Abstract

This study proposes a slim planar apparatus for converting nonpolarized light from a light-emitting diode (LED) into an ultra-collimated linearly polarized beam uniformly emitted from its top surface. The apparatus was designed based on a folded-bilayer configuration comprising a light-mixing collimation element, polarization conversion element, and polarization-preserving light guide plate (PPLGP) with an overall thickness of 5 mm. Moreover, the apparatus can be extended transversally by connecting multiple light-mixing collimation elements and polarization conversion elements in a side-by-side configuration to share a considerably wider PPLGP, so the apparatus can have theoretically unlimited width. The simulation results indicate that the proposed apparatus is feasible for the maximal backlight modules in 39-inch liquid crystal panels. In the case of an apparatus with a 480 × 80 mm emission area and two 8-lumen LED light sources, the average head-on polarized luminance and spatial uniformity over the emission area was 5000 nit and 83%, respectively; the vertical and transverse angular distributions of the emitting light were only 5° and 10°, respectively. Moreover, the average degree of polarization and energy efficiency of the apparatus were 82% and 72%, respectively. As compared with the high-performance ultra-collimated nonpolarized backlight module proposed in our prior work, not only did the apparatus exhibit outstanding optical performance, but also the highly polarized light emissions actually increased the energy efficiency by 100%.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Planar apparatus for uniformly emitting light with angular color-separation

Tun-Chien Teng and Li-Wei Tseng
Opt. Express 23(11) A553-A568 (2015)

A slim apparatus of transferring discrete LEDs’ light into an ultra-collimated planar light source

Tun-Chien Teng, Wen-Shing Sun, Li-Wei Tseng, and Wei-Chung Chang
Opt. Express 21(22) 26972-26982 (2013)

Integrated backlight module to provide a collimated and uniform planar light source

Bing-Le Huang and Tai-Liang Guo
Appl. Opt. 55(26) 7307-7313 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. Kobayashi, S. Mikoshiba, and S. Lim, LCD Backlights (Wiley, 2009).
  2. 3M, “Display with reflective polarizer and randomizing cavity,” US Patent 6025897 (1996).
  3. Dow Chemical, “Relective polymeric body,” US Patent 5122905 (1992).
  4. Y. Li, T. X. Wu, and S. T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Technol. 5(8), 335–340 (2009).
    [Crossref]
  5. T. Liu, J. Wheatley, M. O’Neill, and M. E. Sousa, “Edge-lit hollow backlight using tunable reflective polarizer for liquid crystal displays,” SID 09 Digest 40(1), 819–822 (2009).
    [Crossref]
  6. Nitto Denko Co, “Optical film and a liquid crystal display using the same,” US Patent 6903788 (2002).
  7. K. W. Chien and H. P. D. Shieh, “Design and fabrication of an integrated polarized light guide for liquid-crystal-display illumination,” Appl. Opt. 43(9), 1830–1834 (2004).
    [Crossref] [PubMed]
  8. X. Yang, Y. Yan, and G. Jin, “Polarized light-guide plate for liquid crystal display,” Opt. Express 13(21), 8349–8356 (2005).
    [Crossref] [PubMed]
  9. C. H. Chen, P. C. Chen, and C. C. Chen, “High extinction ratio polarized light guide with layered cross stacking nanostructure,” Microelectron. Eng. 86(4-6), 1107–1110 (2009).
    [Crossref]
  10. S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
    [Crossref]
  11. J. S. Seo, T. E. Yeom, and J. H. Ko, “Experimental and simulation study of the optical performances of a wide grid polarizer as a luminance enhancement film for LCD backlight applications,” J. Opt. Soc. Korea 16(2), 151–156 (2012).
    [Crossref]
  12. P. H. Yao, C. J. Chung, C. L. Wu, and C. H. Chen, “Polarized backlight with constrained angular divergence for enhancement of light extraction efficiency from wire grid polarizer,” Opt. Express 20(5), 4819–4829 (2012).
    [Crossref] [PubMed]
  13. K. W. Chien, H. P. D. Shieh, and H. Cornelissen, “Polarized backlight based on selective total internal reflection at microgrooves,” Appl. Opt. 43(24), 4672–4676 (2004).
    [Crossref] [PubMed]
  14. S. Hwang, Y. T. Kim, S. Nam, and S. D. Lee, “Polarized light out-coupling in backlight by collimating the beam into light guide plate,” J. Soc. Inf. Disp. 8(1), 18–21 (2007).
    [Crossref]
  15. H. J. Cornelissen, H. J. B. Jagt, D. J. Broer, and C. W. M. Bastiaansen, “Efficient and cost-effective polarized-light backlights for LCDs,” Proc. SPIE 7058, 70580X (2008).
    [Crossref]
  16. H. J. B. Jagt, H. J. Cornelissen, D. J. Broer, and C. W. M. Bastiaansen, “Linearly polarized light-emitting backlight,” J. Soc. Inf. Disp. 10(1), 107–112 (2012).
    [Crossref]
  17. Z. Luo, Y. W. Cheng, and S. T. Wu, “Polarization-preserving light guide plate for a linearly polarized backlight,” J. Disp. Technol. 10(3), 208–214 (2014).
    [Crossref]
  18. T. Kurashima, K. Sakuma, T. Arai, A. Tagaya, and Y. Koike, “A polarized laser backlight using a zero–zero-birefringence polymer for liquid crystal displays,” Opt. Rev. 19(6), 415–418 (2012).
    [Crossref]
  19. M. Y. Yu, B. W. Lee, J. H. Lee, and J. H. Ko, “Correlation between the performance of the optical reflective polarizer and the structure of the LCD backlight,” J. Opt. Soc. Korea 13(2), 256–260 (2009).
    [Crossref]
  20. B. W. Lee, M. Y. Yu, and J. H. Ko, “Dependence of the gain factor of the reflective polarizer on the configuration of optical sheets,” J. Soc. Inf. Disp. 10(1), 28–32 (2009).
    [Crossref]
  21. F. Fournier, W. J. Cassarly, and J. P. Rolland, “Method to improve spatial uniformity with lightpipes,” Opt. Lett. 33(11), 1165–1167 (2008).
    [Crossref] [PubMed]
  22. T. C. Teng, W. S. Sun, L. W. Tseng, and W. C. Chang, “A slim apparatus of transferring discrete LEDs’ light into an ultra-collimated planar light source,” Opt. Express 21(22), 26972–26982 (2013).
    [Crossref] [PubMed]
  23. K. Nakamura, T. Fuchida, K. Yamagata, A. Nishimura, T. Takita, and H. Takemoto, “Optical design of front diffuser for collimated backlight and front diffusing system,” IDW 11, 475–478 (2011).

2014 (1)

Z. Luo, Y. W. Cheng, and S. T. Wu, “Polarization-preserving light guide plate for a linearly polarized backlight,” J. Disp. Technol. 10(3), 208–214 (2014).
[Crossref]

2013 (1)

2012 (4)

T. Kurashima, K. Sakuma, T. Arai, A. Tagaya, and Y. Koike, “A polarized laser backlight using a zero–zero-birefringence polymer for liquid crystal displays,” Opt. Rev. 19(6), 415–418 (2012).
[Crossref]

H. J. B. Jagt, H. J. Cornelissen, D. J. Broer, and C. W. M. Bastiaansen, “Linearly polarized light-emitting backlight,” J. Soc. Inf. Disp. 10(1), 107–112 (2012).
[Crossref]

P. H. Yao, C. J. Chung, C. L. Wu, and C. H. Chen, “Polarized backlight with constrained angular divergence for enhancement of light extraction efficiency from wire grid polarizer,” Opt. Express 20(5), 4819–4829 (2012).
[Crossref] [PubMed]

J. S. Seo, T. E. Yeom, and J. H. Ko, “Experimental and simulation study of the optical performances of a wide grid polarizer as a luminance enhancement film for LCD backlight applications,” J. Opt. Soc. Korea 16(2), 151–156 (2012).
[Crossref]

2011 (1)

K. Nakamura, T. Fuchida, K. Yamagata, A. Nishimura, T. Takita, and H. Takemoto, “Optical design of front diffuser for collimated backlight and front diffusing system,” IDW 11, 475–478 (2011).

2009 (5)

M. Y. Yu, B. W. Lee, J. H. Lee, and J. H. Ko, “Correlation between the performance of the optical reflective polarizer and the structure of the LCD backlight,” J. Opt. Soc. Korea 13(2), 256–260 (2009).
[Crossref]

B. W. Lee, M. Y. Yu, and J. H. Ko, “Dependence of the gain factor of the reflective polarizer on the configuration of optical sheets,” J. Soc. Inf. Disp. 10(1), 28–32 (2009).
[Crossref]

Y. Li, T. X. Wu, and S. T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Technol. 5(8), 335–340 (2009).
[Crossref]

T. Liu, J. Wheatley, M. O’Neill, and M. E. Sousa, “Edge-lit hollow backlight using tunable reflective polarizer for liquid crystal displays,” SID 09 Digest 40(1), 819–822 (2009).
[Crossref]

C. H. Chen, P. C. Chen, and C. C. Chen, “High extinction ratio polarized light guide with layered cross stacking nanostructure,” Microelectron. Eng. 86(4-6), 1107–1110 (2009).
[Crossref]

2008 (2)

H. J. Cornelissen, H. J. B. Jagt, D. J. Broer, and C. W. M. Bastiaansen, “Efficient and cost-effective polarized-light backlights for LCDs,” Proc. SPIE 7058, 70580X (2008).
[Crossref]

F. Fournier, W. J. Cassarly, and J. P. Rolland, “Method to improve spatial uniformity with lightpipes,” Opt. Lett. 33(11), 1165–1167 (2008).
[Crossref] [PubMed]

2007 (1)

S. Hwang, Y. T. Kim, S. Nam, and S. D. Lee, “Polarized light out-coupling in backlight by collimating the beam into light guide plate,” J. Soc. Inf. Disp. 8(1), 18–21 (2007).
[Crossref]

2006 (1)

S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
[Crossref]

2005 (1)

2004 (2)

Arai, T.

T. Kurashima, K. Sakuma, T. Arai, A. Tagaya, and Y. Koike, “A polarized laser backlight using a zero–zero-birefringence polymer for liquid crystal displays,” Opt. Rev. 19(6), 415–418 (2012).
[Crossref]

Bastiaansen, C. W. M.

H. J. B. Jagt, H. J. Cornelissen, D. J. Broer, and C. W. M. Bastiaansen, “Linearly polarized light-emitting backlight,” J. Soc. Inf. Disp. 10(1), 107–112 (2012).
[Crossref]

H. J. Cornelissen, H. J. B. Jagt, D. J. Broer, and C. W. M. Bastiaansen, “Efficient and cost-effective polarized-light backlights for LCDs,” Proc. SPIE 7058, 70580X (2008).
[Crossref]

Broer, D. J.

H. J. B. Jagt, H. J. Cornelissen, D. J. Broer, and C. W. M. Bastiaansen, “Linearly polarized light-emitting backlight,” J. Soc. Inf. Disp. 10(1), 107–112 (2012).
[Crossref]

H. J. Cornelissen, H. J. B. Jagt, D. J. Broer, and C. W. M. Bastiaansen, “Efficient and cost-effective polarized-light backlights for LCDs,” Proc. SPIE 7058, 70580X (2008).
[Crossref]

Cassarly, W. J.

Chang, W. C.

Chen, C. C.

C. H. Chen, P. C. Chen, and C. C. Chen, “High extinction ratio polarized light guide with layered cross stacking nanostructure,” Microelectron. Eng. 86(4-6), 1107–1110 (2009).
[Crossref]

Chen, C. H.

P. H. Yao, C. J. Chung, C. L. Wu, and C. H. Chen, “Polarized backlight with constrained angular divergence for enhancement of light extraction efficiency from wire grid polarizer,” Opt. Express 20(5), 4819–4829 (2012).
[Crossref] [PubMed]

C. H. Chen, P. C. Chen, and C. C. Chen, “High extinction ratio polarized light guide with layered cross stacking nanostructure,” Microelectron. Eng. 86(4-6), 1107–1110 (2009).
[Crossref]

Chen, P. C.

C. H. Chen, P. C. Chen, and C. C. Chen, “High extinction ratio polarized light guide with layered cross stacking nanostructure,” Microelectron. Eng. 86(4-6), 1107–1110 (2009).
[Crossref]

Cheng, Y. W.

Z. Luo, Y. W. Cheng, and S. T. Wu, “Polarization-preserving light guide plate for a linearly polarized backlight,” J. Disp. Technol. 10(3), 208–214 (2014).
[Crossref]

Chien, K. W.

Chung, C. J.

Cornelissen, H.

Cornelissen, H. J.

H. J. B. Jagt, H. J. Cornelissen, D. J. Broer, and C. W. M. Bastiaansen, “Linearly polarized light-emitting backlight,” J. Soc. Inf. Disp. 10(1), 107–112 (2012).
[Crossref]

H. J. Cornelissen, H. J. B. Jagt, D. J. Broer, and C. W. M. Bastiaansen, “Efficient and cost-effective polarized-light backlights for LCDs,” Proc. SPIE 7058, 70580X (2008).
[Crossref]

Fournier, F.

Fuchida, T.

K. Nakamura, T. Fuchida, K. Yamagata, A. Nishimura, T. Takita, and H. Takemoto, “Optical design of front diffuser for collimated backlight and front diffusing system,” IDW 11, 475–478 (2011).

Hwang, S.

S. Hwang, Y. T. Kim, S. Nam, and S. D. Lee, “Polarized light out-coupling in backlight by collimating the beam into light guide plate,” J. Soc. Inf. Disp. 8(1), 18–21 (2007).
[Crossref]

Jagt, H. J. B.

H. J. B. Jagt, H. J. Cornelissen, D. J. Broer, and C. W. M. Bastiaansen, “Linearly polarized light-emitting backlight,” J. Soc. Inf. Disp. 10(1), 107–112 (2012).
[Crossref]

H. J. Cornelissen, H. J. B. Jagt, D. J. Broer, and C. W. M. Bastiaansen, “Efficient and cost-effective polarized-light backlights for LCDs,” Proc. SPIE 7058, 70580X (2008).
[Crossref]

Jin, G.

Kim, S. H.

S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
[Crossref]

Kim, Y. T.

S. Hwang, Y. T. Kim, S. Nam, and S. D. Lee, “Polarized light out-coupling in backlight by collimating the beam into light guide plate,” J. Soc. Inf. Disp. 8(1), 18–21 (2007).
[Crossref]

Ko, J. H.

Koike, Y.

T. Kurashima, K. Sakuma, T. Arai, A. Tagaya, and Y. Koike, “A polarized laser backlight using a zero–zero-birefringence polymer for liquid crystal displays,” Opt. Rev. 19(6), 415–418 (2012).
[Crossref]

Kurashima, T.

T. Kurashima, K. Sakuma, T. Arai, A. Tagaya, and Y. Koike, “A polarized laser backlight using a zero–zero-birefringence polymer for liquid crystal displays,” Opt. Rev. 19(6), 415–418 (2012).
[Crossref]

Lee, B. W.

B. W. Lee, M. Y. Yu, and J. H. Ko, “Dependence of the gain factor of the reflective polarizer on the configuration of optical sheets,” J. Soc. Inf. Disp. 10(1), 28–32 (2009).
[Crossref]

M. Y. Yu, B. W. Lee, J. H. Lee, and J. H. Ko, “Correlation between the performance of the optical reflective polarizer and the structure of the LCD backlight,” J. Opt. Soc. Korea 13(2), 256–260 (2009).
[Crossref]

Lee, J. H.

Lee, K. D.

S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
[Crossref]

Lee, S. D.

S. Hwang, Y. T. Kim, S. Nam, and S. D. Lee, “Polarized light out-coupling in backlight by collimating the beam into light guide plate,” J. Soc. Inf. Disp. 8(1), 18–21 (2007).
[Crossref]

Li, Y.

Y. Li, T. X. Wu, and S. T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Technol. 5(8), 335–340 (2009).
[Crossref]

Liu, T.

T. Liu, J. Wheatley, M. O’Neill, and M. E. Sousa, “Edge-lit hollow backlight using tunable reflective polarizer for liquid crystal displays,” SID 09 Digest 40(1), 819–822 (2009).
[Crossref]

Luo, Z.

Z. Luo, Y. W. Cheng, and S. T. Wu, “Polarization-preserving light guide plate for a linearly polarized backlight,” J. Disp. Technol. 10(3), 208–214 (2014).
[Crossref]

Nakamura, K.

K. Nakamura, T. Fuchida, K. Yamagata, A. Nishimura, T. Takita, and H. Takemoto, “Optical design of front diffuser for collimated backlight and front diffusing system,” IDW 11, 475–478 (2011).

Nam, S.

S. Hwang, Y. T. Kim, S. Nam, and S. D. Lee, “Polarized light out-coupling in backlight by collimating the beam into light guide plate,” J. Soc. Inf. Disp. 8(1), 18–21 (2007).
[Crossref]

Nishimura, A.

K. Nakamura, T. Fuchida, K. Yamagata, A. Nishimura, T. Takita, and H. Takemoto, “Optical design of front diffuser for collimated backlight and front diffusing system,” IDW 11, 475–478 (2011).

O’Neill, M.

T. Liu, J. Wheatley, M. O’Neill, and M. E. Sousa, “Edge-lit hollow backlight using tunable reflective polarizer for liquid crystal displays,” SID 09 Digest 40(1), 819–822 (2009).
[Crossref]

Park, J. D.

S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
[Crossref]

Rolland, J. P.

Sakuma, K.

T. Kurashima, K. Sakuma, T. Arai, A. Tagaya, and Y. Koike, “A polarized laser backlight using a zero–zero-birefringence polymer for liquid crystal displays,” Opt. Rev. 19(6), 415–418 (2012).
[Crossref]

Seo, J. S.

Shieh, H. P. D.

Sousa, M. E.

T. Liu, J. Wheatley, M. O’Neill, and M. E. Sousa, “Edge-lit hollow backlight using tunable reflective polarizer for liquid crystal displays,” SID 09 Digest 40(1), 819–822 (2009).
[Crossref]

Sun, W. S.

Tagaya, A.

T. Kurashima, K. Sakuma, T. Arai, A. Tagaya, and Y. Koike, “A polarized laser backlight using a zero–zero-birefringence polymer for liquid crystal displays,” Opt. Rev. 19(6), 415–418 (2012).
[Crossref]

Takemoto, H.

K. Nakamura, T. Fuchida, K. Yamagata, A. Nishimura, T. Takita, and H. Takemoto, “Optical design of front diffuser for collimated backlight and front diffusing system,” IDW 11, 475–478 (2011).

Takita, T.

K. Nakamura, T. Fuchida, K. Yamagata, A. Nishimura, T. Takita, and H. Takemoto, “Optical design of front diffuser for collimated backlight and front diffusing system,” IDW 11, 475–478 (2011).

Teng, T. C.

Tseng, L. W.

Wheatley, J.

T. Liu, J. Wheatley, M. O’Neill, and M. E. Sousa, “Edge-lit hollow backlight using tunable reflective polarizer for liquid crystal displays,” SID 09 Digest 40(1), 819–822 (2009).
[Crossref]

Wu, C. L.

Wu, S. T.

Z. Luo, Y. W. Cheng, and S. T. Wu, “Polarization-preserving light guide plate for a linearly polarized backlight,” J. Disp. Technol. 10(3), 208–214 (2014).
[Crossref]

Y. Li, T. X. Wu, and S. T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Technol. 5(8), 335–340 (2009).
[Crossref]

Wu, T. X.

Y. Li, T. X. Wu, and S. T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Technol. 5(8), 335–340 (2009).
[Crossref]

Yamagata, K.

K. Nakamura, T. Fuchida, K. Yamagata, A. Nishimura, T. Takita, and H. Takemoto, “Optical design of front diffuser for collimated backlight and front diffusing system,” IDW 11, 475–478 (2011).

Yan, Y.

Yang, X.

Yao, P. H.

Yeom, T. E.

Yu, M. Y.

M. Y. Yu, B. W. Lee, J. H. Lee, and J. H. Ko, “Correlation between the performance of the optical reflective polarizer and the structure of the LCD backlight,” J. Opt. Soc. Korea 13(2), 256–260 (2009).
[Crossref]

B. W. Lee, M. Y. Yu, and J. H. Ko, “Dependence of the gain factor of the reflective polarizer on the configuration of optical sheets,” J. Soc. Inf. Disp. 10(1), 28–32 (2009).
[Crossref]

Appl. Opt. (2)

IDW (1)

K. Nakamura, T. Fuchida, K. Yamagata, A. Nishimura, T. Takita, and H. Takemoto, “Optical design of front diffuser for collimated backlight and front diffusing system,” IDW 11, 475–478 (2011).

J. Disp. Technol. (2)

Z. Luo, Y. W. Cheng, and S. T. Wu, “Polarization-preserving light guide plate for a linearly polarized backlight,” J. Disp. Technol. 10(3), 208–214 (2014).
[Crossref]

Y. Li, T. X. Wu, and S. T. Wu, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Disp. Technol. 5(8), 335–340 (2009).
[Crossref]

J. Opt. Soc. Korea (2)

J. Soc. Inf. Disp. (3)

S. Hwang, Y. T. Kim, S. Nam, and S. D. Lee, “Polarized light out-coupling in backlight by collimating the beam into light guide plate,” J. Soc. Inf. Disp. 8(1), 18–21 (2007).
[Crossref]

B. W. Lee, M. Y. Yu, and J. H. Ko, “Dependence of the gain factor of the reflective polarizer on the configuration of optical sheets,” J. Soc. Inf. Disp. 10(1), 28–32 (2009).
[Crossref]

H. J. B. Jagt, H. J. Cornelissen, D. J. Broer, and C. W. M. Bastiaansen, “Linearly polarized light-emitting backlight,” J. Soc. Inf. Disp. 10(1), 107–112 (2012).
[Crossref]

Microelectron. Eng. (1)

C. H. Chen, P. C. Chen, and C. C. Chen, “High extinction ratio polarized light guide with layered cross stacking nanostructure,” Microelectron. Eng. 86(4-6), 1107–1110 (2009).
[Crossref]

Nanotechnology (1)

S. H. Kim, J. D. Park, and K. D. Lee, “Fabrication of a nano-wire grid polarizer for brightness enhancement in liquid crystal display,” Nanotechnology 17(17), 4436–4438 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Opt. Rev. (1)

T. Kurashima, K. Sakuma, T. Arai, A. Tagaya, and Y. Koike, “A polarized laser backlight using a zero–zero-birefringence polymer for liquid crystal displays,” Opt. Rev. 19(6), 415–418 (2012).
[Crossref]

Proc. SPIE (1)

H. J. Cornelissen, H. J. B. Jagt, D. J. Broer, and C. W. M. Bastiaansen, “Efficient and cost-effective polarized-light backlights for LCDs,” Proc. SPIE 7058, 70580X (2008).
[Crossref]

SID 09 Digest (1)

T. Liu, J. Wheatley, M. O’Neill, and M. E. Sousa, “Edge-lit hollow backlight using tunable reflective polarizer for liquid crystal displays,” SID 09 Digest 40(1), 819–822 (2009).
[Crossref]

Other (4)

Nitto Denko Co, “Optical film and a liquid crystal display using the same,” US Patent 6903788 (2002).

S. Kobayashi, S. Mikoshiba, and S. Lim, LCD Backlights (Wiley, 2009).

3M, “Display with reflective polarizer and randomizing cavity,” US Patent 6025897 (1996).

Dow Chemical, “Relective polymeric body,” US Patent 5122905 (1992).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Illustration of the polarization conversion within a single PCU: (a) perspective 3D-structure view of a PCU; (b) perspective view of the PCU; (c) side view of the PCU; (d) top view of the PCU.
Fig. 2
Fig. 2 Polarization conversion element composed of one pair of connected PCUs: (a) perspective exploded view; (b) top assembling view ; (c) ray path diagram (black: nonpolarized light, blue: original p-wave, green: original s-wave); (d) transversely extending of multiple PC elements.
Fig. 3
Fig. 3 Light-mixing and collimation element, V-cut CPC: (a) perspective view; (b) top view.
Fig. 4
Fig. 4 Schematic illustration of optical model of the apparatus: (a) perspective view; (b) side view (not proportionally scaled).
Fig. 5
Fig. 5 Impact of both the half-angle of incident light and refractive index of the PCU on the coupling efficiency of PC element.
Fig. 6
Fig. 6 Distributions of the light emitted from the PPLGP: (a) spatial distribution; (b) angular distribution.
Fig. 7
Fig. 7 Spatial degree of polarization distribution of the light emitted from PPLGP: (a) spatial distribution; (b) spatial distribution along the longitudinal central line.
Fig. 8
Fig. 8 Angular degree of polarization distribution of the light emitted from PPLGP: (a) angular distribution; (b) angular distribution along the longitudinal and transverse central lines across the intensity peak.
Fig. 9
Fig. 9 Feasible manufacture and assembling way for the polarization conversion element.

Tables (2)

Tables Icon

Table 1 Simulation analysis for various apex angles of V-groove microstructures on V-cut CPCs

Tables Icon

Table 2 Energy efficiency for the components of the apparatus

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

t 1 t 2 = n 2 sin θ 2 n 1 sin θ 1 ,
A 1 A 2 = ( n 2 sin θ 2 ) 2 ( n 1 sin θ 1 ) 2 .
D O P = ( I s I p ) / ( I s + I p ) × 100 % .

Metrics