Abstract

We report on a broad-band terahertz quantum-cascade laser (QCL) with a long Fabry-Pérot ridge cavity, for which the tuning range of the individual laser modes exceeds the mode spacing. While a spectral range of approximately 60 GHz (2 cm−1) is continuously covered by current and temperature tuning, the total emission range spans more than 270 GHz (9 cm−1). Within certain operating ranges, we found evidence for stable frequency comb operation of the QCL. An experimental technique is presented to characterize frequency comb operation, which is based on the self-mixing effect.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dispersion engineering of quantum cascade laser frequency combs

Gustavo Villares, Sabine Riedi, Johanna Wolf, Dmitry Kazakov, Martin J. Süess, Pierre Jouy, Mattias Beck, and Jérôme Faist
Optica 3(3) 252-258 (2016)

Tunable and compact dispersion compensation of broadband THz quantum cascade laser frequency combs

Francesco P. Mezzapesa, Valentino Pistore, Katia Garrasi, Lianhe Li, A. Giles Davies, Edmund H. Linfield, Sukhdeep Dhillon, and Miriam S. Vitiello
Opt. Express 27(15) 20231-20240 (2019)

Injection locking of a terahertz quantum cascade laser to a telecommunications wavelength frequency comb

Joshua R. Freeman, Lalitha Ponnampalam, Haymen Shams, Reshma A. Mohandas, Cyril C. Renaud, Paul Dean, Lianhe Li, A. Giles Davies, Alwyn J. Seeds, and Edmund H. Linfield
Optica 4(9) 1059-1064 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H.-W. Hübers, S. G. Pavlov, A. D. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, and E. H. Linfield, “Terahertz quantum cascade laser as local oscillator in a heterodyne receiver,” Opt. Express 13, 5890–5896 (2005).
    [Crossref] [PubMed]
  2. J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
    [Crossref]
  3. R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett. 99, 141112 (2011).
    [Crossref]
  4. L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors 13, 3331–3340 (2013).
    [Crossref] [PubMed]
  5. N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror,” IEEE Trans. Terahertz Sci. Technol. 3, 617–624 (2013).
    [Crossref]
  6. P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging through self-mixing in a quantum cascade laser,” Opt. Lett. 36, 2587–2589 (2011).
    [Crossref] [PubMed]
  7. M. Ravaro, V. Jagtap, G. Santarelli, C. Sirtori, L. H. Li, S. P. Khanna, E. H. Linfield, and S. Barbieri, “Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling,” Appl. Phys. Lett. 102, 091107 (2013).
    [Crossref]
  8. L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46, S160–S164 (2009).
    [Crossref]
  9. H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18, 10177–10187 (2010).
    [Crossref] [PubMed]
  10. M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Stand-alone system for high-resolution, real-time terahertz imaging,” Opt. Express 20, 2772–2778 (2012).
    [Crossref] [PubMed]
  11. A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
    [Crossref] [PubMed]
  12. D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
    [Crossref]
  13. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref] [PubMed]
  14. J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
    [Crossref]
  15. M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nat. Photonics 6, 525–528 (2012).
    [Crossref]
  16. M. Wienold, L. Schrottke, M. Giehler, R. Hey, and H. T. Grahn, “Nonlinear transport in quantum-cascade lasers: The role of electric-field domain formation for the laser characteristics,” J. Appl. Phys. 109, 073112 (2011).
    [Crossref]
  17. L. Schrottke, M. Giehler, M. Wienold, R. Hey, and H. T. Grahn, “Compact model for the efficient simulation of the optical gain and transport properties in THz quantum-cascade lasers,” Semicond. Sci. Technol. 25, 045025 (2010).
    [Crossref]
  18. J. Ulrich, R. Zobl, N. Finger, K. Unterrainer, G. Strasser, and E. Gornik, “Terahertz-electroluminescence in a quantum cascade structure,” Physica B 272, 216–218 (1999).
    [Crossref]
  19. S. Barbieri, J. Alton, C. Baker, T. Lo, H. E. Beere, and D. Ritchie, “Imaging with THz quantum cascade lasers using a Schottky diode mixer,” Opt. Express 13, 6497–6503 (2005).
    [Crossref] [PubMed]
  20. R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Selfmode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities,” Science 290, 1739–1742 (2000).
    [Crossref] [PubMed]
  21. A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77, 053804 (2008).
    [Crossref]
  22. J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104, 081118 (2014).
    [Crossref]
  23. R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quant. Electron. QE-16, 347–355 (1980).
    [Crossref]
  24. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Opt. 4, S283–S294 (2002).
    [Crossref]
  25. F. P. Mezzapesa, L. L. Columbo, M. Brambilla, M. Dabbicco, S. Borri, M. S. Vitiello, H. E. Beere, D. A. Ritchie, and G. Scamarcio, “Intrinsic stability of quantum cascade lasers against optical feedback,” Opt. Express 21, 13748–13757 (2013).
    [Crossref] [PubMed]
  26. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004).
    [Crossref] [PubMed]
  27. G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
    [Crossref] [PubMed]
  28. P. Gellie, S. Barbieri, J.-F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35 GHz using RF amplitude modulation,” Opt. Express 18, 20799–20816 (2010).
    [Crossref] [PubMed]

2014 (3)

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104, 081118 (2014).
[Crossref]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

2013 (5)

F. P. Mezzapesa, L. L. Columbo, M. Brambilla, M. Dabbicco, S. Borri, M. S. Vitiello, H. E. Beere, D. A. Ritchie, and G. Scamarcio, “Intrinsic stability of quantum cascade lasers against optical feedback,” Opt. Express 21, 13748–13757 (2013).
[Crossref] [PubMed]

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors 13, 3331–3340 (2013).
[Crossref] [PubMed]

N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror,” IEEE Trans. Terahertz Sci. Technol. 3, 617–624 (2013).
[Crossref]

M. Ravaro, V. Jagtap, G. Santarelli, C. Sirtori, L. H. Li, S. P. Khanna, E. H. Linfield, and S. Barbieri, “Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling,” Appl. Phys. Lett. 102, 091107 (2013).
[Crossref]

2012 (3)

M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Stand-alone system for high-resolution, real-time terahertz imaging,” Opt. Express 20, 2772–2778 (2012).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nat. Photonics 6, 525–528 (2012).
[Crossref]

2011 (3)

M. Wienold, L. Schrottke, M. Giehler, R. Hey, and H. T. Grahn, “Nonlinear transport in quantum-cascade lasers: The role of electric-field domain formation for the laser characteristics,” J. Appl. Phys. 109, 073112 (2011).
[Crossref]

P. Dean, Y. L. Lim, A. Valavanis, R. Kliese, M. Nikolić, S. P. Khanna, M. Lachab, D. Indjin, Z. Ikonić, P. Harrison, A. D. Rakić, E. H. Linfield, and A. G. Davies, “Terahertz imaging through self-mixing in a quantum cascade laser,” Opt. Lett. 36, 2587–2589 (2011).
[Crossref] [PubMed]

R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett. 99, 141112 (2011).
[Crossref]

2010 (3)

2009 (2)

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
[Crossref]

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46, S160–S164 (2009).
[Crossref]

2008 (1)

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77, 053804 (2008).
[Crossref]

2005 (2)

2004 (1)

2002 (2)

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Opt. 4, S283–S294 (2002).
[Crossref]

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

2000 (1)

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Selfmode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities,” Science 290, 1739–1742 (2000).
[Crossref] [PubMed]

1999 (1)

J. Ulrich, R. Zobl, N. Finger, K. Unterrainer, G. Strasser, and E. Gornik, “Terahertz-electroluminescence in a quantum cascade structure,” Physica B 272, 216–218 (1999).
[Crossref]

1980 (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quant. Electron. QE-16, 347–355 (1980).
[Crossref]

Alton, J.

Amanti, M. I.

Baillargeon, J. N.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Selfmode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities,” Science 290, 1739–1742 (2000).
[Crossref] [PubMed]

Baker, C.

Barbieri, S.

Bartalini, S.

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors 13, 3331–3340 (2013).
[Crossref] [PubMed]

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nat. Photonics 6, 525–528 (2012).
[Crossref]

Beck, M.

Beere, H.

Beere, H. E.

Belyanin, A.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77, 053804 (2008).
[Crossref]

Blaser, S.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

Borri, S.

Bosch, T.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Opt. 4, S283–S294 (2002).
[Crossref]

Bour, D.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77, 053804 (2008).
[Crossref]

Brambilla, M.

Burghoff, D.

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

Cai, X.

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

Capasso, F.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77, 053804 (2008).
[Crossref]

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Selfmode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities,” Science 290, 1739–1742 (2000).
[Crossref] [PubMed]

Chan, C. W. I.

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

Cho, A. Y.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Selfmode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities,” Science 290, 1739–1742 (2000).
[Crossref] [PubMed]

Columbo, L. L.

Consolino, L.

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors 13, 3331–3340 (2013).
[Crossref] [PubMed]

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nat. Photonics 6, 525–528 (2012).
[Crossref]

Corzine, S.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77, 053804 (2008).
[Crossref]

Dabbicco, M.

Davies, A. G.

De Natale, P.

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors 13, 3331–3340 (2013).
[Crossref] [PubMed]

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nat. Photonics 6, 525–528 (2012).
[Crossref]

Dean, P.

Diehl, L.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77, 053804 (2008).
[Crossref]

Dikmelik, Y.

J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104, 081118 (2014).
[Crossref]

Donati, S.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Opt. 4, S283–S294 (2002).
[Crossref]

Eichholz, R.

R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett. 99, 141112 (2011).
[Crossref]

Faist, J.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104, 081118 (2014).
[Crossref]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Stand-alone system for high-resolution, real-time terahertz imaging,” Opt. Express 20, 2772–2778 (2012).
[Crossref] [PubMed]

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77, 053804 (2008).
[Crossref]

Filloux, P.

Finger, N.

J. Ulrich, R. Zobl, N. Finger, K. Unterrainer, G. Strasser, and E. Gornik, “Terahertz-electroluminescence in a quantum cascade structure,” Physica B 272, 216–218 (1999).
[Crossref]

Gao, J. R.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

Gao, J.-R.

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

Gellie, P.

Giehler, M.

M. Wienold, L. Schrottke, M. Giehler, R. Hey, and H. T. Grahn, “Nonlinear transport in quantum-cascade lasers: The role of electric-field domain formation for the laser characteristics,” J. Appl. Phys. 109, 073112 (2011).
[Crossref]

L. Schrottke, M. Giehler, M. Wienold, R. Hey, and H. T. Grahn, “Compact model for the efficient simulation of the optical gain and transport properties in THz quantum-cascade lasers,” Semicond. Sci. Technol. 25, 045025 (2010).
[Crossref]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18, 10177–10187 (2010).
[Crossref] [PubMed]

Giuliani, G.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Opt. 4, S283–S294 (2002).
[Crossref]

Gmachl, C.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Selfmode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities,” Science 290, 1739–1742 (2000).
[Crossref] [PubMed]

Gohle, C.

Gordon, A.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77, 053804 (2008).
[Crossref]

Gornik, E.

J. Ulrich, R. Zobl, N. Finger, K. Unterrainer, G. Strasser, and E. Gornik, “Terahertz-electroluminescence in a quantum cascade structure,” Physica B 272, 216–218 (1999).
[Crossref]

Grahn, H. T.

N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror,” IEEE Trans. Terahertz Sci. Technol. 3, 617–624 (2013).
[Crossref]

R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett. 99, 141112 (2011).
[Crossref]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, and H. T. Grahn, “Nonlinear transport in quantum-cascade lasers: The role of electric-field domain formation for the laser characteristics,” J. Appl. Phys. 109, 073112 (2011).
[Crossref]

L. Schrottke, M. Giehler, M. Wienold, R. Hey, and H. T. Grahn, “Compact model for the efficient simulation of the optical gain and transport properties in THz quantum-cascade lasers,” Semicond. Sci. Technol. 25, 045025 (2010).
[Crossref]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18, 10177–10187 (2010).
[Crossref] [PubMed]

Greiner-Bär, M.

Guelachvili, G.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
[Crossref]

Han, N.

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

Hänsch, T. W.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Harrison, P.

Hayton, D. J.

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

Hey, R.

R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett. 99, 141112 (2011).
[Crossref]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, and H. T. Grahn, “Nonlinear transport in quantum-cascade lasers: The role of electric-field domain formation for the laser characteristics,” J. Appl. Phys. 109, 073112 (2011).
[Crossref]

L. Schrottke, M. Giehler, M. Wienold, R. Hey, and H. T. Grahn, “Compact model for the efficient simulation of the optical gain and transport properties in THz quantum-cascade lasers,” Semicond. Sci. Technol. 25, 045025 (2010).
[Crossref]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18, 10177–10187 (2010).
[Crossref] [PubMed]

Höfler, G.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77, 053804 (2008).
[Crossref]

Holzwarth, R.

Hovenier, J. N.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

Hu, Q.

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

Hübers, H.-W.

N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror,” IEEE Trans. Terahertz Sci. Technol. 3, 617–624 (2013).
[Crossref]

R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett. 99, 141112 (2011).
[Crossref]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18, 10177–10187 (2010).
[Crossref] [PubMed]

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46, S160–S164 (2009).
[Crossref]

H.-W. Hübers, S. G. Pavlov, A. D. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, and E. H. Linfield, “Terahertz quantum cascade laser as local oscillator in a heterodyne receiver,” Opt. Express 13, 5890–5896 (2005).
[Crossref] [PubMed]

Hugi, A.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104, 081118 (2014).
[Crossref]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

Hutchinson, A. L.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Selfmode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities,” Science 290, 1739–1742 (2000).
[Crossref] [PubMed]

Ikonic, Z.

Indjin, D.

Inguscio, M.

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nat. Photonics 6, 525–528 (2012).
[Crossref]

Jagtap, V.

M. Ravaro, V. Jagtap, G. Santarelli, C. Sirtori, L. H. Li, S. P. Khanna, E. H. Linfield, and S. Barbieri, “Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling,” Appl. Phys. Lett. 102, 091107 (2013).
[Crossref]

Kao, T. Y.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

Kao, T.-Y.

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

Kärtner, F. X.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77, 053804 (2008).
[Crossref]

Keilmann, F.

Khanna, S. P.

Khurgin, J. B.

J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104, 081118 (2014).
[Crossref]

Klapwijk, T. M.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

Kliese, R.

Kloosterman, J. L.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

Kobayashi, K.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quant. Electron. QE-16, 347–355 (1980).
[Crossref]

Köhler, R.

Lachab, M.

Lampin, J.-F.

Lang, R.

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quant. Electron. QE-16, 347–355 (1980).
[Crossref]

Li, L. H.

M. Ravaro, V. Jagtap, G. Santarelli, C. Sirtori, L. H. Li, S. P. Khanna, E. H. Linfield, and S. Barbieri, “Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling,” Appl. Phys. Lett. 102, 091107 (2013).
[Crossref]

Lim, Y. L.

Linfield, E. H.

Liu, H. C.

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77, 053804 (2008).
[Crossref]

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Selfmode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities,” Science 290, 1739–1742 (2000).
[Crossref] [PubMed]

Lo, T.

Mahler, L.

Maier, T.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77, 053804 (2008).
[Crossref]

Mandon, J.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
[Crossref]

Manquest, C.

Meindl, P.

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46, S160–S164 (2009).
[Crossref]

Mezzapesa, F. P.

Müller, R.

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46, S160–S164 (2009).
[Crossref]

Nikolic, M.

Norgia, M.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Opt. 4, S283–S294 (2002).
[Crossref]

Paiella, R.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Selfmode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities,” Science 290, 1739–1742 (2000).
[Crossref] [PubMed]

Pavlov, S. G.

Picqué, N.

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
[Crossref]

Rakic, A. D.

Ravaro, M.

M. Ravaro, V. Jagtap, G. Santarelli, C. Sirtori, L. H. Li, S. P. Khanna, E. H. Linfield, and S. Barbieri, “Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling,” Appl. Phys. Lett. 102, 091107 (2013).
[Crossref]

Ren, Y.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

Reno, J. L.

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

Richter, H.

N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror,” IEEE Trans. Terahertz Sci. Technol. 3, 617–624 (2013).
[Crossref]

R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett. 99, 141112 (2011).
[Crossref]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18, 10177–10187 (2010).
[Crossref] [PubMed]

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46, S160–S164 (2009).
[Crossref]

Ritchie, D.

Ritchie, D. A.

Rothbart, N.

N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror,” IEEE Trans. Terahertz Sci. Technol. 3, 617–624 (2013).
[Crossref]

Sagnes, I.

Santarelli, G.

M. Ravaro, V. Jagtap, G. Santarelli, C. Sirtori, L. H. Li, S. P. Khanna, E. H. Linfield, and S. Barbieri, “Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling,” Appl. Phys. Lett. 102, 091107 (2013).
[Crossref]

Scalari, G.

Scamarcio, G.

Schneider, H.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77, 053804 (2008).
[Crossref]

Schrottke, L.

N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror,” IEEE Trans. Terahertz Sci. Technol. 3, 617–624 (2013).
[Crossref]

R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett. 99, 141112 (2011).
[Crossref]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, and H. T. Grahn, “Nonlinear transport in quantum-cascade lasers: The role of electric-field domain formation for the laser characteristics,” J. Appl. Phys. 109, 073112 (2011).
[Crossref]

L. Schrottke, M. Giehler, M. Wienold, R. Hey, and H. T. Grahn, “Compact model for the efficient simulation of the optical gain and transport properties in THz quantum-cascade lasers,” Semicond. Sci. Technol. 25, 045025 (2010).
[Crossref]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18, 10177–10187 (2010).
[Crossref] [PubMed]

Semenov, A. D.

Sirtori, C.

M. Ravaro, V. Jagtap, G. Santarelli, C. Sirtori, L. H. Li, S. P. Khanna, E. H. Linfield, and S. Barbieri, “Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling,” Appl. Phys. Lett. 102, 091107 (2013).
[Crossref]

P. Gellie, S. Barbieri, J.-F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35 GHz using RF amplitude modulation,” Opt. Express 18, 20799–20816 (2010).
[Crossref] [PubMed]

Sivco, D. L.

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Selfmode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities,” Science 290, 1739–1742 (2000).
[Crossref] [PubMed]

Steiger, A.

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46, S160–S164 (2009).
[Crossref]

Strasser, G.

J. Ulrich, R. Zobl, N. Finger, K. Unterrainer, G. Strasser, and E. Gornik, “Terahertz-electroluminescence in a quantum cascade structure,” Physica B 272, 216–218 (1999).
[Crossref]

Taschin, A.

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nat. Photonics 6, 525–528 (2012).
[Crossref]

Tredicucci, A.

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nat. Photonics 6, 525–528 (2012).
[Crossref]

H.-W. Hübers, S. G. Pavlov, A. D. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, and E. H. Linfield, “Terahertz quantum cascade laser as local oscillator in a heterodyne receiver,” Opt. Express 13, 5890–5896 (2005).
[Crossref] [PubMed]

Troccoli, M.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77, 053804 (2008).
[Crossref]

Udem, Th.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

Ulrich, J.

J. Ulrich, R. Zobl, N. Finger, K. Unterrainer, G. Strasser, and E. Gornik, “Terahertz-electroluminescence in a quantum cascade structure,” Physica B 272, 216–218 (1999).
[Crossref]

Unterrainer, K.

J. Ulrich, R. Zobl, N. Finger, K. Unterrainer, G. Strasser, and E. Gornik, “Terahertz-electroluminescence in a quantum cascade structure,” Physica B 272, 216–218 (1999).
[Crossref]

Valavanis, A.

Villares, G.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

Vitiello, M. S.

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors 13, 3331–3340 (2013).
[Crossref] [PubMed]

F. P. Mezzapesa, L. L. Columbo, M. Brambilla, M. Dabbicco, S. Borri, M. S. Vitiello, H. E. Beere, D. A. Ritchie, and G. Scamarcio, “Intrinsic stability of quantum cascade lasers against optical feedback,” Opt. Express 21, 13748–13757 (2013).
[Crossref] [PubMed]

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nat. Photonics 6, 525–528 (2012).
[Crossref]

Walker, C. K.

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

Wang, C. Y.

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77, 053804 (2008).
[Crossref]

Werner, L.

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46, S160–S164 (2009).
[Crossref]

Wienold, M.

N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror,” IEEE Trans. Terahertz Sci. Technol. 3, 617–624 (2013).
[Crossref]

R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett. 99, 141112 (2011).
[Crossref]

M. Wienold, L. Schrottke, M. Giehler, R. Hey, and H. T. Grahn, “Nonlinear transport in quantum-cascade lasers: The role of electric-field domain formation for the laser characteristics,” J. Appl. Phys. 109, 073112 (2011).
[Crossref]

L. Schrottke, M. Giehler, M. Wienold, R. Hey, and H. T. Grahn, “Compact model for the efficient simulation of the optical gain and transport properties in THz quantum-cascade lasers,” Semicond. Sci. Technol. 25, 045025 (2010).
[Crossref]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18, 10177–10187 (2010).
[Crossref] [PubMed]

Yang, Y.

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

Zobl, R.

J. Ulrich, R. Zobl, N. Finger, K. Unterrainer, G. Strasser, and E. Gornik, “Terahertz-electroluminescence in a quantum cascade structure,” Physica B 272, 216–218 (1999).
[Crossref]

Appl. Phys. Lett. (4)

J. L. Kloosterman, D. J. Hayton, Y. Ren, T. Y. Kao, J. N. Hovenier, J. R. Gao, T. M. Klapwijk, Q. Hu, C. K. Walker, and J. L. Reno, “Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator,” Appl. Phys. Lett. 102, 011123 (2013).
[Crossref]

R. Eichholz, H. Richter, S. G. Pavlov, M. Wienold, L. Schrottke, R. Hey, H. T. Grahn, and H.-W. Hübers, “Multi-channel terahertz grating spectrometer with quantum-cascade laser and microbolometer array,” Appl. Phys. Lett. 99, 141112 (2011).
[Crossref]

M. Ravaro, V. Jagtap, G. Santarelli, C. Sirtori, L. H. Li, S. P. Khanna, E. H. Linfield, and S. Barbieri, “Continuous-wave coherent imaging with terahertz quantum cascade lasers using electro-optic harmonic sampling,” Appl. Phys. Lett. 102, 091107 (2013).
[Crossref]

J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs produced by self frequency modulation in quantum cascade lasers,” Appl. Phys. Lett. 104, 081118 (2014).
[Crossref]

IEEE J. Quant. Electron. (1)

R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE J. Quant. Electron. QE-16, 347–355 (1980).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

N. Rothbart, H. Richter, M. Wienold, L. Schrottke, H. T. Grahn, and H.-W. Hübers, “Fast 2-D and 3-D terahertz imaging with a quantum-cascade laser and a scanning mirror,” IEEE Trans. Terahertz Sci. Technol. 3, 617–624 (2013).
[Crossref]

J. Appl. Phys. (1)

M. Wienold, L. Schrottke, M. Giehler, R. Hey, and H. T. Grahn, “Nonlinear transport in quantum-cascade lasers: The role of electric-field domain formation for the laser characteristics,” J. Appl. Phys. 109, 073112 (2011).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A: Pure Appl. Opt. 4, S283–S294 (2002).
[Crossref]

Metrologia (1)

L. Werner, H.-W. Hübers, P. Meindl, R. Müller, H. Richter, and A. Steiger, “Towards traceable radiometry in the terahertz region,” Metrologia 46, S160–S164 (2009).
[Crossref]

Nat. Commun. (1)

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

Nat. Photonics (3)

J. Mandon, G. Guelachvili, and N. Picqué, “Fourier transform spectroscopy with a laser frequency comb,” Nat. Photonics 3, 99–102 (2009).
[Crossref]

M. S. Vitiello, L. Consolino, S. Bartalini, A. Taschin, A. Tredicucci, M. Inguscio, and P. De Natale, “Quantum-limited frequency fluctuations in a terahertz laser,” Nat. Photonics 6, 525–528 (2012).
[Crossref]

D. Burghoff, T.-Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J.-R. Gao, J. L. Reno, and Q. Hu, “Terahertz laser frequency combs,” Nat. Photonics 8, 462–467 (2014).
[Crossref]

Nature (2)

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref] [PubMed]

A. Hugi, G. Villares, S. Blaser, H. C. Liu, and J. Faist, “Mid-infrared frequency comb based on a quantum cascade laser,” Nature 492, 229–233 (2012).
[Crossref] [PubMed]

Opt. Express (6)

H.-W. Hübers, S. G. Pavlov, A. D. Semenov, R. Köhler, L. Mahler, A. Tredicucci, H. E. Beere, D. A. Ritchie, and E. H. Linfield, “Terahertz quantum cascade laser as local oscillator in a heterodyne receiver,” Opt. Express 13, 5890–5896 (2005).
[Crossref] [PubMed]

H. Richter, M. Greiner-Bär, S. G. Pavlov, A. D. Semenov, M. Wienold, L. Schrottke, M. Giehler, R. Hey, H. T. Grahn, and H.-W. Hübers, “A compact, continuous-wave terahertz source based on a quantum-cascade laser and a miniature cryocooler,” Opt. Express 18, 10177–10187 (2010).
[Crossref] [PubMed]

M. I. Amanti, G. Scalari, M. Beck, and J. Faist, “Stand-alone system for high-resolution, real-time terahertz imaging,” Opt. Express 20, 2772–2778 (2012).
[Crossref] [PubMed]

P. Gellie, S. Barbieri, J.-F. Lampin, P. Filloux, C. Manquest, C. Sirtori, I. Sagnes, S. P. Khanna, E. H. Linfield, A. G. Davies, H. Beere, and D. Ritchie, “Injection-locking of terahertz quantum cascade lasers up to 35 GHz using RF amplitude modulation,” Opt. Express 18, 20799–20816 (2010).
[Crossref] [PubMed]

F. P. Mezzapesa, L. L. Columbo, M. Brambilla, M. Dabbicco, S. Borri, M. S. Vitiello, H. E. Beere, D. A. Ritchie, and G. Scamarcio, “Intrinsic stability of quantum cascade lasers against optical feedback,” Opt. Express 21, 13748–13757 (2013).
[Crossref] [PubMed]

S. Barbieri, J. Alton, C. Baker, T. Lo, H. E. Beere, and D. Ritchie, “Imaging with THz quantum cascade lasers using a Schottky diode mixer,” Opt. Express 13, 6497–6503 (2005).
[Crossref] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, “Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning,” Phys. Rev. A 77, 053804 (2008).
[Crossref]

Physica B (1)

J. Ulrich, R. Zobl, N. Finger, K. Unterrainer, G. Strasser, and E. Gornik, “Terahertz-electroluminescence in a quantum cascade structure,” Physica B 272, 216–218 (1999).
[Crossref]

Science (1)

R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, “Selfmode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities,” Science 290, 1739–1742 (2000).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

L. Schrottke, M. Giehler, M. Wienold, R. Hey, and H. T. Grahn, “Compact model for the efficient simulation of the optical gain and transport properties in THz quantum-cascade lasers,” Semicond. Sci. Technol. 25, 045025 (2010).
[Crossref]

Sensors (1)

L. Consolino, S. Bartalini, H. E. Beere, D. A. Ritchie, M. S. Vitiello, and P. De Natale, “THz QCL-based cryogen-free spectrometer for in situ trace gas sensing,” Sensors 13, 3331–3340 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Calculated bandstructure diagram of the active region period at 4 kV/cm. The dashed line depicts the doped layer. |i1>, |i2>: injector states; |u>: upper laser level; |p>: parasitic state; |l> lower laser level; IB: injection barrier; m, m′: minibands; LO: longitudinal optical phonon; hν: laser transition. (b) Light-current density-voltage characteristics under cw operation for the investigated 100 μm × 7.5 mm Fabry-Pérot laser.
Fig. 2
Fig. 2 (a) Multimode emission spectra for cw operation at 500 mA and 25 K. (b) Merged plot of the emission frequency vs. mode index for various cw operation conditions (20–50 K, 0.50–0.92 A). Inset: setup scheme; S: current source. (c) Magnification of the region, for which the tuning range of the individual laser modes becomes as large as the mode spacing of approximately 4.75 GHz (0.16 cm−1).
Fig. 3
Fig. 3 Spectra under current modulation for different driving conditions (Idc: nominal direct current, Im: current modulation amplitude). To illustrate the spectral coverage, the area under the spectral peaks in the main graph is filled with color. Inset: setup scheme; M: modulation signal source (sinusoidal voltage).
Fig. 4
Fig. 4 (a) RF signal of the frt-BN for case A obtained at 880 mA and 40 K. The arrows indicate the 3 dB width. (b) RF signal of the frt-BN and (c) the 2 frt-BN for case B obtained at 815 mA and 40 K. (d) FTIR interferogram for case A. (e) FTIR interferogram for case B. (f) Linewidth vs. frequency (full width at half maximum) corresponding to (d) and (e). The resolution limit of the FTIR is depicted as a solid line. (g) Mode spacing vs. frequency and (h) intensity spectra corresponding to (d) and (e).
Fig. 5
Fig. 5 (a) Beat note interferogram (BN frequency shift vs. displacement of the moving FTIR mirror) of the frt-BN for cw operation at 843 mA and 40 K. (b) Power spectrum corresponding to (a). Inset: scheme of the measurement setup. M: moving mirror; m: stationary mirror; bs: Ge-coated mylar beam splitter; d: pyroelectric detector; a: broad-band attenuator (several sheets of paper); e: external detector input. (c) FTIR intensity interferogram (intensity vs. interferometric path length difference) for the same operating conditions as in (a). (d) Optical intensity spectrum corresponding to (c). The red line indicates the range of the optical spectrum.
Fig. 6
Fig. 6 (a) Spectral map of the frt-BN signal under variation of the current at 40 K (0.5 mA step size). (b) Map of the 2 frt-BN signal. The vertical dashed lines have been added in order to indicate the different BN regimes.
Fig. 7
Fig. 7 Results for BN spectroscopy with a single mirror and FTIR measurements for a 100 μm × 7.4 mm Fabry-Pérot laser operated in a narrow BN regime at 543 mA and 30 K. (a) Power spectrum obtained from the BN interferogram. Left inset: corresponding BN interferogram (FM signal amplitude vs. EOF delay length). Note that the zero position of the delay axis is offset by several cm from the position of the front facet. Right inset: experimental setup. ESA: electrical spectrum analyzer; S: current source; a: attenuator. (b) Emission spectrum recorded with a Bruker, IFS66v FTIR for the same operating conditions. Inset: corresponding FTIR interferogram.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

δ ω BN ( τ ) = i = 1 N a i sin ( ω i τ + θ i ) ,
c g 1 t ( t ) = g ( 1 + i α ) ( t ) + κ ( t τ ) exp ( i ω 0 τ ) .
( t ) = 0 exp ( i δ ω t ) ,
δ ω = α g κ sin [ ( δ ω + ω 0 ) τ ]
g = κ cos [ ( δ ω + ω 0 ) τ ] .
δ ω = C sin [ ( δ ω + ω 0 ) τ + ϕ ] ,
δ ω = C sin ( ω 0 τ + ϕ ) ,
δ ω 12 = δ ω 1 δ ω 2 = C [ sin ( ω 2 τ + ϕ ) sin ( ω 1 τ + ϕ ) ] .
δ ω m n = δ ω ( m + 1 ) ( n + 1 )
δ ω i j = δ ω i δ ω j = C i j [ sin ( ω j τ + ϕ i j ) sin ( ω i τ + ϕ i j ) ] ,
δ ω BN ~ δ ω 0 + i = 1 N 1 δ ω i j = C 0 sin ( ω 0 τ + ϕ 0 ) + i = 1 N 1 C i j [ sin ( ω j τ + ϕ i j ) sin ( ω i τ + ϕ i j ) ] ,
δ ω BN ( τ ) = i = 1 N a i sin ( ω i τ + θ i )

Metrics