Abstract

Ultrahigh depth range spectral domain optical coherence tomography (SDOCT) can be realized based on the orthogonal dispersive spectrometer consisted by a high spectral resolution virtually-imaged phased array (VIPA) and a low spectral resolution grating. However, two critical issues result in the challenge of obtaining desirable one-dimensional (1-D) spectra from the recorded two-dimensional (2-D) orthogonal spectra for high-quality OD-SDOCT imaging. One is the wavenumber mapping errors and the other is the periodic intensity modulations. The paper proposes a method for desirable reconstruction of 1-D spectra from the recorded 2-D orthogonal spectra. A sample etalon with identical parameters to the dispersive VIPA is used to determine the free spectrum range (FSR) of the VIPA, and spectral phases from two reflecting mirrors are further applied for broadband wavenumber calibration. The cascading of column spectra are performed from interval of four lines of column spectra, and four records of cascaded 1-D spectra are obtained and then averaged to alleviate the periodic intensity modulations. Broadband 1-D spectra are thus reconstructed with an ultrahigh spectral resolution. To demonstrate the feasibility of the proposed method, three typical samples are imaged by the OD-SDOCT system.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultralong-range phase imaging with orthogonal dispersive spectral-domain optical coherence tomography

Chuan Wang, Zhihua Ding, Shengtao Mei, Hang Yu, Wei Hong, Yangzhi Yan, and Weidong Shen
Opt. Lett. 37(21) 4555-4557 (2012)

Compressive sensing with dispersion compensation on non-linear wavenumber sampled spectral domain optical coherence tomography

Daguang Xu, Yong Huang, and Jin U. Kang
Biomed. Opt. Express 4(9) 1519-1532 (2013)

High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second

Lin An, Peng Li, Tueng T. Shen, and Ruikang Wang
Biomed. Opt. Express 2(10) 2770-2783 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008).
  3. J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14(5), 050501 (2009).
    [Crossref] [PubMed]
  4. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, and M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009).
    [Crossref] [PubMed]
  5. P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 016012 (2013).
    [Crossref] [PubMed]
  6. Z. Wang, Z. Yuan, H. Wang, and Y. Pan, “Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique,” Opt. Express 14(16), 7014–7023 (2006).
    [Crossref] [PubMed]
  7. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008).
    [Crossref] [PubMed]
  8. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
    [Crossref] [PubMed]
  9. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3(11), 2733–2751 (2012).
    [Crossref] [PubMed]
  10. C. Wang, Z. Ding, S. Mei, H. Yu, W. Hong, Y. Yan, and W. Shen, “Ultralong-range phase imaging with orthogonal dispersive spectral-domain optical coherence tomography,” Opt. Lett. 37(21), 4555–4557 (2012).
    [Crossref] [PubMed]
  11. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21(5), 366–368 (1996).
    [Crossref] [PubMed]
  12. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
    [Crossref] [PubMed]
  13. S. A. van den Berg, S. T. Persijn, G. J. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
    [Crossref] [PubMed]
  14. S. Xiao and A. M. Weiner, “2-D wavelength demultiplexer with potential for >/= 1000 channels in the C-band,” Opt. Express 12(13), 2895–2902 (2004).
    [Crossref] [PubMed]
  15. S. Wang, S. Xiao, and A. Weiner, “Broadband, high spectral resolution 2-D wavelength-parallel polarimeter for Dense WDM systems,” Opt. Express 13(23), 9374–9380 (2005).
    [Crossref] [PubMed]
  16. A. Reyes-Reyes, M. Zeitouny, E. van Mastrigt, S. Persijn, N. Bhattacharya, and H. Urbach, “Cavity-enhanced direct frequency comb spectroscopy,” in International Commission for Optics (2011), pp. 80112O1–80112O7.
  17. L. Yang, “Analytical treatment of virtual image phase array.” in Proceedings of the Optical Fiber Communication Conference (2002), pp. 321–322.
    [Crossref]
  18. S. Xiao, A. M. Weiner, and C. Lin, “Experimental and theoretical study of hyperfine WDM demultiplexer performance using the virtually imaged phased-array (VIPA),” J. Lightwave Technol. 23(3), 1456–1467 (2005).
    [Crossref]
  19. A. Mokhtari and A. A. Shishegar, “Rigorous vectorial Gaussian beam modeling of spectral dispersing performance of virtually imaged phased arrays,” J. Opt. Soc. Am. B 26(2), 272–278 (2009).
    [Crossref]
  20. S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
    [Crossref]
  21. A. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [Crossref]
  22. J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14(24), 11608–11615 (2006).
    [Crossref] [PubMed]

2013 (2)

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 016012 (2013).
[Crossref] [PubMed]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, J. Jiang, J. G. Fujimoto, and A. E. Cable, “High-precision, high-accuracy ultralong-range swept-source optical coherence tomography using vertical cavity surface emitting laser light source,” Opt. Lett. 38(5), 673–675 (2013).
[Crossref] [PubMed]

2012 (3)

2009 (3)

2008 (1)

2007 (1)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (2)

2004 (2)

S. Xiao and A. M. Weiner, “2-D wavelength demultiplexer with potential for >/= 1000 channels in the C-band,” Opt. Express 12(13), 2895–2902 (2004).
[Crossref] [PubMed]

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[Crossref]

2000 (1)

A. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

1996 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

An, L.

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 016012 (2013).
[Crossref] [PubMed]

Bajraszewski, T.

Baumann, B.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14(5), 050501 (2009).
[Crossref] [PubMed]

Bhattacharya, N.

S. A. van den Berg, S. T. Persijn, G. J. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Cable, A. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Diddams, S. A.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Ding, Z.

Duker, J. S.

et,

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fujimoto, J. G.

Gora, M.

Gorczynska, I.

Götzinger, E.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14(5), 050501 (2009).
[Crossref] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Grulkowski, I.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hitzenberger, C. K.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14(5), 050501 (2009).
[Crossref] [PubMed]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Hong, W.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Huber, R.

Jayaraman, V.

Jiang, J.

Johnstone, M.

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 016012 (2013).
[Crossref] [PubMed]

Jungwirth, J.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14(5), 050501 (2009).
[Crossref] [PubMed]

Kim, D. Y.

Kok, G. J.

S. A. van den Berg, S. T. Persijn, G. J. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Kowalczyk, A.

Lan, G.

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 016012 (2013).
[Crossref] [PubMed]

Lee, J. Y.

Li, P.

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 016012 (2013).
[Crossref] [PubMed]

Lin, C.

S. Xiao, A. M. Weiner, and C. Lin, “Experimental and theoretical study of hyperfine WDM demultiplexer performance using the virtually imaged phased-array (VIPA),” J. Lightwave Technol. 23(3), 1456–1467 (2005).
[Crossref]

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Liu, J. J.

Lu, C. D.

Malchow, D.

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 016012 (2013).
[Crossref] [PubMed]

Marcos, S.

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Mei, S.

Mokhtari, A.

Pan, Y.

Persijn, S. T.

S. A. van den Berg, S. T. Persijn, G. J. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Pircher, M.

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14(5), 050501 (2009).
[Crossref] [PubMed]

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Shen, W.

Shirasaki, M.

Shishegar, A. A.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

van den Berg, S. A.

S. A. van den Berg, S. T. Persijn, G. J. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Wang, C.

Wang, H.

Wang, R. K.

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 016012 (2013).
[Crossref] [PubMed]

Wang, S.

Wang, Z.

Weiner, A.

Weiner, A. M.

Wojtkowski, M.

Xiao, S.

Yan, Y.

Yu, H.

Yuan, Z.

Zeitouny, M. G.

S. A. van den Berg, S. T. Persijn, G. J. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

IEEE J. Quantum Electron. (1)

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[Crossref]

J. Biomed. Opt. (2)

J. Jungwirth, B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, “Extended in vivo anterior eye-segment imaging with full-range complex spectral domain optical coherence tomography,” J. Biomed. Opt. 14(5), 050501 (2009).
[Crossref] [PubMed]

P. Li, L. An, G. Lan, M. Johnstone, D. Malchow, and R. K. Wang, “Extended imaging depth to 12 mm for 1050-nm spectral domain optical coherence tomography for imaging the whole anterior segment of the human eye at 120-kHz A-scan rate,” J. Biomed. Opt. 18(1), 016012 (2013).
[Crossref] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Nature (1)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (3)

Phys. Rev. Lett. (1)

S. A. van den Berg, S. T. Persijn, G. J. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

A. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Other (3)

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, 2008).

A. Reyes-Reyes, M. Zeitouny, E. van Mastrigt, S. Persijn, N. Bhattacharya, and H. Urbach, “Cavity-enhanced direct frequency comb spectroscopy,” in International Commission for Optics (2011), pp. 80112O1–80112O7.

L. Yang, “Analytical treatment of virtual image phase array.” in Proceedings of the Optical Fiber Communication Conference (2002), pp. 321–322.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Schematic of the OD-SDOCT system based on a VIPA-grating spectrometer. (b) Detailed layout of the dispersive VIPA-grating spectrometer.
Fig. 2
Fig. 2 Orthogonal spectra distribution on the CCD plane. The colorful lines indicate the dispersed spectra and the gridding represents pixels of the CCD.
Fig. 3
Fig. 3 Interference pattern resulted from sample etalon with parameters identical to the dispersive etalon under common-path configuration of the OD-SDOCT system.
Fig. 4
Fig. 4 Interference pattern resulting from two reflective mirrors with an OPD of 30.13 mm. (a) original pattern, (b) DC background, (c) the pattern after removing the DC background.
Fig. 5
Fig. 5 One typical column of spectra fetched from Fig. 4(c) before (a) and after wavenumber calibration (b), and their corresponding spectral phase curves(c).
Fig. 6
Fig. 6 Four records of the cascaded 1-D spectra (a) and the averaged spectra (b), part of the FFT results from one record of the cascaded spectra (c) and the averaged spectra (d).
Fig. 7
Fig. 7 OCT images of a dented metal plate with artifacts (a) and without artifacts (b).
Fig. 8
Fig. 8 Imaging of a model eye by the OD-SDOCT system with the proposed method.
Fig. 9
Fig. 9 Imaging of a 102mm long steel post connected to a post holder base by the OD-SDOCT system.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I C C D ( x , y , k ) I i n t e r f e r e n c e ( k ) exp ( 2 f c 2 y 2 f 2 W 2 ) 1 ( 1 R r ) 2 + 4 R r sin 2 ( k Δ 2 ) exp ( ( x α c ( k k 0 ) 2 f / k W ) 2 ) ,
x p e a k ( k ) = α c ( k k 0 ) ,
y p e a k ( k ) = n t f tan ( θ i n ) cos ( θ i ) ± ( n t f tan ( θ i n ) cos ( θ i ) ) 2 + n t f 2 cos ( θ i n ) ( 2 n t cos ( θ i n ) 2 m π / k ) t cos ( θ i n ) .
I ( k ) = I int e r f e r e n c e ( k ) exp ( 2 f c 2 y p e a k 2 ( k ) f 2 W 2 ) .

Metrics