Abstract

The optical properties of an ultrathin discontinuous gold film in different dielectric surroundings are investigated experimentally by measuring the polarization-dependent wavelength shifts and amplitudes of the cladding mode resonances of a tilted fiber Bragg grating. The gold film was prepared by electron-beam evaporation and had an average thickness of 5.5 nm ( ± 1 nm). Scanning electron imaging was used to determine that the film is actually formed of individual particles with average lateral dimensions of 28 nm ( ± 8 nm). The complex refractive indices of the equivalent uniform film in air at a wavelength of 1570 nm were calculated from the measurements to be 4.84−i0.74 and 3.97−i0.85 for TM and TE polarizations respectively (compared to the value for bulk gold: 0.54-i10.9). Additionally, changes in the birefringence and dichroism of the films were measured as a function of the surrounding medium, in air, water and a saturated NaCl (salt) solution. These results show that the film has stronger dielectric behavior for TM light than for TE, a trend that increases with increasing surrounding index. Finally, the experimental results are compared to predictions from two widely used effective medium approximations, the generalized Maxwell-Garnett and Bruggeman theories for gold particles in a surrounding matrix. It is found that both of these methods fail to predict the observed behavior for the film considered.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Anomalous permittivity and plasmon resonances of copper nanoparticle conformal coatings on optical fibers [Invited]

Li-Yang Shao, Jason P. Coyle, Seán T. Barry, and Jacques Albert
Opt. Mater. Express 1(2) 128-137 (2011)

High resolution fiber optic surface plasmon resonance sensors with single-sided gold coatings

Dingyi Feng, Wenjun Zhou, Xueguang Qiao, and Jacques Albert
Opt. Express 24(15) 16456-16464 (2016)

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995), Chap. 4.1.2.
  2. J. J. Tu, C. C. Homes, and M. Strongin, “Optical properties of ultrathin films: evidence for a dielectric anomaly at the insulator-to-metal transition,” Phys. Rev. Lett. 90(1), 017402 (2003).
    [Crossref] [PubMed]
  3. M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
    [Crossref]
  4. M. Svedendahl, P. Johansson, and M. Käll, “Complete light annihilation in an ultrathin layer of gold nanoparticles,” Nano Lett. 13(7), 3053–3058 (2013).
    [Crossref] [PubMed]
  5. M. Yan, J. Dai, and M. Qiu, “Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles,” J. Opt. 16(2), 025002 (2014).
    [Crossref]
  6. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  7. A. Manjavacas and F. J. García de Abajo, “Tunable plasmons in atomically thin gold nanodisks,” Nat Commun 5, 3548 (2014).
    [Crossref] [PubMed]
  8. A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Electrical Engineers, 1999), Chap. 9.
  9. H. T. Beyene, J. W. Weber, M. A. Verheijen, M. C. M. van de Sanden, and M. Creatore, “Real time in situ spectroscopic ellipsometry of the growth and plasmonic properties of Au nanoparticles on SiO2,” Nano Res. 5(8), 513–520 (2012).
    [Crossref]
  10. X. D. Li, T. P. Chen, Y. Liu, and K. C. Leong, “Influence of localized surface plasmon resonance and free electrons on the optical properties of ultrathin Au films: a study of the aggregation effect,” Opt. Express 22(5), 5124–5132 (2014).
    [Crossref] [PubMed]
  11. Y. Battie, A. E. Naciri, W. Chamorro, and D. Horwat, “Generalized effective medium theory to extract the optical properties of two-dimensional nonspherical metallic nanoparticle layers,” J. Phys. Chem. C 118(9), 4899–4905 (2014).
    [Crossref]
  12. T. Ung, L. M. Liz-Marzán, and P. Mulvaney, “Optical properties of thin films of Au@SiO2 particles,” J. Phys. Chem. B 105(17), 3441–3452 (2001).
    [Crossref]
  13. J. Toudert, L. Simonot, S. Camelio, and D. Babonneau, “Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal nanoparticles embedded in a homogeneous dielectric medium: surface plasmon resonances,” Phys. Rev. B 86(4), 045415 (2012).
    [Crossref]
  14. W.-J. Lee, J.-E. Kim, H.-Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
    [Crossref]
  15. X. Wang, K.-P. Chen, M. Zhao, and D. D. Nolte, “Refractive index and dielectric constant transition of ultra-thin gold from cluster to films,” Opt. Express 18(24), 24859–24867 (2010).
    [Crossref] [PubMed]
  16. J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
    [Crossref]
  17. M. Z. Alam and J. Albert, “Selective excitation of radically and azimuthally polarized optical fiber cladding modes,” J. Lightwave Technol. 31(19), 3167–3175 (2013).
    [Crossref]
  18. W. Zhou, D. J. Mandia, M. B. E. Griffiths, A. Bialiayeu, Y. Zhang, P. G. Gordon, S. T. Barry, and J. Albert, “Polarization-dependent properties of the cladding modes of a single mode fiber covered with gold nanoparticles,” Opt. Express 21(1), 245–255 (2013).
    [Crossref] [PubMed]
  19. C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
    [Crossref]
  20. Y.-C. Lu, R. Geng, C. Wang, F. Zhang, C. Liu, T. Ning, and S. Jian, “Polarization effects in tilted fiber Bragg grating refractometers,” J. Lightwave Technol. 28(11), 1677–1684 (2010).
    [Crossref]
  21. Y. Y. Shevchenko and J. Albert, “Plasmon resonances in Gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
    [Crossref] [PubMed]
  22. Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
    [Crossref] [PubMed]
  23. J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanwire coatings on optical fibers,” J. Phys. Chem. C 118(20), 11035–11042 (2014).
    [Crossref]
  24. W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C 118(1), 670–678 (2014).
    [Crossref]
  25. L.-Y. Shao, J. P. Coyle, S. T. Barry, and J. Albert, “Anomalous Permittivity and Plasmon Resonances of Copper Nanoparticle Conformal Coatings on Optical Fibers,” Opt. Mater. Express 1(2), 128–137 (2011).
    [Crossref]
  26. I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
    [Crossref] [PubMed]
  27. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2(11), 1588–1611 (2012).
    [Crossref]
  28. J. Lin and C. W. Brown, “Near-IR spectroscopic determination of NaCl in aqueous solution,” Appl. Spectrosc. 46(12), 1809–1815 (1992).
    [Crossref]
  29. A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, 2007), Chap. 3.2.
  30. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  31. A. Kossoy, V. Merk, D. Simakov, and K. Leosson, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. (to be published), doi:.
    [Crossref]
  32. S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R. W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study,” Opt. Express 21(10), 11827–11838 (2013).
    [Crossref] [PubMed]
  33. S. D. Campbell, R. W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces,” Appl. Phys. Lett. 103(9), 091106 (2013).
    [Crossref]
  34. J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. A 203(359-371), 385–420 (1904).
    [Crossref]
  35. D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(7), 636–664 (1935).
    [Crossref]
  36. S. B. Jones and S. P. Friedman, “Particle shape effects on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles,” Water Resour. Res. 36(10), 2821–2833 (2000).
    [Crossref]
  37. R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8(8), 3689–3701 (1973).
    [Crossref]
  38. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995), Chap. 4.4.
  39. M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
    [Crossref]
  40. Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B 46(4), 2503–2511 (1992).
    [Crossref]

2014 (6)

M. Yan, J. Dai, and M. Qiu, “Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles,” J. Opt. 16(2), 025002 (2014).
[Crossref]

A. Manjavacas and F. J. García de Abajo, “Tunable plasmons in atomically thin gold nanodisks,” Nat Commun 5, 3548 (2014).
[Crossref] [PubMed]

X. D. Li, T. P. Chen, Y. Liu, and K. C. Leong, “Influence of localized surface plasmon resonance and free electrons on the optical properties of ultrathin Au films: a study of the aggregation effect,” Opt. Express 22(5), 5124–5132 (2014).
[Crossref] [PubMed]

Y. Battie, A. E. Naciri, W. Chamorro, and D. Horwat, “Generalized effective medium theory to extract the optical properties of two-dimensional nonspherical metallic nanoparticle layers,” J. Phys. Chem. C 118(9), 4899–4905 (2014).
[Crossref]

J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanwire coatings on optical fibers,” J. Phys. Chem. C 118(20), 11035–11042 (2014).
[Crossref]

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C 118(1), 670–678 (2014).
[Crossref]

2013 (6)

2012 (3)

J. Toudert, L. Simonot, S. Camelio, and D. Babonneau, “Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal nanoparticles embedded in a homogeneous dielectric medium: surface plasmon resonances,” Phys. Rev. B 86(4), 045415 (2012).
[Crossref]

H. T. Beyene, J. W. Weber, M. A. Verheijen, M. C. M. van de Sanden, and M. Creatore, “Real time in situ spectroscopic ellipsometry of the growth and plasmonic properties of Au nanoparticles on SiO2,” Nano Res. 5(8), 513–520 (2012).
[Crossref]

S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2(11), 1588–1611 (2012).
[Crossref]

2011 (2)

L.-Y. Shao, J. P. Coyle, S. T. Barry, and J. Albert, “Anomalous Permittivity and Plasmon Resonances of Copper Nanoparticle Conformal Coatings on Optical Fibers,” Opt. Mater. Express 1(2), 128–137 (2011).
[Crossref]

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[Crossref]

2010 (5)

2008 (1)

W.-J. Lee, J.-E. Kim, H.-Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[Crossref]

2007 (3)

Y. Y. Shevchenko and J. Albert, “Plasmon resonances in Gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
[Crossref] [PubMed]

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[Crossref] [PubMed]

2003 (1)

J. J. Tu, C. C. Homes, and M. Strongin, “Optical properties of ultrathin films: evidence for a dielectric anomaly at the insulator-to-metal transition,” Phys. Rev. Lett. 90(1), 017402 (2003).
[Crossref] [PubMed]

2001 (1)

T. Ung, L. M. Liz-Marzán, and P. Mulvaney, “Optical properties of thin films of Au@SiO2 particles,” J. Phys. Chem. B 105(17), 3441–3452 (2001).
[Crossref]

2000 (1)

S. B. Jones and S. P. Friedman, “Particle shape effects on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles,” Water Resour. Res. 36(10), 2821–2833 (2000).
[Crossref]

1992 (2)

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B 46(4), 2503–2511 (1992).
[Crossref]

J. Lin and C. W. Brown, “Near-IR spectroscopic determination of NaCl in aqueous solution,” Appl. Spectrosc. 46(12), 1809–1815 (1992).
[Crossref]

1973 (1)

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8(8), 3689–3701 (1973).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1935 (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(7), 636–664 (1935).
[Crossref]

1904 (1)

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. A 203(359-371), 385–420 (1904).
[Crossref]

Abeles, B.

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8(8), 3689–3701 (1973).
[Crossref]

Alam, M. Z.

Albert, J.

J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanwire coatings on optical fibers,” J. Phys. Chem. C 118(20), 11035–11042 (2014).
[Crossref]

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C 118(1), 670–678 (2014).
[Crossref]

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

W. Zhou, D. J. Mandia, M. B. E. Griffiths, A. Bialiayeu, Y. Zhang, P. G. Gordon, S. T. Barry, and J. Albert, “Polarization-dependent properties of the cladding modes of a single mode fiber covered with gold nanoparticles,” Opt. Express 21(1), 245–255 (2013).
[Crossref] [PubMed]

M. Z. Alam and J. Albert, “Selective excitation of radically and azimuthally polarized optical fiber cladding modes,” J. Lightwave Technol. 31(19), 3167–3175 (2013).
[Crossref]

L.-Y. Shao, J. P. Coyle, S. T. Barry, and J. Albert, “Anomalous Permittivity and Plasmon Resonances of Copper Nanoparticle Conformal Coatings on Optical Fibers,” Opt. Mater. Express 1(2), 128–137 (2011).
[Crossref]

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[Crossref]

Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
[Crossref] [PubMed]

Y. Y. Shevchenko and J. Albert, “Plasmon resonances in Gold-coated tilted fiber Bragg gratings,” Opt. Lett. 32(3), 211–213 (2007).
[Crossref] [PubMed]

Asaduzzaman, A.

Babonneau, D.

J. Toudert, L. Simonot, S. Camelio, and D. Babonneau, “Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal nanoparticles embedded in a homogeneous dielectric medium: surface plasmon resonances,” Phys. Rev. B 86(4), 045415 (2012).
[Crossref]

Baro, A. M.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[Crossref] [PubMed]

Barry, S. T.

Battie, Y.

Y. Battie, A. E. Naciri, W. Chamorro, and D. Horwat, “Generalized effective medium theory to extract the optical properties of two-dimensional nonspherical metallic nanoparticle layers,” J. Phys. Chem. C 118(9), 4899–4905 (2014).
[Crossref]

Berini, P.

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[Crossref]

Beyene, H. T.

H. T. Beyene, J. W. Weber, M. A. Verheijen, M. C. M. van de Sanden, and M. Creatore, “Real time in situ spectroscopic ellipsometry of the growth and plasmonic properties of Au nanoparticles on SiO2,” Nano Res. 5(8), 513–520 (2012).
[Crossref]

Bialiayeu, A.

Brown, C. W.

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(7), 636–664 (1935).
[Crossref]

Camelio, S.

J. Toudert, L. Simonot, S. Camelio, and D. Babonneau, “Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal nanoparticles embedded in a homogeneous dielectric medium: surface plasmon resonances,” Phys. Rev. B 86(4), 045415 (2012).
[Crossref]

Campbell, S. D.

S. D. Campbell, R. W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces,” Appl. Phys. Lett. 103(9), 091106 (2013).
[Crossref]

Cao, J.

S. D. Campbell, R. W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces,” Appl. Phys. Lett. 103(9), 091106 (2013).
[Crossref]

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R. W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study,” Opt. Express 21(10), 11827–11838 (2013).
[Crossref] [PubMed]

Caucheteur, C.

J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanwire coatings on optical fibers,” J. Phys. Chem. C 118(20), 11035–11042 (2014).
[Crossref]

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[Crossref]

Chamorro, W.

Y. Battie, A. E. Naciri, W. Chamorro, and D. Horwat, “Generalized effective medium theory to extract the optical properties of two-dimensional nonspherical metallic nanoparticle layers,” J. Phys. Chem. C 118(9), 4899–4905 (2014).
[Crossref]

Chen, C.

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[Crossref]

Y. Shevchenko, C. Chen, M. A. Dakka, and J. Albert, “Polarization-selective grating excitation of plasmons in cylindrical optical fibers,” Opt. Lett. 35(5), 637–639 (2010).
[Crossref] [PubMed]

Chen, K.-P.

Chen, T. P.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cody, G. D.

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8(8), 3689–3701 (1973).
[Crossref]

Cohen, R. W.

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8(8), 3689–3701 (1973).
[Crossref]

Colchero, J.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[Crossref] [PubMed]

Cooke, D. G.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

Coutts, M. D.

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8(8), 3689–3701 (1973).
[Crossref]

Coyle, J. P.

Creatore, M.

H. T. Beyene, J. W. Weber, M. A. Verheijen, M. C. M. van de Sanden, and M. Creatore, “Real time in situ spectroscopic ellipsometry of the growth and plasmonic properties of Au nanoparticles on SiO2,” Nano Res. 5(8), 513–520 (2012).
[Crossref]

Dai, J.

M. Yan, J. Dai, and M. Qiu, “Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles,” J. Opt. 16(2), 025002 (2014).
[Crossref]

Dakka, M. A.

Debliquy, M.

J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanwire coatings on optical fibers,” J. Phys. Chem. C 118(20), 11035–11042 (2014).
[Crossref]

Deutscher, G.

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B 46(4), 2503–2511 (1992).
[Crossref]

Deymier, P.

S. D. Campbell, R. W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces,” Appl. Phys. Lett. 103(9), 091106 (2013).
[Crossref]

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R. W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study,” Opt. Express 21(10), 11827–11838 (2013).
[Crossref] [PubMed]

Dressel, M.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[Crossref]

Fernández, R.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[Crossref] [PubMed]

Freeman, M. R.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

Friedman, S. P.

S. B. Jones and S. P. Friedman, “Particle shape effects on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles,” Water Resour. Res. 36(10), 2821–2833 (2000).
[Crossref]

Gadenne, P.

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B 46(4), 2503–2511 (1992).
[Crossref]

García de Abajo, F. J.

A. Manjavacas and F. J. García de Abajo, “Tunable plasmons in atomically thin gold nanodisks,” Nat Commun 5, 3548 (2014).
[Crossref] [PubMed]

Geng, R.

Giessen, H.

Gissibl, T.

Gómez-Herrero, J.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[Crossref] [PubMed]

Gómez-Rodríguez, J. M.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[Crossref] [PubMed]

Gompf, B.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[Crossref]

Gordon, P. G.

Griffiths, M. B. E.

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C 118(1), 670–678 (2014).
[Crossref]

W. Zhou, D. J. Mandia, M. B. E. Griffiths, A. Bialiayeu, Y. Zhang, P. G. Gordon, S. T. Barry, and J. Albert, “Polarization-dependent properties of the cladding modes of a single mode fiber covered with gold nanoparticles,” Opt. Express 21(1), 245–255 (2013).
[Crossref] [PubMed]

Hajar, M.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

Hegmann, F. A.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Homes, C. C.

J. J. Tu, C. C. Homes, and M. Strongin, “Optical properties of ultrathin films: evidence for a dielectric anomaly at the insulator-to-metal transition,” Phys. Rev. Lett. 90(1), 017402 (2003).
[Crossref] [PubMed]

Horcas, I.

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[Crossref] [PubMed]

Horwat, D.

Y. Battie, A. E. Naciri, W. Chamorro, and D. Horwat, “Generalized effective medium theory to extract the optical properties of two-dimensional nonspherical metallic nanoparticle layers,” J. Phys. Chem. C 118(9), 4899–4905 (2014).
[Crossref]

Hövel, M.

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[Crossref]

Ianoul, A.

J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanwire coatings on optical fibers,” J. Phys. Chem. C 118(20), 11035–11042 (2014).
[Crossref]

Jian, S.

Johansson, P.

M. Svedendahl, P. Johansson, and M. Käll, “Complete light annihilation in an ultrathin layer of gold nanoparticles,” Nano Lett. 13(7), 3053–3058 (2013).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jones, S. B.

S. B. Jones and S. P. Friedman, “Particle shape effects on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles,” Water Resour. Res. 36(10), 2821–2833 (2000).
[Crossref]

Ju, J. J.

W.-J. Lee, J.-E. Kim, H.-Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[Crossref]

Julien, C.

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B 46(4), 2503–2511 (1992).
[Crossref]

Käll, M.

M. Svedendahl, P. Johansson, and M. Käll, “Complete light annihilation in an ultrathin layer of gold nanoparticles,” Nano Lett. 13(7), 3053–3058 (2013).
[Crossref] [PubMed]

Kedenburg, S.

Kim, J. T.

W.-J. Lee, J.-E. Kim, H.-Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[Crossref]

Kim, J.-E.

W.-J. Lee, J.-E. Kim, H.-Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[Crossref]

Kim, M.-S.

W.-J. Lee, J.-E. Kim, H.-Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[Crossref]

Kossoy, A.

A. Kossoy, V. Merk, D. Simakov, and K. Leosson, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. (to be published), doi:.
[Crossref]

Laref, S.

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R. W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study,” Opt. Express 21(10), 11827–11838 (2013).
[Crossref] [PubMed]

S. D. Campbell, R. W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces,” Appl. Phys. Lett. 103(9), 091106 (2013).
[Crossref]

Lee, W.-J.

W.-J. Lee, J.-E. Kim, H.-Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[Crossref]

Leong, K. C.

Leosson, K.

A. Kossoy, V. Merk, D. Simakov, and K. Leosson, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. (to be published), doi:.
[Crossref]

Li, X. D.

Lin, J.

Liu, C.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, Y.

Liz-Marzán, L. M.

T. Ung, L. M. Liz-Marzán, and P. Mulvaney, “Optical properties of thin films of Au@SiO2 particles,” J. Phys. Chem. B 105(17), 3441–3452 (2001).
[Crossref]

Lu, Y.-C.

Mandia, D. J.

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C 118(1), 670–678 (2014).
[Crossref]

W. Zhou, D. J. Mandia, M. B. E. Griffiths, A. Bialiayeu, Y. Zhang, P. G. Gordon, S. T. Barry, and J. Albert, “Polarization-dependent properties of the cladding modes of a single mode fiber covered with gold nanoparticles,” Opt. Express 21(1), 245–255 (2013).
[Crossref] [PubMed]

Manjavacas, A.

A. Manjavacas and F. J. García de Abajo, “Tunable plasmons in atomically thin gold nanodisks,” Nat Commun 5, 3548 (2014).
[Crossref] [PubMed]

Maxwell Garnett, J. C.

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. A 203(359-371), 385–420 (1904).
[Crossref]

Merk, V.

A. Kossoy, V. Merk, D. Simakov, and K. Leosson, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. (to be published), doi:.
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Miyawaki, M.

Mulvaney, P.

T. Ung, L. M. Liz-Marzán, and P. Mulvaney, “Optical properties of thin films of Au@SiO2 particles,” J. Phys. Chem. B 105(17), 3441–3452 (2001).
[Crossref]

Muralidharan, K.

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R. W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study,” Opt. Express 21(10), 11827–11838 (2013).
[Crossref] [PubMed]

S. D. Campbell, R. W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces,” Appl. Phys. Lett. 103(9), 091106 (2013).
[Crossref]

Naciri, A. E.

Y. Battie, A. E. Naciri, W. Chamorro, and D. Horwat, “Generalized effective medium theory to extract the optical properties of two-dimensional nonspherical metallic nanoparticle layers,” J. Phys. Chem. C 118(9), 4899–4905 (2014).
[Crossref]

Ning, T.

Nolte, D. D.

Park, H.-Y.

W.-J. Lee, J.-E. Kim, H.-Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[Crossref]

Park, S.

W.-J. Lee, J.-E. Kim, H.-Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[Crossref]

Qiu, M.

M. Yan, J. Dai, and M. Qiu, “Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles,” J. Opt. 16(2), 025002 (2014).
[Crossref]

Renoirt, J.-M.

J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanwire coatings on optical fibers,” J. Phys. Chem. C 118(20), 11035–11042 (2014).
[Crossref]

Runge, K.

Shao, L.-Y.

Sherstan, C.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

Shevchenko, Y.

Shevchenko, Y. Y.

Simakov, D.

A. Kossoy, V. Merk, D. Simakov, and K. Leosson, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. (to be published), doi:.
[Crossref]

Simonot, L.

J. Toudert, L. Simonot, S. Camelio, and D. Babonneau, “Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal nanoparticles embedded in a homogeneous dielectric medium: surface plasmon resonances,” Phys. Rev. B 86(4), 045415 (2012).
[Crossref]

Strongin, M.

J. J. Tu, C. C. Homes, and M. Strongin, “Optical properties of ultrathin films: evidence for a dielectric anomaly at the insulator-to-metal transition,” Phys. Rev. Lett. 90(1), 017402 (2003).
[Crossref] [PubMed]

Svedendahl, M.

M. Svedendahl, P. Johansson, and M. Käll, “Complete light annihilation in an ultrathin layer of gold nanoparticles,” Nano Lett. 13(7), 3053–3058 (2013).
[Crossref] [PubMed]

Toudert, J.

J. Toudert, L. Simonot, S. Camelio, and D. Babonneau, “Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal nanoparticles embedded in a homogeneous dielectric medium: surface plasmon resonances,” Phys. Rev. B 86(4), 045415 (2012).
[Crossref]

Tu, J. J.

J. J. Tu, C. C. Homes, and M. Strongin, “Optical properties of ultrathin films: evidence for a dielectric anomaly at the insulator-to-metal transition,” Phys. Rev. Lett. 90(1), 017402 (2003).
[Crossref] [PubMed]

Ung, T.

T. Ung, L. M. Liz-Marzán, and P. Mulvaney, “Optical properties of thin films of Au@SiO2 particles,” J. Phys. Chem. B 105(17), 3441–3452 (2001).
[Crossref]

van de Sanden, M. C. M.

H. T. Beyene, J. W. Weber, M. A. Verheijen, M. C. M. van de Sanden, and M. Creatore, “Real time in situ spectroscopic ellipsometry of the growth and plasmonic properties of Au nanoparticles on SiO2,” Nano Res. 5(8), 513–520 (2012).
[Crossref]

Verheijen, M. A.

H. T. Beyene, J. W. Weber, M. A. Verheijen, M. C. M. van de Sanden, and M. Creatore, “Real time in situ spectroscopic ellipsometry of the growth and plasmonic properties of Au nanoparticles on SiO2,” Nano Res. 5(8), 513–520 (2012).
[Crossref]

Vieweg, M.

Voisin, V.

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[Crossref]

Walther, M.

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

Wang, C.

Wang, X.

Weber, J. W.

H. T. Beyene, J. W. Weber, M. A. Verheijen, M. C. M. van de Sanden, and M. Creatore, “Real time in situ spectroscopic ellipsometry of the growth and plasmonic properties of Au nanoparticles on SiO2,” Nano Res. 5(8), 513–520 (2012).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Yagil, Y.

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B 46(4), 2503–2511 (1992).
[Crossref]

Yan, M.

M. Yan, J. Dai, and M. Qiu, “Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles,” J. Opt. 16(2), 025002 (2014).
[Crossref]

Zhang, F.

Zhang, Y.

Zhao, M.

Zhou, W.

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C 118(1), 670–678 (2014).
[Crossref]

W. Zhou, D. J. Mandia, M. B. E. Griffiths, A. Bialiayeu, Y. Zhang, P. G. Gordon, S. T. Barry, and J. Albert, “Polarization-dependent properties of the cladding modes of a single mode fiber covered with gold nanoparticles,” Opt. Express 21(1), 245–255 (2013).
[Crossref] [PubMed]

Ziolkowski, R. W.

S. Laref, J. Cao, A. Asaduzzaman, K. Runge, P. Deymier, R. W. Ziolkowski, M. Miyawaki, and K. Muralidharan, “Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: a density functional theory study,” Opt. Express 21(10), 11827–11838 (2013).
[Crossref] [PubMed]

S. D. Campbell, R. W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces,” Appl. Phys. Lett. 103(9), 091106 (2013).
[Crossref]

Ann. Phys. (1)

D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen,” Ann. Phys. 416(7), 636–664 (1935).
[Crossref]

Appl. Phys. Lett. (2)

S. D. Campbell, R. W. Ziolkowski, J. Cao, S. Laref, K. Muralidharan, and P. Deymier, “Anisotropic permittivity of ultra-thin crystalline Au films: Impacts on the plasmonic response of metasurfaces,” Appl. Phys. Lett. 103(9), 091106 (2013).
[Crossref]

C. Caucheteur, C. Chen, V. Voisin, P. Berini, and J. Albert, “A thin metal sheath lifts the EH to HE degeneracy in the cladding mode refractometric sensitivity of optical fiber sensors,” Appl. Phys. Lett. 99(4), 041118 (2011).
[Crossref]

Appl. Spectrosc. (1)

J. Appl. Phys. (1)

W.-J. Lee, J.-E. Kim, H.-Y. Park, S. Park, M.-S. Kim, J. T. Kim, and J. J. Ju, “Optical constants of evaporated gold films measured by surface plasmon resonance at telecommunication wavelengths,” J. Appl. Phys. 103(7), 073713 (2008).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

M. Yan, J. Dai, and M. Qiu, “Lithography-free broadband visible light absorber based on a mono-layer of gold nanoparticles,” J. Opt. 16(2), 025002 (2014).
[Crossref]

J. Phys. Chem. B (1)

T. Ung, L. M. Liz-Marzán, and P. Mulvaney, “Optical properties of thin films of Au@SiO2 particles,” J. Phys. Chem. B 105(17), 3441–3452 (2001).
[Crossref]

J. Phys. Chem. C (3)

Y. Battie, A. E. Naciri, W. Chamorro, and D. Horwat, “Generalized effective medium theory to extract the optical properties of two-dimensional nonspherical metallic nanoparticle layers,” J. Phys. Chem. C 118(9), 4899–4905 (2014).
[Crossref]

J.-M. Renoirt, M. Debliquy, J. Albert, A. Ianoul, and C. Caucheteur, “Surface plasmon resonances in oriented silver nanwire coatings on optical fibers,” J. Phys. Chem. C 118(20), 11035–11042 (2014).
[Crossref]

W. Zhou, D. J. Mandia, M. B. E. Griffiths, S. T. Barry, and J. Albert, “Effective permittivity of ultrathin chemical vapor deposited gold films on optical fibers at infrared wavelengths,” J. Phys. Chem. C 118(1), 670–678 (2014).
[Crossref]

Laser Photonics Rev. (1)

J. Albert, L.-Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Nano Lett. (2)

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

M. Svedendahl, P. Johansson, and M. Käll, “Complete light annihilation in an ultrathin layer of gold nanoparticles,” Nano Lett. 13(7), 3053–3058 (2013).
[Crossref] [PubMed]

Nano Res. (1)

H. T. Beyene, J. W. Weber, M. A. Verheijen, M. C. M. van de Sanden, and M. Creatore, “Real time in situ spectroscopic ellipsometry of the growth and plasmonic properties of Au nanoparticles on SiO2,” Nano Res. 5(8), 513–520 (2012).
[Crossref]

Nat Commun (1)

A. Manjavacas and F. J. García de Abajo, “Tunable plasmons in atomically thin gold nanodisks,” Nat Commun 5, 3548 (2014).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (2)

Philos. Trans. R. Soc. Lond. A (1)

J. C. Maxwell Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. A 203(359-371), 385–420 (1904).
[Crossref]

Phys. Rev. B (6)

R. W. Cohen, G. D. Cody, M. D. Coutts, and B. Abeles, “Optical properties of granular silver and gold films,” Phys. Rev. B 8(8), 3689–3701 (1973).
[Crossref]

M. Walther, D. G. Cooke, C. Sherstan, M. Hajar, M. R. Freeman, and F. A. Hegmann, “Terahertz conductivity of thin gold films at the metal-insulator percolation transition,” Phys. Rev. B 76(12), 125408 (2007).
[Crossref]

Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, “Optical properties of thin semicontinuous gold films over a wavelength range of 2.5 to 500 μm,” Phys. Rev. B 46(4), 2503–2511 (1992).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

M. Hövel, B. Gompf, and M. Dressel, “Dielectric properties of ultrathin metal films around the percolation threshold,” Phys. Rev. B 81(3), 035402 (2010).
[Crossref]

J. Toudert, L. Simonot, S. Camelio, and D. Babonneau, “Advanced optical effective medium modeling for a single layer of polydisperse ellipsoidal nanoparticles embedded in a homogeneous dielectric medium: surface plasmon resonances,” Phys. Rev. B 86(4), 045415 (2012).
[Crossref]

Phys. Rev. Lett. (1)

J. J. Tu, C. C. Homes, and M. Strongin, “Optical properties of ultrathin films: evidence for a dielectric anomaly at the insulator-to-metal transition,” Phys. Rev. Lett. 90(1), 017402 (2003).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, “WSXM: A software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78(1), 013705 (2007).
[Crossref] [PubMed]

Water Resour. Res. (1)

S. B. Jones and S. P. Friedman, “Particle shape effects on the effective permittivity of anisotropic or isotropic media consisting of aligned or randomly oriented ellipsoidal particles,” Water Resour. Res. 36(10), 2821–2833 (2000).
[Crossref]

Other (5)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995), Chap. 4.4.

A. Kossoy, V. Merk, D. Simakov, and K. Leosson, “Optical and structural properties of ultra-thin gold films,” Adv. Opt. Mater. (to be published), doi:.
[Crossref]

A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, 2007), Chap. 3.2.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995), Chap. 4.1.2.

A. Sihvola, Electromagnetic Mixing Formulas and Applications (The Institution of Electrical Engineers, 1999), Chap. 9.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic diagram of TFBG under X-(S-) and Y-(P-) polarized core modes input. Electric field distributions of four typically vectorial cladding modes ((b) EH1m, (c) HE1m, (d) TM0m, and (e) TE0m) coupled from the X-(S-) and Y-(P-) polarized core modes by TFBG, respectively. (Note that the grating planes are parallel to X axis and tilted away from the Y axis). The white broken curves indicate the core and cladding edges of optical fiber.
Fig. 2
Fig. 2 SEM (a) and AFM (b) images of the gold NPs film over an area of 0.5 × 0.5 μm2 (with scale bar of 100 nm). (c) Histogram of gold NP lateral sizes based on 1172 particles distributed over an area of approximately 1.3 × 1.0 μm2. (d) Height histogram of gold NPs film based on ~2.62 × 105 extracted points from 1 × 1 μm2 AFM image.
Fig. 3
Fig. 3 (a) Schematic diagram of experimental setup. Temperature-calibrated spectra of the gold NPs-coated (b) and the gold NPs-etched (bare) (c) TFBGs for TE- and TM-polarizations in air, DI water (H2O), and saturated NaCl-water solution (NaCl) surroundings. (The red and blue circles are marked at the positions of the TE- and TM-polarized cladding mode resonances, respectively.) Wavelength separations (d) and peak-to-peak amplitude differences (e) between the pair of polarized cladding modes for the both of coated and bare TFBGs under the three SRIs. Note that the signs of the P-P amplitude differences under the cases of bare and coated TFBGs are opposite.
Fig. 4
Fig. 4 2D schematic diagrams of a mono-layer of oblate gold NPs (a) and effective medium layer that consists of gold and surrounding materials (b) coated on optical fiber surface under evanescent fields of TE- and TM-polarized cladding modes propagating along the z-axis. The thickness t of the effective medium layer is equal to the average height hNP of the gold NP film measured from its AFM image. Note that the relative profiles of evanescent field and gold film shown above are not to scale, since the penetration depth of the cladding mode with effective index of ~1.366 in air is about 130 nm.
Fig. 5
Fig. 5 Real (a) and imaginary (b) parts of the complex effective indices of the TE and TM cladding modes ( N eff clad i K eff clad ) under the three SRIs; Real (c) and imaginary (d) parts of complex refractive indices (n − ik) of the 5.5 nm thick effective homogeneous gold NPs film for TE and TM modes. The positive and negative errors of the complex refractive indices are evaluated from the thickness uncertainty of ± 1 nm in FIMMWAVE simulations.
Fig. 6
Fig. 6 Complex refractive indices of the effective medium coating of the three surroundings for (a) out-of-plane (TM) and (b) in-plane (TE) directions calculated by M-G and Bruggeman EMAs, compared with the experimentally obtained results and the bulk permittivities of the medium constituents (gold and SRI). The gray and black error bars indicate the deviations of complex refractive indices caused by the minimum aspect ratio x of 4.5/36 and the maximum x of 6.5/20 in EMA models, respectively, based on the average height of 5.5 nm ( ± 1 nm) and the average lateral dimensions of 28 nm ( ± 8 nm) of the gold NPs. Note that the both of gray and black error bars show in negative direction for the real parts of Bruggeman EMA in Fig. 6(a).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

N eff clad = λ clad cosθ/Λ N eff core
κ= tan h 1 1ΔA L
ε eff ε e ε e + N TM,TE ( ε eff ε e ) =f ε i ε e ε e + N TM,TE ( ε i ε e )
(1f) ε eff ε e ε eff + N TM,TE ( ε e ε eff ) =f ε i ε eff ε eff + N TM,TE ( ε i ε eff )
N TM = (1+1.6x+0.4 x 2 ) 1
N TE =(1 N TM )/2

Metrics