Abstract

Using single-stage C-band EDFAs equalized to 41 nm, we transmit 152x200 Gb/s PDM 16QAM channels with 6.0 b/s/Hz spectral efficiency over 9,748 km enabled by Nyquist spectral shaping and digital back propagation. 76x400 Gb/s channels are also transmitted over 8,665 km detecting two 200 Gb/s channels simultaneously using a single wideband receiver. Digital back propagation benefit versus channel pre-emphasis, transmission distance and wavelength are experimentally investigated.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
25 Tb/s transmission over 5,530 km using 16QAM at 5.2 b/s/Hz spectral efficiency

J.-X. Cai, H. G. Batshon, H. Zhang, C. R. Davidson, Y. Sun, M. Mazurczyk, D. G. Foursa, O. Sinkin, A. Pilipetskii, G. Mohs, and Neal S. Bergano
Opt. Express 21(2) 1555-1560 (2013)

16QAM transmission with 5.2 bits/s/Hz spectral efficiency over transoceanic distance

H. Zhang, J.-X. Cai, H. G. Batshon, C. R. Davidson, Y. Sun, M. Mazurczyk, D. G. Foursa, A. Pilipetskii, G. Mohs, and Neal S. Bergano
Opt. Express 20(11) 11688-11693 (2012)

WDM transmission of 108.4-Gbaud PDM-QPSK signals (40 × 433.6-Gb/s) over 2800-km SMF-28 with EDFA-only

Xinying Li, Jianjun Yu, Ze Dong, Hung-Chang Chien, Zhensheng Jia, and Nan Chi
Opt. Express 20(26) B217-B222 (2012)

References

  • View by:
  • |
  • |
  • |

  1. J.-X. Cai, “100G transmission over transoceanic distance with high spectral efficiency and large capacity,” J. Lightwave Technol. 30(24), 3845–3856 (2012).
    [Crossref]
  2. H. Zhang, H. G. Batshon, D. G. Foursa, M. V. Mazurczyk, J.-X. Cai, C. R. Davidson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30.58 Tb/s transmission over 7,230 km using PDM half 4D-16QAM coded modulation with 6.1 b/s/Hz spectral efficiency,” in Proceedings of OFC/NFOEC (2013), OTu2B.3.
    [Crossref]
  3. M. Salsi, A. Ghazisaeidi, P. Tran, R. Muller, L. Schmalen, J. Renaudier, H. Mardoyan, P. Brindel, G. Charlet, and S. Bigo, “31 Tb/s transmission over 7,200 km using 46 Gbaud PDM-8QAM with optimized error correcting code rate,” in Proceedings of OECC (2013), PDP3-5.
  4. D. Qian, M.-F. Huang, S. Zhang, Y. Zhang, Y.-K. Huang, F. Yaman, I. B. Djordjevic, and E. Mateo, “30Tb/s C- and L-bands bidirectional transmission over 10,181km with 121km span length,” Opt. Express 21(12), 14244–14250 (2013).
    [Crossref] [PubMed]
  5. F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE J. Photonics. 1(2), 144–152 (2009).
    [Crossref]
  6. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital back propagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [Crossref]
  7. S. Zhang, M. Huang, F. Yaman, E. Mateo, D. Qian, Y. Zhang, L. Xu, Y. Shao, I. Djordjevic, T. Wang, Y. Inada, T. Inoue, T. Ogata, and Y. Aoki, “40×117.6 Gb/s PDM-16QAM OFDM transmission over 10,181 km with soft-decision LDPC coding and nonlinearity compensation,” in Proceedings of OFC/NFOEC (2012), PDP5C.4.
  8. H. Zhang, J.-X. Cai, H. G. Batshon, M. V. Mazurczyk, O. Sinkin, D. G. Foursa, A. Pilipetskii, G. Mohs, and N. S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6.0 b/s/Hz spectral efficiency,” in Proceedings of OFC/NFOEC (2013), PDP5A.6.
  9. M. V. Mazurczyk, “Spectral shaping for high spectral efficiency in long-haul optical transmission systems,” in Proceedings of ECOC (2013), We.4.D.2.
  10. J.-X. Cai, H. Zhang, H. G. Batshon, M. V. Mazurczyk, O. Sinkin, D. G. Foursa, A. Pilipetskii, G. Mohs, and N. S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6.0 b/s/Hz spectral efficiency,” accepted to J. Lightwave Technol.
  11. P. Winzer, “High-spectral-efficiency optical modulation formats,” J. Lightwave Technol. 30(24), 3824–3835 (2012).
    [Crossref]
  12. O. V. Sinkin, J.-X. Cai, D. G. Foursa, G. Mohs, and A. Pilipetskii, “Impact of broadband four-wave mixing on system characterization,” in Proceedings of OFC/NFOEC (2013), OTh3G.3.
    [Crossref]
  13. J.-X. Cai, O. V. Sinkin, H. Zhang, H. G. Batshon, M. V. Mazurczyk, D. G. Foursa, A. Pilipetskii, and G. Mohs, “Nonlinearity compensation benefit in high capacity ultra-long haul transmission systems,” in Proceedings of ECOC (2013), We.4.D.2.

2013 (1)

2012 (2)

2009 (1)

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE J. Photonics. 1(2), 144–152 (2009).
[Crossref]

2008 (1)

Cai, J.-X.

Djordjevic, I. B.

Huang, M.-F.

Huang, Y.-K.

Ip, E.

Kahn, J. M.

Li, G.

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE J. Photonics. 1(2), 144–152 (2009).
[Crossref]

Mateo, E.

Qian, D.

Winzer, P.

Yaman, F.

D. Qian, M.-F. Huang, S. Zhang, Y. Zhang, Y.-K. Huang, F. Yaman, I. B. Djordjevic, and E. Mateo, “30Tb/s C- and L-bands bidirectional transmission over 10,181km with 121km span length,” Opt. Express 21(12), 14244–14250 (2013).
[Crossref] [PubMed]

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE J. Photonics. 1(2), 144–152 (2009).
[Crossref]

Zhang, S.

Zhang, Y.

IEEE J. Photonics. (1)

F. Yaman and G. Li, “Nonlinear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE J. Photonics. 1(2), 144–152 (2009).
[Crossref]

J. Lightwave Technol. (3)

Opt. Express (1)

Other (8)

O. V. Sinkin, J.-X. Cai, D. G. Foursa, G. Mohs, and A. Pilipetskii, “Impact of broadband four-wave mixing on system characterization,” in Proceedings of OFC/NFOEC (2013), OTh3G.3.
[Crossref]

J.-X. Cai, O. V. Sinkin, H. Zhang, H. G. Batshon, M. V. Mazurczyk, D. G. Foursa, A. Pilipetskii, and G. Mohs, “Nonlinearity compensation benefit in high capacity ultra-long haul transmission systems,” in Proceedings of ECOC (2013), We.4.D.2.

H. Zhang, H. G. Batshon, D. G. Foursa, M. V. Mazurczyk, J.-X. Cai, C. R. Davidson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “30.58 Tb/s transmission over 7,230 km using PDM half 4D-16QAM coded modulation with 6.1 b/s/Hz spectral efficiency,” in Proceedings of OFC/NFOEC (2013), OTu2B.3.
[Crossref]

M. Salsi, A. Ghazisaeidi, P. Tran, R. Muller, L. Schmalen, J. Renaudier, H. Mardoyan, P. Brindel, G. Charlet, and S. Bigo, “31 Tb/s transmission over 7,200 km using 46 Gbaud PDM-8QAM with optimized error correcting code rate,” in Proceedings of OECC (2013), PDP3-5.

S. Zhang, M. Huang, F. Yaman, E. Mateo, D. Qian, Y. Zhang, L. Xu, Y. Shao, I. Djordjevic, T. Wang, Y. Inada, T. Inoue, T. Ogata, and Y. Aoki, “40×117.6 Gb/s PDM-16QAM OFDM transmission over 10,181 km with soft-decision LDPC coding and nonlinearity compensation,” in Proceedings of OFC/NFOEC (2012), PDP5C.4.

H. Zhang, J.-X. Cai, H. G. Batshon, M. V. Mazurczyk, O. Sinkin, D. G. Foursa, A. Pilipetskii, G. Mohs, and N. S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6.0 b/s/Hz spectral efficiency,” in Proceedings of OFC/NFOEC (2013), PDP5A.6.

M. V. Mazurczyk, “Spectral shaping for high spectral efficiency in long-haul optical transmission systems,” in Proceedings of ECOC (2013), We.4.D.2.

J.-X. Cai, H. Zhang, H. G. Batshon, M. V. Mazurczyk, O. Sinkin, D. G. Foursa, A. Pilipetskii, G. Mohs, and N. S. Bergano, “200 Gb/s and dual wavelength 400 Gb/s transmission over transpacific distance at 6.0 b/s/Hz spectral efficiency,” accepted to J. Lightwave Technol.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of de-correlated 3 rail 152x200 Gb/s Nyquist PDM 16QAM transmitter, circulating loop test bed and 200/400 Gb/s PDM 16QAM receiver with dual 100 GS/s sampling scopes.
Fig. 2
Fig. 2 Performance (with NLC) vs. transmitter pre emphasis along with noise loaded back to back at 6.0 b/s/Hz SE. Left: 200Gb/s after 9,207 km (17 loops); right: 400Gb/s after 8,124 km (15 loops)
Fig. 3
Fig. 3 Transmission performance for three channels at nominal power.
Fig. 4
Fig. 4 Received OSNR (in 0.1nm RBW) and optical spectrum after 9,748 km.
Fig. 5
Fig. 5 200 Gb/s (152x256 Gb/s) performance at 6.0 b/s/Hz after 9,748 km.
Fig. 6
Fig. 6 400 Gb/s (76x512 Gb/s) performance at 6.0 b/s/Hz after 8,665 km.

Metrics