Abstract

We propose and experimentally demonstrate a white-light phosphor-LED visible light communication (VLC) system with an adaptive 84.44 to 190 Mbit/s 16 quadrature-amplitude-modulation (QAM) orthogonal-frequency-division-multiplexing (OFDM) signal utilizing bit-loading method. Here, the optimal analogy pre-equalization design is performed at LED transmitter (Tx) side and no blue filter is used at the Rx side. Hence, the ~1 MHz modulation bandwidth of phosphor-LED could be extended to 30 MHz. In addition, the measured bit error rates (BERs) of < 3.8 × 10−3 [forward error correction (FEC) threshold] at different measured data rates can be achieved at practical transmission distances of 0.75 to 2 m.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED

Yuanquan Wang, Yiguang Wang, Nan Chi, Jianjun Yu, and Huiliang Shang
Opt. Express 21(1) 1203-1208 (2013)

Real-time white-light phosphor-LED visible light communication (VLC) with compact size

Chien-Hung Yeh, Yen-Liang Liu, and Chi-Wai Chow
Opt. Express 21(22) 26192-26197 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. W. R. Lee, X. Guo, D. Niu, and J. C. C. Lo, “Phosphors for LED-based solid-state Lighting,” in Proc. of IEEE ECTC, 2013, pp. 563–567.
  2. Y. F. Liu, C. H. Yeh, C. W. Chow, Y. Liu, Y. L. Liu, and H. K. Tsang, “Demonstration of bi-directional LED visible light communication using TDD traffic with mitigation of reflection interference,” Opt. Express 20(21), 23019–23024 (2012).
    [Crossref] [PubMed]
  3. C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photon. J. 5(2), 7900709 (2013).
    [Crossref]
  4. M. Kraemer and M. D. Katz, Short-Range Wireless Communications: Emerging Technologies and Applications, (J. Wiley and Sons Ltd., 2009), Chap. 25.
  5. C. H. Yeh, Y. F. Liu, C. W. Chow, Y. Liu, P. Y. Huang, and H. K. Tsang, “Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system,” Opt. Express 20(15), 16218–16223 (2012).
    [Crossref]
  6. H. Le-Minh, D. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
    [Crossref]
  7. J. Grubor, S. C. J. Lee, K. D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in Proc. of ECOC, 2007, Paper PD3.6.
  8. H. Le-Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
    [Crossref]
  9. J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K.-D. Langer, and J. W. Walewski, “125 Mbit/s over 5 m wireless distance by use of OOK-modulated phosphorescent white LEDs,” in Proc. of ECOC, 2009, Paper 9.6.4.
  10. J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K.-D. Langer, and J. W. Walewski, “230 Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Proc. of OFC, 2010, Paper OThH3.
  11. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
    [Crossref] [PubMed]
  12. O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K.-D. Langer, L. Fernández, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73 Mb/s data streaming,” in Proc. IEEE GLOBECOM Workshops, 2010, pp. 1042–1046.
  13. J. Vučić and K.-D. Langer, “High-speed visible light communications: state-of-the-art,” in Proc. OFC, 2012, OTh3G.3.
  14. F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, Z.-Y. Chen, H.-T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photon. J. 5(4), 7901507 (2013).
    [Crossref]
  15. C.-H. Yeh, Y.-L. Liu, and C.-W. Chow, “Real-time white-light phosphor-LED visible light communication (VLC) with compact size,” Opt. Express 21(22), 26192–26197 (2013).
    [Crossref] [PubMed]
  16. ITU-T Recommendation G.975.1, Appendix I.9 (2004).

2013 (3)

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photon. J. 5(2), 7900709 (2013).
[Crossref]

F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, Z.-Y. Chen, H.-T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photon. J. 5(4), 7901507 (2013).
[Crossref]

C.-H. Yeh, Y.-L. Liu, and C.-W. Chow, “Real-time white-light phosphor-LED visible light communication (VLC) with compact size,” Opt. Express 21(22), 26192–26197 (2013).
[Crossref] [PubMed]

2012 (3)

2009 (1)

H. Le-Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

2008 (1)

H. Le-Minh, D. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Bouchet, O.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K.-D. Langer, L. Fernández, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73 Mb/s data streaming,” in Proc. IEEE GLOBECOM Workshops, 2010, pp. 1042–1046.

Chen, C.-W.

F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, Z.-Y. Chen, H.-T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photon. J. 5(4), 7901507 (2013).
[Crossref]

Chen, Z.-Y.

F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, Z.-Y. Chen, H.-T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photon. J. 5(4), 7901507 (2013).
[Crossref]

Chi, S.

F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, Z.-Y. Chen, H.-T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photon. J. 5(4), 7901507 (2013).
[Crossref]

Choudhury, P.

Chow, C. W.

Chow, C.-W.

Ciaramella, E.

Corsini, R.

Cossu, G.

Faulkner, G.

H. Le-Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. Le-Minh, D. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Fernández, L.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K.-D. Langer, L. Fernández, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73 Mb/s data streaming,” in Proc. IEEE GLOBECOM Workshops, 2010, pp. 1042–1046.

Grobe, L.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K.-D. Langer, L. Fernández, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73 Mb/s data streaming,” in Proc. IEEE GLOBECOM Workshops, 2010, pp. 1042–1046.

Gueutier, E.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K.-D. Langer, L. Fernández, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73 Mb/s data streaming,” in Proc. IEEE GLOBECOM Workshops, 2010, pp. 1042–1046.

Guo, X.

S. W. R. Lee, X. Guo, D. Niu, and J. C. C. Lo, “Phosphors for LED-based solid-state Lighting,” in Proc. of IEEE ECTC, 2013, pp. 563–567.

Huang, H.-T.

F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, Z.-Y. Chen, H.-T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photon. J. 5(4), 7901507 (2013).
[Crossref]

Huang, P. Y.

Jung, D.

H. Le-Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. Le-Minh, D. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Kamalakis, T.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K.-D. Langer, L. Fernández, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73 Mb/s data streaming,” in Proc. IEEE GLOBECOM Workshops, 2010, pp. 1042–1046.

Khalid, A. M.

Langer, K.-D.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K.-D. Langer, L. Fernández, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73 Mb/s data streaming,” in Proc. IEEE GLOBECOM Workshops, 2010, pp. 1042–1046.

Lee, K.

H. Le-Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. Le-Minh, D. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Lee, S. W. R.

S. W. R. Lee, X. Guo, D. Niu, and J. C. C. Lo, “Phosphors for LED-based solid-state Lighting,” in Proc. of IEEE ECTC, 2013, pp. 563–567.

Le-Minh, H.

H. Le-Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. Le-Minh, D. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Lin, C.-T.

F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, Z.-Y. Chen, H.-T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photon. J. 5(4), 7901507 (2013).
[Crossref]

Liu, Y.

Liu, Y. F.

Liu, Y. L.

Liu, Y.-L.

Lo, J. C. C.

S. W. R. Lee, X. Guo, D. Niu, and J. C. C. Lo, “Phosphors for LED-based solid-state Lighting,” in Proc. of IEEE ECTC, 2013, pp. 563–567.

Nerreter, S.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K.-D. Langer, L. Fernández, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73 Mb/s data streaming,” in Proc. IEEE GLOBECOM Workshops, 2010, pp. 1042–1046.

Niu, D.

S. W. R. Lee, X. Guo, D. Niu, and J. C. C. Lo, “Phosphors for LED-based solid-state Lighting,” in Proc. of IEEE ECTC, 2013, pp. 563–567.

Ntogari, G.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K.-D. Langer, L. Fernández, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73 Mb/s data streaming,” in Proc. IEEE GLOBECOM Workshops, 2010, pp. 1042–1046.

O Brien, D.

H. Le-Minh, D. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

O’Brien, D.

H. Le-Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Oh, Y.

H. Le-Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. Le-Minh, D. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

Porcon, P.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K.-D. Langer, L. Fernández, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73 Mb/s data streaming,” in Proc. IEEE GLOBECOM Workshops, 2010, pp. 1042–1046.

Tsang, H. K.

Vucic, J.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K.-D. Langer, L. Fernández, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73 Mb/s data streaming,” in Proc. IEEE GLOBECOM Workshops, 2010, pp. 1042–1046.

Walewski, J. W.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K.-D. Langer, L. Fernández, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73 Mb/s data streaming,” in Proc. IEEE GLOBECOM Workshops, 2010, pp. 1042–1046.

Wei, C.-C.

F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, Z.-Y. Chen, H.-T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photon. J. 5(4), 7901507 (2013).
[Crossref]

Wolf, M.

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K.-D. Langer, L. Fernández, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73 Mb/s data streaming,” in Proc. IEEE GLOBECOM Workshops, 2010, pp. 1042–1046.

Wu, F.-M.

F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, Z.-Y. Chen, H.-T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photon. J. 5(4), 7901507 (2013).
[Crossref]

Yeh, C. H.

Yeh, C.-H.

Zeng, L.

H. Le-Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

H. Le-Minh, D. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

IEEE Photon. J. (2)

C. W. Chow, C. H. Yeh, Y. F. Liu, and P. Y. Huang, “Background optical noises circumvention in LED optical wireless systems using OFDM,” IEEE Photon. J. 5(2), 7900709 (2013).
[Crossref]

F.-M. Wu, C.-T. Lin, C.-C. Wei, C.-W. Chen, Z.-Y. Chen, H.-T. Huang, and S. Chi, “Performance comparison of OFDM signal and CAP signal over high capacity RGB-LED-based WDM visible light communication,” IEEE Photon. J. 5(4), 7901507 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (2)

H. Le-Minh, D. O Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “High-speed visible light communications using multiple-resonant equalization,” IEEE Photon. Technol. Lett. 20(14), 1243–1245 (2008).
[Crossref]

H. Le-Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, and Y. Oh, “100-Mb/s NRZ visible light communications using a post-equalized white LED,” IEEE Photon. Technol. Lett. 21(15), 1063–1065 (2009).
[Crossref]

Opt. Express (4)

Other (8)

O. Bouchet, P. Porcon, M. Wolf, L. Grobe, J. W. Walewski, S. Nerreter, K.-D. Langer, L. Fernández, J. Vucic, T. Kamalakis, G. Ntogari, and E. Gueutier, “Visible-light communication system enabling 73 Mb/s data streaming,” in Proc. IEEE GLOBECOM Workshops, 2010, pp. 1042–1046.

J. Vučić and K.-D. Langer, “High-speed visible light communications: state-of-the-art,” in Proc. OFC, 2012, OTh3G.3.

ITU-T Recommendation G.975.1, Appendix I.9 (2004).

S. W. R. Lee, X. Guo, D. Niu, and J. C. C. Lo, “Phosphors for LED-based solid-state Lighting,” in Proc. of IEEE ECTC, 2013, pp. 563–567.

M. Kraemer and M. D. Katz, Short-Range Wireless Communications: Emerging Technologies and Applications, (J. Wiley and Sons Ltd., 2009), Chap. 25.

J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K.-D. Langer, and J. W. Walewski, “125 Mbit/s over 5 m wireless distance by use of OOK-modulated phosphorescent white LEDs,” in Proc. of ECOC, 2009, Paper 9.6.4.

J. Vucic, C. Kottke, S. Nerreter, K. Habel, A. Buttner, K.-D. Langer, and J. W. Walewski, “230 Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs,” in Proc. of OFC, 2010, Paper OThH3.

J. Grubor, S. C. J. Lee, K. D. Langer, T. Koonen, and J. W. Walewski, “Wireless high-speed data transmission with phosphorescent white-light LEDs,” in Proc. of ECOC, 2007, Paper PD3.6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Experimental setup of phosphor-LED-based VLC system. (b) Designed LED-Tx module. (c) Designed PIN-Rx module.
Fig. 2
Fig. 2 Architecture of pre-equalization design in LED Tx side.
Fig. 3
Fig. 3 Received illumination versus transmission distance in the field of view (FOV) of proposed LED VLC system.
Fig. 4
Fig. 4 (a) Using a 64-QAM and 16-QAM OFDM signals for applying on LED to test its effective bandwidth under the frequency ranges of 10, 20 and 30 MHz, respectively. (b) Electrical power spectrum of 1.25 to 30.625 MHz bandwidth at a free space transmission length of 1.5 m.
Fig. 5
Fig. 5 Obtained SNR of each subcarrier in the bandwidth of 1.250 to 30.625 MHz when the 16-QAM OFDM modulation signal is applied on LED (a) without and (b) with bit-loading under the different transmission lengths of 0.75, 1, 1.25, 1.5, 1.75 and 2 m, respectively.
Fig. 6
Fig. 6 The corresponding bit number of each subcarrier in the same modulation bandwidth under the different transmission lengths of 0.75, 1, 1.25, 1.5, 1.75 and 2 m, respectively.
Fig. 7
Fig. 7 Measured traffic rate and its corresponding BER of proposed phosphor-LED VLC system using 16-QAM OFDM format with bit-loading algorithm at the different transmission lengths of 0.75, 1, 1.25, 1.5, 1.75, and 2 m, respectively.

Metrics