Abstract

A tunable wavelength filter fabricated with a latching function is proposed. The proposed tunable wavelength filter consists of a silicon sampled grating waveguide and ferro-electric liquid crystal (FLC) cladding. The sampled grating waveguide in a silicon-on-insulator (SOI) wafer achieved narrower stop bands than that with the conventional uniform grating structure. Enhanced wavelength shift was also obtained due to the increased effect in FLC by using a thinner silicon core. Bistable switching operation with the fabricated device, which was latching without state-sustaining power, was successfully demonstrated. Its switching and latching characteristics are also reported.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Liquid crystal-based widely tunable integrated optic wavelength filters

U. S. Tripathi and Vipul Rastogi
J. Opt. Soc. Am. B 36(7) 1883-1889 (2019)

Optical switching of a metal-clad waveguide with a ferroelectric liquid crystal

Masaya Mitsuishi, Shinzaburo Ito, Masahide Yamamoto, Thomas Fischer, and Wolfgang Knoll
Appl. Opt. 36(35) 9225-9229 (1997)

Electrically tuneable lateral leakage loss in liquid crystal clad shallow-etched silicon waveguides

Thomas Ako, Anthony Hope, Thach Nguyen, Arnan Mitchell, Wim Bogaerts, Kristiaan Neyts, and Jeroen Beeckman
Opt. Express 23(3) 2846-2856 (2015)

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [Crossref]
  2. W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Beats, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
    [Crossref]
  3. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006).
    [Crossref] [PubMed]
  4. Y.-S. Lin, C. P. Ho, K. H. Koh, and C. Lee, “Fabry-Perot filter using grating structures,” Opt. Lett. 38(6), 902–904 (2013).
    [Crossref] [PubMed]
  5. T. Segawa, S. Matsuo, Y. Ohiso, T. Ishii, and H. Suzuki, “Apodised sampled grating using InGaAsP/InP deep-ridge waveguide with vertical groove surface grating,” Electron. Lett. 40(13), 804–805 (2004).
    [Crossref]
  6. Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18(9), 9071–9075 (2010).
    [Crossref] [PubMed]
  7. C. Chen, A. Higo, M.-J. Kwack, T. Tanemura, and Y. Nakano, “Demonstration of 1×8 silicon photonic switch based on optical phased array,” in Proc. OECC, Kyoto, Japan, July. 2013, Paper, ThM1–5.
  8. J. Schröder, L. B. Du, M. A. F. Roelens, S. Frisken, A. J. Lowery, and B. J. Eggleton, “LCOS based reconfigurable switches for dynamic optical processing,” in Proc. OECC, Kyoto, Japan, July. 2013, Paper, ThL3–1.
  9. K. Takahashi, Y. Kanamori, Y. Kokubun, and K. Hane, “A wavelength-selective add-drop switch using silicon microring resonator with a submicron-comb electrostatic actuator,” Opt. Express 16(19), 14421–14428 (2008).
    [Crossref] [PubMed]
  10. Y. Akihama, Y. Kanamori, and K. Hane, “Ultra-small silicon waveguide coupler switch using gap-variable mechanism,” Opt. Express 19(24), 23658–23663 (2011).
    [Crossref] [PubMed]
  11. R. Mudachathi and P. Nair, “Low-voltage widely tunable photonic crystal channel drop filter in SOI wafer,” J. Microelectromech. Syst. 21(1), 190–197 (2012).
    [Crossref]
  12. S. Abe and K. Hane, “Variable-Gap Silicon Photonic Waveguide Coupler Switch With a Nanolatch Mechanism,” IEEE Photon. Technol. Lett. 25(7), 675–677 (2013).
    [Crossref]
  13. R. Asquini and A. d’Alessandro, “A bistable optical waveguided switch using a ferroelectric liquid crystal layer,” LEOS 2000, 119–120 (2000).
  14. E. P. Pozhidaev, V. G. Chigrinov, and T. Du, “Fast switching bistable ferroelectric liquid crystal switches as a new optical elements for photonics applications,” OECC 2009, (DOI: ), (2009).
    [Crossref]
  15. S. Fukushima, T. Kurokawa, S. Matsuo, and H. Kozawaguchi, “Bistable spatial light modulator using a ferroelectric liquid crystal,” Opt. Lett. 15(5), 285–287 (1990).
    [Crossref] [PubMed]
  16. R. Hoshi, K. Nakatsuhara, and T. Nakagami, “Optical switching characteristics in Si-waveguide asymmetric Mach-Zehnder interferometer having a ferro-electric liquid crystal cladding,” Electron. Lett. 42(11), 635–636 (2006).
    [Crossref]
  17. A. Kato, K. Nakatsuhara, and T. Nakagami, “Tunable Wavelength Selective Operation in Grating Silicon Waveguide having Ferroelectric Liquid Crystal Cladding,” IEEE Photonics Conference 2011, MJ6, 81–82 (2011).
    [Crossref]
  18. A. Kato, K. Nakatsuhara, and T. Nakagami, “Wavelength Tunable Operation in Si Waveguide Grating that has a Ferroelectric Liquid Crystal Cladding,” J. Lightwave Technol. 31(2), 349–354 (2013).
    [Crossref]
  19. A. Kato, K. Nakatsuhara, and T. Nakagami, “A sampled grating in an SOI waveguide for narrow-band tunable wavelength filters”, in Proc. OECC, Kyoto, Japan, July. 2013, Paper, ThL3–6.
  20. Y. Shibata, T. Tamamura, S. Oku, and Y. Kondo, “Coupling Coeffcient Modulation of Waveguide Grating Using Sampled Grating,” IEEE Photon. Technol. Lett. 6(10), 1222–1224 (1994).
    [Crossref]
  21. W. Streifer, D. R. Scifres, and R. D. Burnham, “Coupled coefficients for distributed feedback single- and double-heterostructure diode Lasers,” J. Quantum Electron. 11(11), 867–873 (1972).
  22. M. Yamada and K. Sakuda, “Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach,” Appl. Opt. 26(16), 3474–3478 (1987).
    [Crossref] [PubMed]
  23. K. Hayashi, D. N. Maywar, W. Asawamethapant, and Y. Nakano, “Fabrication of a bistable distributed feedback laser amplifier with a completely linear chirped grating by electron beam lithography” IEEE Semiconductor Laser Conference, 2000. Conference Digest., 83 – 84 (2000).
  24. T. Tsuchizawa, K. Yamada, T. Watanabe, H. Fukuda, H. Nishi, H. Shinojima, and S. Itabashi, “Spot-size converters for rib-type silicon photonic wire waveguides,” 2008 5th IEEE International Conference on Group IV Photonics, 200–202.
    [Crossref]

2013 (3)

2012 (1)

R. Mudachathi and P. Nair, “Low-voltage widely tunable photonic crystal channel drop filter in SOI wafer,” J. Microelectromech. Syst. 21(1), 190–197 (2012).
[Crossref]

2011 (1)

2010 (2)

Y. Shoji, K. Kintaka, S. Suda, H. Kawashima, T. Hasama, and H. Ishikawa, “Low-crosstalk 2 x 2 thermo-optic switch with silicon wire waveguides,” Opt. Express 18(9), 9071–9075 (2010).
[Crossref] [PubMed]

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Beats, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

2008 (1)

2006 (3)

G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006).
[Crossref] [PubMed]

B. Jalali and S. Fathpour, “Silicon Photonics,” J. Lightwave Technol. 24(12), 4600–4615 (2006).
[Crossref]

R. Hoshi, K. Nakatsuhara, and T. Nakagami, “Optical switching characteristics in Si-waveguide asymmetric Mach-Zehnder interferometer having a ferro-electric liquid crystal cladding,” Electron. Lett. 42(11), 635–636 (2006).
[Crossref]

2004 (1)

T. Segawa, S. Matsuo, Y. Ohiso, T. Ishii, and H. Suzuki, “Apodised sampled grating using InGaAsP/InP deep-ridge waveguide with vertical groove surface grating,” Electron. Lett. 40(13), 804–805 (2004).
[Crossref]

2000 (1)

R. Asquini and A. d’Alessandro, “A bistable optical waveguided switch using a ferroelectric liquid crystal layer,” LEOS 2000, 119–120 (2000).

1994 (1)

Y. Shibata, T. Tamamura, S. Oku, and Y. Kondo, “Coupling Coeffcient Modulation of Waveguide Grating Using Sampled Grating,” IEEE Photon. Technol. Lett. 6(10), 1222–1224 (1994).
[Crossref]

1990 (1)

1987 (1)

1972 (1)

W. Streifer, D. R. Scifres, and R. D. Burnham, “Coupled coefficients for distributed feedback single- and double-heterostructure diode Lasers,” J. Quantum Electron. 11(11), 867–873 (1972).

Abe, S.

S. Abe and K. Hane, “Variable-Gap Silicon Photonic Waveguide Coupler Switch With a Nanolatch Mechanism,” IEEE Photon. Technol. Lett. 25(7), 675–677 (2013).
[Crossref]

Akihama, Y.

Asquini, R.

R. Asquini and A. d’Alessandro, “A bistable optical waveguided switch using a ferroelectric liquid crystal layer,” LEOS 2000, 119–120 (2000).

Baets, R.

Beats, R.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Beats, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Bogaerts, W.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Beats, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Brouckaert, J.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Beats, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Burnham, R. D.

W. Streifer, D. R. Scifres, and R. D. Burnham, “Coupled coefficients for distributed feedback single- and double-heterostructure diode Lasers,” J. Quantum Electron. 11(11), 867–873 (1972).

d’Alessandro, A.

R. Asquini and A. d’Alessandro, “A bistable optical waveguided switch using a ferroelectric liquid crystal layer,” LEOS 2000, 119–120 (2000).

Dumon, P.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Beats, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Fathpour, S.

Fukushima, S.

Hane, K.

Hasama, T.

Ho, C. P.

Hoshi, R.

R. Hoshi, K. Nakatsuhara, and T. Nakagami, “Optical switching characteristics in Si-waveguide asymmetric Mach-Zehnder interferometer having a ferro-electric liquid crystal cladding,” Electron. Lett. 42(11), 635–636 (2006).
[Crossref]

Ishii, T.

T. Segawa, S. Matsuo, Y. Ohiso, T. Ishii, and H. Suzuki, “Apodised sampled grating using InGaAsP/InP deep-ridge waveguide with vertical groove surface grating,” Electron. Lett. 40(13), 804–805 (2004).
[Crossref]

Ishikawa, H.

Jalali, B.

Kanamori, Y.

Kato, A.

Kawashima, H.

Kintaka, K.

Koh, K. H.

Kokubun, Y.

Kondo, Y.

Y. Shibata, T. Tamamura, S. Oku, and Y. Kondo, “Coupling Coeffcient Modulation of Waveguide Grating Using Sampled Grating,” IEEE Photon. Technol. Lett. 6(10), 1222–1224 (1994).
[Crossref]

Kozawaguchi, H.

Kurokawa, T.

Lee, C.

Lin, Y.-S.

Matsuo, S.

T. Segawa, S. Matsuo, Y. Ohiso, T. Ishii, and H. Suzuki, “Apodised sampled grating using InGaAsP/InP deep-ridge waveguide with vertical groove surface grating,” Electron. Lett. 40(13), 804–805 (2004).
[Crossref]

S. Fukushima, T. Kurokawa, S. Matsuo, and H. Kozawaguchi, “Bistable spatial light modulator using a ferroelectric liquid crystal,” Opt. Lett. 15(5), 285–287 (1990).
[Crossref] [PubMed]

Mudachathi, R.

R. Mudachathi and P. Nair, “Low-voltage widely tunable photonic crystal channel drop filter in SOI wafer,” J. Microelectromech. Syst. 21(1), 190–197 (2012).
[Crossref]

Nair, P.

R. Mudachathi and P. Nair, “Low-voltage widely tunable photonic crystal channel drop filter in SOI wafer,” J. Microelectromech. Syst. 21(1), 190–197 (2012).
[Crossref]

Nakagami, T.

A. Kato, K. Nakatsuhara, and T. Nakagami, “Wavelength Tunable Operation in Si Waveguide Grating that has a Ferroelectric Liquid Crystal Cladding,” J. Lightwave Technol. 31(2), 349–354 (2013).
[Crossref]

R. Hoshi, K. Nakatsuhara, and T. Nakagami, “Optical switching characteristics in Si-waveguide asymmetric Mach-Zehnder interferometer having a ferro-electric liquid crystal cladding,” Electron. Lett. 42(11), 635–636 (2006).
[Crossref]

Nakatsuhara, K.

A. Kato, K. Nakatsuhara, and T. Nakagami, “Wavelength Tunable Operation in Si Waveguide Grating that has a Ferroelectric Liquid Crystal Cladding,” J. Lightwave Technol. 31(2), 349–354 (2013).
[Crossref]

R. Hoshi, K. Nakatsuhara, and T. Nakagami, “Optical switching characteristics in Si-waveguide asymmetric Mach-Zehnder interferometer having a ferro-electric liquid crystal cladding,” Electron. Lett. 42(11), 635–636 (2006).
[Crossref]

Ohiso, Y.

T. Segawa, S. Matsuo, Y. Ohiso, T. Ishii, and H. Suzuki, “Apodised sampled grating using InGaAsP/InP deep-ridge waveguide with vertical groove surface grating,” Electron. Lett. 40(13), 804–805 (2004).
[Crossref]

Oku, S.

Y. Shibata, T. Tamamura, S. Oku, and Y. Kondo, “Coupling Coeffcient Modulation of Waveguide Grating Using Sampled Grating,” IEEE Photon. Technol. Lett. 6(10), 1222–1224 (1994).
[Crossref]

Roelkens, G.

Sakuda, K.

Scifres, D. R.

W. Streifer, D. R. Scifres, and R. D. Burnham, “Coupled coefficients for distributed feedback single- and double-heterostructure diode Lasers,” J. Quantum Electron. 11(11), 867–873 (1972).

Segawa, T.

T. Segawa, S. Matsuo, Y. Ohiso, T. Ishii, and H. Suzuki, “Apodised sampled grating using InGaAsP/InP deep-ridge waveguide with vertical groove surface grating,” Electron. Lett. 40(13), 804–805 (2004).
[Crossref]

Selvaraja, S. K.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Beats, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Shibata, Y.

Y. Shibata, T. Tamamura, S. Oku, and Y. Kondo, “Coupling Coeffcient Modulation of Waveguide Grating Using Sampled Grating,” IEEE Photon. Technol. Lett. 6(10), 1222–1224 (1994).
[Crossref]

Shoji, Y.

Streifer, W.

W. Streifer, D. R. Scifres, and R. D. Burnham, “Coupled coefficients for distributed feedback single- and double-heterostructure diode Lasers,” J. Quantum Electron. 11(11), 867–873 (1972).

Suda, S.

Suzuki, H.

T. Segawa, S. Matsuo, Y. Ohiso, T. Ishii, and H. Suzuki, “Apodised sampled grating using InGaAsP/InP deep-ridge waveguide with vertical groove surface grating,” Electron. Lett. 40(13), 804–805 (2004).
[Crossref]

Takahashi, K.

Tamamura, T.

Y. Shibata, T. Tamamura, S. Oku, and Y. Kondo, “Coupling Coeffcient Modulation of Waveguide Grating Using Sampled Grating,” IEEE Photon. Technol. Lett. 6(10), 1222–1224 (1994).
[Crossref]

Thourhout, D. V.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Beats, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Van Thourhout, D.

Vos, K. D.

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Beats, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

Yamada, M.

Appl. Opt. (1)

Electron. Lett. (2)

R. Hoshi, K. Nakatsuhara, and T. Nakagami, “Optical switching characteristics in Si-waveguide asymmetric Mach-Zehnder interferometer having a ferro-electric liquid crystal cladding,” Electron. Lett. 42(11), 635–636 (2006).
[Crossref]

T. Segawa, S. Matsuo, Y. Ohiso, T. Ishii, and H. Suzuki, “Apodised sampled grating using InGaAsP/InP deep-ridge waveguide with vertical groove surface grating,” Electron. Lett. 40(13), 804–805 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

W. Bogaerts, S. K. Selvaraja, P. Dumon, J. Brouckaert, K. D. Vos, D. V. Thourhout, and R. Beats, “Silicon-on-Insulator Spectral Filters Fabricated With CMOS Technology,” IEEE J. Sel. Top. Quantum Electron. 16(1), 33–44 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (2)

S. Abe and K. Hane, “Variable-Gap Silicon Photonic Waveguide Coupler Switch With a Nanolatch Mechanism,” IEEE Photon. Technol. Lett. 25(7), 675–677 (2013).
[Crossref]

Y. Shibata, T. Tamamura, S. Oku, and Y. Kondo, “Coupling Coeffcient Modulation of Waveguide Grating Using Sampled Grating,” IEEE Photon. Technol. Lett. 6(10), 1222–1224 (1994).
[Crossref]

J. Lightwave Technol. (2)

J. Microelectromech. Syst. (1)

R. Mudachathi and P. Nair, “Low-voltage widely tunable photonic crystal channel drop filter in SOI wafer,” J. Microelectromech. Syst. 21(1), 190–197 (2012).
[Crossref]

J. Quantum Electron. (1)

W. Streifer, D. R. Scifres, and R. D. Burnham, “Coupled coefficients for distributed feedback single- and double-heterostructure diode Lasers,” J. Quantum Electron. 11(11), 867–873 (1972).

LEOS (1)

R. Asquini and A. d’Alessandro, “A bistable optical waveguided switch using a ferroelectric liquid crystal layer,” LEOS 2000, 119–120 (2000).

Opt. Express (4)

Opt. Lett. (2)

Other (7)

A. Kato, K. Nakatsuhara, and T. Nakagami, “Tunable Wavelength Selective Operation in Grating Silicon Waveguide having Ferroelectric Liquid Crystal Cladding,” IEEE Photonics Conference 2011, MJ6, 81–82 (2011).
[Crossref]

K. Hayashi, D. N. Maywar, W. Asawamethapant, and Y. Nakano, “Fabrication of a bistable distributed feedback laser amplifier with a completely linear chirped grating by electron beam lithography” IEEE Semiconductor Laser Conference, 2000. Conference Digest., 83 – 84 (2000).

T. Tsuchizawa, K. Yamada, T. Watanabe, H. Fukuda, H. Nishi, H. Shinojima, and S. Itabashi, “Spot-size converters for rib-type silicon photonic wire waveguides,” 2008 5th IEEE International Conference on Group IV Photonics, 200–202.
[Crossref]

E. P. Pozhidaev, V. G. Chigrinov, and T. Du, “Fast switching bistable ferroelectric liquid crystal switches as a new optical elements for photonics applications,” OECC 2009, (DOI: ), (2009).
[Crossref]

A. Kato, K. Nakatsuhara, and T. Nakagami, “A sampled grating in an SOI waveguide for narrow-band tunable wavelength filters”, in Proc. OECC, Kyoto, Japan, July. 2013, Paper, ThL3–6.

C. Chen, A. Higo, M.-J. Kwack, T. Tanemura, and Y. Nakano, “Demonstration of 1×8 silicon photonic switch based on optical phased array,” in Proc. OECC, Kyoto, Japan, July. 2013, Paper, ThM1–5.

J. Schröder, L. B. Du, M. A. F. Roelens, S. Frisken, A. J. Lowery, and B. J. Eggleton, “LCOS based reconfigurable switches for dynamic optical processing,” in Proc. OECC, Kyoto, Japan, July. 2013, Paper, ThL3–1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of silicon grating waveguide with FLC cladding. (b) Schematic of molecular motion of FLC. (c) Cross section of longitudinal direction and (d) cross section of lateral direction of fabricated device.
Fig. 2
Fig. 2 Calculated tunable wavelength characteristics. (a) With sampled grating and (b) with uniform grating.
Fig. 3
Fig. 3 SEM of fabricated sampled grating waveguide.
Fig. 4
Fig. 4 Measured static wavelength characteristics by applying voltage of −10 V.
Fig. 5
Fig. 5 Measured tunable wavelength characteristics.
Fig. 6
Fig. 6 (a) Measured latching operation of fabricated device. (b) Time-dependent change in upper edge of stop bands.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

κ= κ 0 L 1 L 2 sin( πn L 1 L 2 ) πn L 1 L 2 e j πn L 1 L 2 ,

Metrics