Abstract

We demonstrate nonlinearity compensation of 37.5-GHz-spaced 128-Gb/s PDM-QPSK signals using dispersion-folded digital-backward-propagation and a spectrally-sliced receiver that simultaneously receives three WDM signals, showing mitigation of intra-channel and inter-channel nonlinear effects in a 2560-km dispersion-managed TWRS-fiber link. Intra-channel and adjacent inter-channel nonlinear compensation gains when WDM channels are fully populated in the C-band are estimated based on the GN-model.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinearity compensation using dispersion-folded digital backward propagation

Likai Zhu and Guifang Li
Opt. Express 20(13) 14362-14370 (2012)

Folded digital backward propagation for dispersion-managed fiber-optic transmission

Likai Zhu and Guifang Li
Opt. Express 19(7) 5953-5959 (2011)

Digital compensation of cross-phase modulation distortions using perturbation technique for dispersion-managed fiber-optic systems

Xiaojun Liang, Shiva Kumar, Jing Shao, Mahdi Malekiha, and David V. Plant
Opt. Express 22(17) 20634-20645 (2014)

References

  • View by:
  • |
  • |
  • |

  1. X. Li, X. Chen, G. Goldfarb, E. Mateo, I. Kim, F. Yaman, and G. Li, “Electronic post-compensation of WDM transmission impairments using coherent detection and digital signal processing,” Opt. Express 16(2), 880–888 (2008).
    [Crossref] [PubMed]
  2. E. Ip and J. M. Kahn, “Compensation of dispersion and nonlinear impairments using digital backpropagation,” J. Lightwave Technol. 26(20), 3416–3425 (2008).
    [Crossref]
  3. L. Zhu and G. Li, “Folded digital backward propagation for dispersion-managed fiber-optic transmission,” Opt. Express 19(7), 5953–5959 (2011).
    [Crossref] [PubMed]
  4. H. Louchet and A. Richter, “Characterization and mitigation of nonlinear impairments in multi-span transmissions using an equivalent single-span model,” in Proc. ECOC’11 (2011), paper We.10.P1.68.
    [Crossref]
  5. L. Zhu and G. Li, “Nonlinearity compensation using dispersion-folded digital backward propagation,” Opt. Express 20(13), 14362–14370 (2012).
    [Crossref] [PubMed]
  6. E. Ip, Y. K. Huang, E. Mateo, Y. Aono, Y. Yano, T. Tajima, and T. Wang, “Interchannel nonlinearity compensation for 3λ× 114-Gb/s DP-8QAM using three synchronized sampling scopes,” in Proc. OFC’12 (2012), paper OM3A.6.
  7. N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalaikis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2-Tb/s superchannel using a full-field spectrally-sliced receiver,” in Proc. ECOC’13 (2013), paper Mo.3.D.5.
    [Crossref]
  8. C. Xia, X. Liu, S. Chandrasekhar, N. K. Fontaine, L. Zhu, and G. Li, “Multi-channel nonlinearity compensation of 128-Gb/s PDM-QPSK signals in dispersion-managed transmission using dispersion-folded digital backward propagation,” in Proc. OFC’14 (2014), paper Tu3A.5.
  9. A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol. 30(10), 1524–1539 (2012).
    [Crossref]
  10. R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express 21(22), 25685–25699 (2013).
    [Crossref] [PubMed]
  11. X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
    [Crossref]
  12. X. Liu, F. Buchali, and R. W. Tkach, “Improving the nonlinear tolerance of polarization-division-multiplexed CO-OFDM in long-haul fiber transmission,” J. Lightwave Technol. 27(16), 3632–3640 (2009).
    [Crossref]
  13. C. Xie, “Suppression of inter-channel nonlinearities in WDM coherent PDM-QPSK systems using periodic-group-delay dispersion compensators,” in Proc. ECOC’09 (2009), P4.08.
  14. X. Liu, S. Chandrasekhar, P. J. Winzer, B. Maheux-L, G.Brochu, and F. Trepanier, “Efficient fiber nonlinearity mitigation in 50-GHz-DWDM transmission of 256-Gb/s PDM-16QAM signals by folded digital-back-propagation and channelized FBG-DCMs,” in OFC’14 (2014), paper Tu3A.8.
  15. E. F. Mateo, F. Yaman, and G. Li, “Efficient compensation of inter-channel nonlinear effects via digital backward propagation in WDM optical transmission,” Opt. Express 18(14), 15144–15154 (2010).
    [Crossref] [PubMed]

2013 (2)

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

R. Dar, M. Feder, A. Mecozzi, and M. Shtaif, “Properties of nonlinear noise in long, dispersion-uncompensated fiber links,” Opt. Express 21(22), 25685–25699 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (1)

2010 (1)

2009 (1)

2008 (2)

Bosco, G.

Buchali, F.

Carena, A.

Chandrasekhar, S.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

Chen, X.

Chraplyvy, A. R.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

Curri, V.

Dar, R.

Feder, M.

Forghieri, F.

Goldfarb, G.

Ip, E.

Kahn, J. M.

Kim, I.

Li, G.

Li, X.

Liu, X.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

X. Liu, F. Buchali, and R. W. Tkach, “Improving the nonlinear tolerance of polarization-division-multiplexed CO-OFDM in long-haul fiber transmission,” J. Lightwave Technol. 27(16), 3632–3640 (2009).
[Crossref]

Mateo, E.

Mateo, E. F.

Mecozzi, A.

Poggiolini, P.

Shtaif, M.

Tkach, R. W.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

X. Liu, F. Buchali, and R. W. Tkach, “Improving the nonlinear tolerance of polarization-division-multiplexed CO-OFDM in long-haul fiber transmission,” J. Lightwave Technol. 27(16), 3632–3640 (2009).
[Crossref]

Winzer, P. J.

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

Xie, C.

C. Xie, “Suppression of inter-channel nonlinearities in WDM coherent PDM-QPSK systems using periodic-group-delay dispersion compensators,” in Proc. ECOC’09 (2009), P4.08.

Yaman, F.

Zhu, L.

J. Lightwave Technol. (3)

Nat. Photonics (1)

X. Liu, A. R. Chraplyvy, P. J. Winzer, R. W. Tkach, and S. Chandrasekhar, “Phase-conjugated twin waves for communication beyond the Kerr nonlinearity limit,” Nat. Photonics 7(7), 560–568 (2013).
[Crossref]

Opt. Express (5)

Other (6)

H. Louchet and A. Richter, “Characterization and mitigation of nonlinear impairments in multi-span transmissions using an equivalent single-span model,” in Proc. ECOC’11 (2011), paper We.10.P1.68.
[Crossref]

E. Ip, Y. K. Huang, E. Mateo, Y. Aono, Y. Yano, T. Tajima, and T. Wang, “Interchannel nonlinearity compensation for 3λ× 114-Gb/s DP-8QAM using three synchronized sampling scopes,” in Proc. OFC’12 (2012), paper OM3A.6.

N. K. Fontaine, X. Liu, S. Chandrasekhar, R. Ryf, S. Randel, P. Winzer, R. Delbue, P. Pupalaikis, and A. Sureka, “Fiber nonlinearity compensation by digital backpropagation of an entire 1.2-Tb/s superchannel using a full-field spectrally-sliced receiver,” in Proc. ECOC’13 (2013), paper Mo.3.D.5.
[Crossref]

C. Xia, X. Liu, S. Chandrasekhar, N. K. Fontaine, L. Zhu, and G. Li, “Multi-channel nonlinearity compensation of 128-Gb/s PDM-QPSK signals in dispersion-managed transmission using dispersion-folded digital backward propagation,” in Proc. OFC’14 (2014), paper Tu3A.5.

C. Xie, “Suppression of inter-channel nonlinearities in WDM coherent PDM-QPSK systems using periodic-group-delay dispersion compensators,” in Proc. ECOC’09 (2009), P4.08.

X. Liu, S. Chandrasekhar, P. J. Winzer, B. Maheux-L, G.Brochu, and F. Trepanier, “Efficient fiber nonlinearity mitigation in 50-GHz-DWDM transmission of 256-Gb/s PDM-16QAM signals by folded digital-back-propagation and channelized FBG-DCMs,” in OFC’14 (2014), paper Tu3A.8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the experimental setup for multi-channel NLC with a spectrally-sliced coherent receiver and dispersion-folded DBP.
Fig. 2
Fig. 2 Schemes of (a) conventional DBP and (b) dispersion-folded DBP.
Fig. 3
Fig. 3 Number of DBP steps needed in folded DBP compared to that needed in conventional-DBP at (a) Pin = −3 dBm (the optimum power) and (b) Pin = −2 dBm.
Fig. 4
Fig. 4 Measured signal quality as a function of signal launch power per channel for the cases of 3 channels transmitted.
Fig. 5
Fig. 5 Measured signal quality as a function of signal launch power per channel for the cases of 8 channels transmitted.
Fig. 6
Fig. 6 Probability density functions (PDFs) of real and imaginary components of noise in one of the polarizations as well as fitted Gaussian distribution for (a) B W D M = 112.5 GHz at the launch power of −2dBm per λ and (b) B W D M = 300 GHz at the launch power of −3dBm per λ .
Fig. 7
Fig. 7 Normalized nonlinear noise power versus the effective receiver NLC bandwidth (in units of channel bandwidth) for both DUM transmission and DM transmission with different RDPS values in links using (a) SSMF spans and (b) TWRS spans. DM: dispersion-managed; DUM: dispersion-unmanaged.
Fig. 8
Fig. 8 Normalized nonlinear noise power v.s. the effective receiver bandwidth as channel numbers at the cases of 3, 8, 100 transmitter channels for current dispersion-managed system. The markers show intra-channel and adjacent inter-channel NLC using DBP: the underlined blue annotations represent experimental gains ΔQ2 and other annotations in green and red represent estimated results. BRX: the number of the receiver channels; N: the number of the transmitter channels.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

G N L I ( f ) = 16 27 γ 2 L e f f 2 + + G W D M ( f 1 ) G W D M ( f 1 ) G W D M ( f 1 ) ρ ( f 1 , f 2 , f ) χ ( f 1 , f 2 , f ) d f 2 d f 1 ,
Δ Q 2 = 1 3 .10 log 10 σ N L 2 ( B R X = N ) σ N L 2 ( B R X = N ) a N L C ( B R X = n ) σ N L 2 ( B R X = n ) .

Metrics