Abstract

Existing super multi-view (SMV) technologies depend on ultra-high resolution two-dimensional (2D) display panel or large number of 2D display panels to obtain dense sub-viewing-zones for constructing more natural three-dimensional (3D) display by pure spatial-multiplexing. Through gating the spatial-spectrum of each OLED microdisplay, the present work proposes a new SMV technology combining time- and spatial-multiplexing based on planar-aligned OLED microdisplays. The inherent light emission characteristics of OLED, i.e. large divergence angle, guarantees a homogeneous light intensity distribution on the spectrum plane, which is a necessary condition for successful time multiplexing. The developed system bears with low requirements on the number of 2D display panels. The factors influencing the lateral display resolution limit are discussed and the optimum value is deduced. Experimentally, a prototype system with 60 sub-viewing-zones is demonstrated by 12 OLED microdisplays. The horizontal interval between adjacent sub-viewing-zones is 1.6mm.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved spatiotemporal-multiplexing super-multiview display based on planar aligned OLED microdisplays

Dongdong Teng, Zhiyong Pang, Yueli Zhang, Dong Wu, Jiahui Wang, Lilin Liu, and Biao Wang
Opt. Express 23(17) 21549-21564 (2015)

Multiview three-dimensional display with continuous motion parallax through planar aligned OLED microdisplays

Dongdong Teng, Yi Xiong, Lilin Liu, and Biao Wang
Opt. Express 23(5) 6007-6019 (2015)

Super multi-view three-dimensional display technique for portable devices

Lilin Liu, Zhiyong Pang, and Dongdong Teng
Opt. Express 24(5) 4421-4430 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
    [Crossref]
  2. Y. Kajiki, H. Yoshikawa, and T. Honda, “Ocular accommodation by super multi-view stereogram and 45-view stereoscopic display,” Proceedings of the Third International Display Workshops (IDW’96), 2, 489–492 (1996).
  3. Y. Takaki, “Thin-type natural three-dimensional display with 72 directional images,” Proc. SPIE 5664, 56–63 (2005).
    [Crossref]
  4. Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express 19(2), 704–716 (2011).
    [Crossref] [PubMed]
  5. H. Nakanuma, H. Kamei, and Y. Takaki, “Natural 3D display with 128 directional images used for human-engineering evaluation,” Proc. SPIE 5664, 28–35 (2005).
    [Crossref]
  6. J. H. Lee, J. Park, D. Nam, S. Y. Choi, D. S. Park, and C. Y. Kim, “Optimal projector configuration design for 300-Mpixel multi-projection 3D display,” Opt. Express 21(22), 26820–26835 (2013).
    [Crossref] [PubMed]
  7. Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
    [Crossref] [PubMed]
  8. A. R. Travis, “Autostereoscopic 3-D display,” Appl. Opt. 29(29), 4341–4342 (1990).
    [Crossref] [PubMed]
  9. N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, and P. Canepa, “A time sequential multi-projector autostereoscopic display,” J. SID 8(2), 169–176 (2000).
  10. J. Y. Son, V. V. Smirnov, K. T. Kim, Y. S. Chun, and S.-S. Kim, “A 16-views TV system based on spatial jointing of viewing zones,” Proc. SPIE 3957, 184–190 (2000).
    [Crossref]
  11. T. Kozacki, G. Finke, P. Garbat, W. Zaperty, and M. Kujawińska, “Wide angle holographic display system with spatiotemporal multiplexing,” Opt. Express 20(25), 27473–27481 (2012).
    [Crossref] [PubMed]
  12. J. Y. Son and B. Javidi, “Three-dimensional imaging methods based on multiview images,” J. Disp. Technol. 1(1), 125–140 (2005).
    [Crossref]
  13. Y. Takaki and H. Nakanuma, “Improvement of multiple imaging system used for natural 3D display which generates high-density directional images,” Proc. SPIE 5243, 42–49 (2003).
    [Crossref]

2013 (1)

2012 (1)

2011 (1)

2010 (1)

2005 (3)

J. Y. Son and B. Javidi, “Three-dimensional imaging methods based on multiview images,” J. Disp. Technol. 1(1), 125–140 (2005).
[Crossref]

Y. Takaki, “Thin-type natural three-dimensional display with 72 directional images,” Proc. SPIE 5664, 56–63 (2005).
[Crossref]

H. Nakanuma, H. Kamei, and Y. Takaki, “Natural 3D display with 128 directional images used for human-engineering evaluation,” Proc. SPIE 5664, 28–35 (2005).
[Crossref]

2003 (1)

Y. Takaki and H. Nakanuma, “Improvement of multiple imaging system used for natural 3D display which generates high-density directional images,” Proc. SPIE 5243, 42–49 (2003).
[Crossref]

2000 (2)

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, and P. Canepa, “A time sequential multi-projector autostereoscopic display,” J. SID 8(2), 169–176 (2000).

J. Y. Son, V. V. Smirnov, K. T. Kim, Y. S. Chun, and S.-S. Kim, “A 16-views TV system based on spatial jointing of viewing zones,” Proc. SPIE 3957, 184–190 (2000).
[Crossref]

1997 (1)

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
[Crossref]

1990 (1)

Ando, H.

Canepa, P.

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, and P. Canepa, “A time sequential multi-projector autostereoscopic display,” J. SID 8(2), 169–176 (2000).

Choi, S. Y.

Chun, Y. S.

J. Y. Son, V. V. Smirnov, K. T. Kim, Y. S. Chun, and S.-S. Kim, “A 16-views TV system based on spatial jointing of viewing zones,” Proc. SPIE 3957, 184–190 (2000).
[Crossref]

Dodgson, N. A.

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, and P. Canepa, “A time sequential multi-projector autostereoscopic display,” J. SID 8(2), 169–176 (2000).

Finke, G.

Garbat, P.

Honda, T.

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
[Crossref]

Y. Kajiki, H. Yoshikawa, and T. Honda, “Ocular accommodation by super multi-view stereogram and 45-view stereoscopic display,” Proceedings of the Third International Display Workshops (IDW’96), 2, 489–492 (1996).

Javidi, B.

J. Y. Son and B. Javidi, “Three-dimensional imaging methods based on multiview images,” J. Disp. Technol. 1(1), 125–140 (2005).
[Crossref]

Kajiki, Y.

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
[Crossref]

Y. Kajiki, H. Yoshikawa, and T. Honda, “Ocular accommodation by super multi-view stereogram and 45-view stereoscopic display,” Proceedings of the Third International Display Workshops (IDW’96), 2, 489–492 (1996).

Kamei, H.

H. Nakanuma, H. Kamei, and Y. Takaki, “Natural 3D display with 128 directional images used for human-engineering evaluation,” Proc. SPIE 5664, 28–35 (2005).
[Crossref]

Kashiwada, S.

Kim, C. Y.

Kim, K. T.

J. Y. Son, V. V. Smirnov, K. T. Kim, Y. S. Chun, and S.-S. Kim, “A 16-views TV system based on spatial jointing of viewing zones,” Proc. SPIE 3957, 184–190 (2000).
[Crossref]

Kim, S.-S.

J. Y. Son, V. V. Smirnov, K. T. Kim, Y. S. Chun, and S.-S. Kim, “A 16-views TV system based on spatial jointing of viewing zones,” Proc. SPIE 3957, 184–190 (2000).
[Crossref]

Kozacki, T.

Kujawinska, M.

Lang, S. R.

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, and P. Canepa, “A time sequential multi-projector autostereoscopic display,” J. SID 8(2), 169–176 (2000).

Lee, J. H.

Martin, G.

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, and P. Canepa, “A time sequential multi-projector autostereoscopic display,” J. SID 8(2), 169–176 (2000).

Moore, J. R.

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, and P. Canepa, “A time sequential multi-projector autostereoscopic display,” J. SID 8(2), 169–176 (2000).

Nago, N.

Nakamura, K.

Nakanuma, H.

H. Nakanuma, H. Kamei, and Y. Takaki, “Natural 3D display with 128 directional images used for human-engineering evaluation,” Proc. SPIE 5664, 28–35 (2005).
[Crossref]

Y. Takaki and H. Nakanuma, “Improvement of multiple imaging system used for natural 3D display which generates high-density directional images,” Proc. SPIE 5243, 42–49 (2003).
[Crossref]

Nam, D.

Park, D. S.

Park, J.

Smirnov, V. V.

J. Y. Son, V. V. Smirnov, K. T. Kim, Y. S. Chun, and S.-S. Kim, “A 16-views TV system based on spatial jointing of viewing zones,” Proc. SPIE 3957, 184–190 (2000).
[Crossref]

Son, J. Y.

J. Y. Son and B. Javidi, “Three-dimensional imaging methods based on multiview images,” J. Disp. Technol. 1(1), 125–140 (2005).
[Crossref]

J. Y. Son, V. V. Smirnov, K. T. Kim, Y. S. Chun, and S.-S. Kim, “A 16-views TV system based on spatial jointing of viewing zones,” Proc. SPIE 3957, 184–190 (2000).
[Crossref]

Takaki, Y.

Y. Takaki, Y. Urano, S. Kashiwada, H. Ando, and K. Nakamura, “Super multi-view windshield display for long-distance image information presentation,” Opt. Express 19(2), 704–716 (2011).
[Crossref] [PubMed]

Y. Takaki and N. Nago, “Multi-projection of lenticular displays to construct a 256-view super multi-view display,” Opt. Express 18(9), 8824–8835 (2010).
[Crossref] [PubMed]

H. Nakanuma, H. Kamei, and Y. Takaki, “Natural 3D display with 128 directional images used for human-engineering evaluation,” Proc. SPIE 5664, 28–35 (2005).
[Crossref]

Y. Takaki, “Thin-type natural three-dimensional display with 72 directional images,” Proc. SPIE 5664, 56–63 (2005).
[Crossref]

Y. Takaki and H. Nakanuma, “Improvement of multiple imaging system used for natural 3D display which generates high-density directional images,” Proc. SPIE 5243, 42–49 (2003).
[Crossref]

Travis, A. R.

Urano, Y.

Yoshikawa, H.

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
[Crossref]

Y. Kajiki, H. Yoshikawa, and T. Honda, “Ocular accommodation by super multi-view stereogram and 45-view stereoscopic display,” Proceedings of the Third International Display Workshops (IDW’96), 2, 489–492 (1996).

Zaperty, W.

Appl. Opt. (1)

J. Disp. Technol. (1)

J. Y. Son and B. Javidi, “Three-dimensional imaging methods based on multiview images,” J. Disp. Technol. 1(1), 125–140 (2005).
[Crossref]

J. SID (1)

N. A. Dodgson, J. R. Moore, S. R. Lang, G. Martin, and P. Canepa, “A time sequential multi-projector autostereoscopic display,” J. SID 8(2), 169–176 (2000).

Opt. Express (4)

Proc. SPIE (5)

Y. Takaki, “Thin-type natural three-dimensional display with 72 directional images,” Proc. SPIE 5664, 56–63 (2005).
[Crossref]

Y. Takaki and H. Nakanuma, “Improvement of multiple imaging system used for natural 3D display which generates high-density directional images,” Proc. SPIE 5243, 42–49 (2003).
[Crossref]

H. Nakanuma, H. Kamei, and Y. Takaki, “Natural 3D display with 128 directional images used for human-engineering evaluation,” Proc. SPIE 5664, 28–35 (2005).
[Crossref]

Y. Kajiki, H. Yoshikawa, and T. Honda, “Hologram-like video images by 45-view stereoscopic display,” Proc. SPIE 3012, 154–166 (1997).
[Crossref]

J. Y. Son, V. V. Smirnov, K. T. Kim, Y. S. Chun, and S.-S. Kim, “A 16-views TV system based on spatial jointing of viewing zones,” Proc. SPIE 3957, 184–190 (2000).
[Crossref]

Other (1)

Y. Kajiki, H. Yoshikawa, and T. Honda, “Ocular accommodation by super multi-view stereogram and 45-view stereoscopic display,” Proceedings of the Third International Display Workshops (IDW’96), 2, 489–492 (1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Optical diagram of the proposed SMV system.
Fig. 2
Fig. 2 (a) The schematic drawing of a part of the gating plate with arc-apertures; (b) Photo of the gating plate.
Fig. 3
Fig. 3 Photo showing the internal structure of a projecting unit (with the upper package and a baffle removed for photograph).
Fig. 4
Fig. 4 Photograph of the experimental display system.
Fig. 5
Fig. 5 Captured images when the two lines are on focus separately.
Fig. 6
Fig. 6 Captured images by the CCD located at a series of points along the Pobserv horizontally with a spatial interval of 19mm when the proposed display system work.
Fig. 7
Fig. 7 Geometrical diagram showing the displayed spot sizes of the 2D display planes in the 3D display space.
Fig. 8
Fig. 8 The evolution of resolution limits of P1 and P2 planes with the aperture size.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

O k2 Β k <ΔD/10 O k2 Β k O k1 A k = O k2 C k O k1 C k }m1 5 d x ΔD
{ ε d βδ = z c1 v 2 z c1 = z c2 v 2 + z c2 ε 1 βδ = Δz+ z c1 v 2 z c1 ε 2 βδ = Δz+ z c2 v 2 + z c2 { ε 1 = Δz( βδ+ ε d )+ ε d v 2 v 2 ( βδ+ ε d ) ε d v 2 βδ ε 2 = Δz( βδ ε d )+ ε d v 2 v 2 ( βδ ε d )+ ε d v 2 βδ

Metrics