13
Fig. 13 (a) Models and (b) cross-sectional profiles of the optimal freeform lens.
Fig. 14
Fig. 14 Sketch of the setting for designing a freeform lens for discoid LED surface light source to form a uniform illumination pattern within a complex-shaped target region.
Fig. 15
Fig. 15 Final simulation result after the two-step optimization.
Fig. 16
Fig. 16 (a) Models and (b) cross-sectional profiles of the optimal freeform lens.

Tables (3)

Tables Icon

Table 1 Parameters set for the first example

Tables Icon

Table 2 Lighting parameters calculated for the two-step optimization

Tables Icon

Table 3 Lighting parameters calculated for the two-step optimization

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

Ω S I(θ,φ)sinθdθdφ = Ω T E 0 (x,y)dxdy ,
(x,y)=( f 0 (θ,φ), g 0 (θ,φ)).
φ i = φ min + φ max φ min M i ( i = 0 , 1 , M ) ,
θ j = θ min + θ max θ min N j ( j = 0 , 1 , N ) ,
γ i = φ i ( i = 0 , 1 , M ) .
S ( ρ B , γ ) = 0 ,
θ 0 θ j I ( θ , φ i ) d θ θ 0 θ N I ( θ , φ i ) d θ = ρ i , 0 ρ i , j E 0 ( ρ , γ i ) d ρ ρ i , 0 ρ B i E 0 ( ρ , γ i ) d ρ ( i = 0 , 1 , M , j = 0 , 1 , N ) ,
ρ i , j = F ( θ j , φ i ) .
( θ j , φ i )( ρ i,j , γ i ){ γ i = φ i ρ i,j =F( θ j , φ i ) (i=0,1,M,j=0,1,N).
N 0 = ( n 2 O u t 0 n 1 I n 0 ) / | n 2 O u t 0 n 1 I n 0 | ,
β k (ρ,γ)= { E 0 (ρ,γ)/[ λ 1 E Sk (ρ,γ)+(1 λ 1 ) E 0 (ρ,γ)] } λ 2 ,
E Mk (ρ,γ)= Π i=1 k β i (ρ,γ) E 0 (ρ,γ).
M F 1 = ω 1 RS D shape +(1 ω 1 )RSD,
γ i = φ min + φ max φ min M 1 i(i=0,1,, M 1 ),
ρ i,j = ρ mini ( γ i )+ ρ maxi ( γ i ) ρ mini ( γ i ) N 1 j(j=0,1,, N 1 ),
RS D 2 shape = i=0 M 1 ( ρ Si ( γ i ) ρ maxi ( γ i ) ρ maxi ( γ i ) ) 2 M 1 ,
RS D 2 = i=0 M 1 j=0 N 1 ( E S ( ρ i,j , γ i ) E 0 ( ρ i,j , γ i ) E 0 ( ρ i,j , γ i ) ) 2 ( M 1 +1)( N 1 +1)1 ,
S ( α 1 ρ B α 2 , γ ) = 0 ,
{ min α 1 , α 2 M F 1 ( α 1 , α 2 ) Constraint:η η T ,
P ' m , l = r m , l ( cos φ m sin θ l , sin φ m sin θ l , cos θ l ) .
M F 2 = υ 1 RSD+(1 υ 1 )(1η),
min r m,l M F 2 ( r m,l )(m=0,1,, N m ;l=0,1,, N l ).
| ρ cos γ α 1 | α 3 + | ρ sin γ α 2 | α 3 = 1 ,
R S D 2 = i = 0 M 1 j = 0 N 1 ( E S ( ρ i , j , γ i ) E ¯ S 1 ) 2 ( M 1 + 1 ) ( N 1 + 1 ) 1 ,
E ¯ S = i = 0 M 1 j = 0 N 1 E S ( ρ i , j , γ i ) ( M 1 + 1 ) ( N 1 + 1 ) .

Metrics