Abstract

NaYF4: Nd3+ microprisms were synthesized by a hydrothermal method. The bands of near-infrared (NIR) luminescence originating from the 4F3/2, 4F5/2 and 4F7/2 levels of Nd3+ ions in NaYF4: Nd3+ microcrystals were measured under 574.8 nm excitation at various temperatures from 323 to 673 K. The fluorescence intensity ratios (FIRs) between any two of the three bands change monotonically with temperature and agree with the prediction assuming thermal couplings. A large relative temperature sensitivity of 1.12% K−1 at 500K is reached with the FIR of 4F7/2 to 4F3/2 levels. In addition, anti-Stokes fluorescence from 4F5/2 level (740 nm) and 4F5/2,7/2 levels (740 nm and 803 nm) of Nd3+ ions was studied meticulously under 793.8 nm and 864.2 nm excitations, respectively. The intensities were shown to be greatly enhanced as temperature increases, and the 740 nm band from 4F7/2 level at 458 K increases in intensity by 170 fold relative to that at 298 K under the 793.8 nm excitation.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ratiometric temperature sensing based on non-thermal coupling levels in BaZrO3: Yb3+/Er3+ ceramics

Hui Li, Yundong Zhang, Lin Shao, ZinMaung Htwe, and Pin Yuan
Opt. Mater. Express 7(8) 3003-3010 (2017)

Upconversion luminescence of Ba3La(PO4)3:Yb3+-Er3+/Tm3+ phosphors for optimal temperature sensing

Jiafeng Cao, Jia Zhang, and Xiaowei Li
Appl. Opt. 57(6) 1345-1350 (2018)

Intense ultraviolet upconversion luminescence from hexagonal NaYF4:Yb3+/Tm3+ microcrystals

Guofeng Wang, Weiping Qin, Lili Wang, Guodong Wei, Peifen Zhu, and Ryongjin Kim
Opt. Express 16(16) 11907-11914 (2008)

References

  • View by:
  • |
  • |
  • |

  1. W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior,” Opt. Express 20(16), 18127–18137 (2012).
    [Crossref] [PubMed]
  2. V. K. Rai, D. K. Rai, and S. B. Rai, “Pr3+ doped lithium tellurite glass as a temperature sensor,” Sen. Actuators A 128(1), 14–17 (2006).
    [Crossref]
  3. P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
    [Crossref]
  4. K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C 1(35), 5502–5507 (2013).
    [Crossref]
  5. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
    [Crossref]
  6. S. A. Wade, J. C. Muscat, S. F. Collins, and G. W. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279–4282 (1999).
    [Crossref]
  7. W. Xu, H. Zhao, Z. G. Zhang, and W. W. Cao, “Highly sensitive optical thermometry through thermally enhanced near infrared emissions from Nd3+/Yb3+ codoped oxyfluoride glass ceramic,” Sen. Actuators B 178, 520–524 (2013).
    [Crossref]
  8. W. Xu, Q. T. Song, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “Optical temperature sensing based on the near-infrared emissions from Nd³⁺/Yb³⁺ codoped CaWO₄,” Opt. Lett. 39(16), 4635–4638 (2014).
    [Crossref] [PubMed]
  9. G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
    [Crossref] [PubMed]
  10. G. C. Jiang, X. T. Wei, S. S. Zhou, Y. H. Chen, C. K. Duan, and M. Yin, “Neodymium doped lanthanum oxysulfide as optical temperature sensors,” J. Lumin. 152, 156–159 (2014).
    [Crossref]
  11. A. K. Singh, S. K. Singh, B. K. Gupta, R. Prakash, and S. B. Rai, “Probing a highly efficient dual mode: down-upconversion luminescence and temperature sensing performance of rare-earth oxide phosphors,” Dalton Trans. 42(4), 1065–1072 (2012).
    [Crossref] [PubMed]
  12. S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloy. Comp. 588, 654–657 (2014).
    [Crossref]
  13. A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araújo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
    [Crossref]
  14. L. de S. Menezes, G. S. Maciel, C. B. de Araújo, and Y. Messaddeq, “Thermally enhanced frequency upconversion in Nd3+-doped fluoroindate glass,” J. Appl. Phys. 90(9), 4498–4501 (2001).
    [Crossref]
  15. F. Auzel, “Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” Phys. Rev. B 13(7), 2809–2817 (1976).
    [Crossref]

2014 (3)

W. Xu, Q. T. Song, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “Optical temperature sensing based on the near-infrared emissions from Nd³⁺/Yb³⁺ codoped CaWO₄,” Opt. Lett. 39(16), 4635–4638 (2014).
[Crossref] [PubMed]

G. C. Jiang, X. T. Wei, S. S. Zhou, Y. H. Chen, C. K. Duan, and M. Yin, “Neodymium doped lanthanum oxysulfide as optical temperature sensors,” J. Lumin. 152, 156–159 (2014).
[Crossref]

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloy. Comp. 588, 654–657 (2014).
[Crossref]

2013 (2)

W. Xu, H. Zhao, Z. G. Zhang, and W. W. Cao, “Highly sensitive optical thermometry through thermally enhanced near infrared emissions from Nd3+/Yb3+ codoped oxyfluoride glass ceramic,” Sen. Actuators B 178, 520–524 (2013).
[Crossref]

K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C 1(35), 5502–5507 (2013).
[Crossref]

2012 (3)

W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, “Short-wavelength upconversion emissions in Ho3+/Yb3+ codoped glass ceramic and the optical thermometry behavior,” Opt. Express 20(16), 18127–18137 (2012).
[Crossref] [PubMed]

A. K. Singh, S. K. Singh, B. K. Gupta, R. Prakash, and S. B. Rai, “Probing a highly efficient dual mode: down-upconversion luminescence and temperature sensing performance of rare-earth oxide phosphors,” Dalton Trans. 42(4), 1065–1072 (2012).
[Crossref] [PubMed]

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

2006 (1)

V. K. Rai, D. K. Rai, and S. B. Rai, “Pr3+ doped lithium tellurite glass as a temperature sensor,” Sen. Actuators A 128(1), 14–17 (2006).
[Crossref]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

2001 (1)

L. de S. Menezes, G. S. Maciel, C. B. de Araújo, and Y. Messaddeq, “Thermally enhanced frequency upconversion in Nd3+-doped fluoroindate glass,” J. Appl. Phys. 90(9), 4498–4501 (2001).
[Crossref]

2000 (1)

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araújo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

1999 (1)

S. A. Wade, J. C. Muscat, S. F. Collins, and G. W. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279–4282 (1999).
[Crossref]

1998 (1)

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

1976 (1)

F. Auzel, “Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” Phys. Rev. B 13(7), 2809–2817 (1976).
[Crossref]

Auzel, F.

F. Auzel, “Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” Phys. Rev. B 13(7), 2809–2817 (1976).
[Crossref]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

S. A. Wade, J. C. Muscat, S. F. Collins, and G. W. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279–4282 (1999).
[Crossref]

Cao, W. W.

Chen, Y. H.

G. C. Jiang, X. T. Wei, S. S. Zhou, Y. H. Chen, C. K. Duan, and M. Yin, “Neodymium doped lanthanum oxysulfide as optical temperature sensors,” J. Lumin. 152, 156–159 (2014).
[Crossref]

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloy. Comp. 588, 654–657 (2014).
[Crossref]

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

S. A. Wade, J. C. Muscat, S. F. Collins, and G. W. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279–4282 (1999).
[Crossref]

de Araujo, M. T.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araújo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

de Araújo, C. B.

L. de S. Menezes, G. S. Maciel, C. B. de Araújo, and Y. Messaddeq, “Thermally enhanced frequency upconversion in Nd3+-doped fluoroindate glass,” J. Appl. Phys. 90(9), 4498–4501 (2001).
[Crossref]

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araújo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

dos Santos, P. V.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Duan, C. K.

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloy. Comp. 588, 654–657 (2014).
[Crossref]

G. C. Jiang, X. T. Wei, S. S. Zhou, Y. H. Chen, C. K. Duan, and M. Yin, “Neodymium doped lanthanum oxysulfide as optical temperature sensors,” J. Lumin. 152, 156–159 (2014).
[Crossref]

Gao, X. Y.

Gouveia, E. A.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araújo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

Gouveia-Neto, A. S.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araújo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Gu, Z. J.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Gupta, B. K.

A. K. Singh, S. K. Singh, B. K. Gupta, R. Prakash, and S. B. Rai, “Probing a highly efficient dual mode: down-upconversion luminescence and temperature sensing performance of rare-earth oxide phosphors,” Dalton Trans. 42(4), 1065–1072 (2012).
[Crossref] [PubMed]

Jiang, G. C.

G. C. Jiang, X. T. Wei, S. S. Zhou, Y. H. Chen, C. K. Duan, and M. Yin, “Neodymium doped lanthanum oxysulfide as optical temperature sensors,” J. Lumin. 152, 156–159 (2014).
[Crossref]

Jiang, S.

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloy. Comp. 588, 654–657 (2014).
[Crossref]

Jin, S.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Li, S. J.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Liu, X. X.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Liu, Z. Y.

K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C 1(35), 5502–5507 (2013).
[Crossref]

Lv, C. J.

K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C 1(35), 5502–5507 (2013).
[Crossref]

Maciel, G. S.

L. de S. Menezes, G. S. Maciel, C. B. de Araújo, and Y. Messaddeq, “Thermally enhanced frequency upconversion in Nd3+-doped fluoroindate glass,” J. Appl. Phys. 90(9), 4498–4501 (2001).
[Crossref]

Medeiros Neto, J. A.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Menezes, L. de S.

L. de S. Menezes, G. S. Maciel, C. B. de Araújo, and Y. Messaddeq, “Thermally enhanced frequency upconversion in Nd3+-doped fluoroindate glass,” J. Appl. Phys. 90(9), 4498–4501 (2001).
[Crossref]

Messaddeq, Y.

L. de S. Menezes, G. S. Maciel, C. B. de Araújo, and Y. Messaddeq, “Thermally enhanced frequency upconversion in Nd3+-doped fluoroindate glass,” J. Appl. Phys. 90(9), 4498–4501 (2001).
[Crossref]

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araújo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

Muscat, J. C.

S. A. Wade, J. C. Muscat, S. F. Collins, and G. W. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279–4282 (1999).
[Crossref]

Oliveira, A. S.

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araújo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

Prakash, R.

A. K. Singh, S. K. Singh, B. K. Gupta, R. Prakash, and S. B. Rai, “Probing a highly efficient dual mode: down-upconversion luminescence and temperature sensing performance of rare-earth oxide phosphors,” Dalton Trans. 42(4), 1065–1072 (2012).
[Crossref] [PubMed]

Qin, W. P.

K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C 1(35), 5502–5507 (2013).
[Crossref]

Rai, D. K.

V. K. Rai, D. K. Rai, and S. B. Rai, “Pr3+ doped lithium tellurite glass as a temperature sensor,” Sen. Actuators A 128(1), 14–17 (2006).
[Crossref]

Rai, S. B.

A. K. Singh, S. K. Singh, B. K. Gupta, R. Prakash, and S. B. Rai, “Probing a highly efficient dual mode: down-upconversion luminescence and temperature sensing performance of rare-earth oxide phosphors,” Dalton Trans. 42(4), 1065–1072 (2012).
[Crossref] [PubMed]

V. K. Rai, D. K. Rai, and S. B. Rai, “Pr3+ doped lithium tellurite glass as a temperature sensor,” Sen. Actuators A 128(1), 14–17 (2006).
[Crossref]

Rai, V. K.

V. K. Rai, D. K. Rai, and S. B. Rai, “Pr3+ doped lithium tellurite glass as a temperature sensor,” Sen. Actuators A 128(1), 14–17 (2006).
[Crossref]

Ren, W. L.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Singh, A. K.

A. K. Singh, S. K. Singh, B. K. Gupta, R. Prakash, and S. B. Rai, “Probing a highly efficient dual mode: down-upconversion luminescence and temperature sensing performance of rare-earth oxide phosphors,” Dalton Trans. 42(4), 1065–1072 (2012).
[Crossref] [PubMed]

Singh, S. K.

A. K. Singh, S. K. Singh, B. K. Gupta, R. Prakash, and S. B. Rai, “Probing a highly efficient dual mode: down-upconversion luminescence and temperature sensing performance of rare-earth oxide phosphors,” Dalton Trans. 42(4), 1065–1072 (2012).
[Crossref] [PubMed]

Sombra, A. S. B.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Song, Q. T.

Tian, G.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

S. A. Wade, J. C. Muscat, S. F. Collins, and G. W. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279–4282 (1999).
[Crossref]

Wei, X. T.

G. C. Jiang, X. T. Wei, S. S. Zhou, Y. H. Chen, C. K. Duan, and M. Yin, “Neodymium doped lanthanum oxysulfide as optical temperature sensors,” J. Lumin. 152, 156–159 (2014).
[Crossref]

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloy. Comp. 588, 654–657 (2014).
[Crossref]

Xing, G. M.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Xu, W.

Yan, L.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Yin, M.

G. C. Jiang, X. T. Wei, S. S. Zhou, Y. H. Chen, C. K. Duan, and M. Yin, “Neodymium doped lanthanum oxysulfide as optical temperature sensors,” J. Lumin. 152, 156–159 (2014).
[Crossref]

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloy. Comp. 588, 654–657 (2014).
[Crossref]

Yin, W. Y.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Zhang, Z. G.

Zhao, H.

W. Xu, H. Zhao, Z. G. Zhang, and W. W. Cao, “Highly sensitive optical thermometry through thermally enhanced near infrared emissions from Nd3+/Yb3+ codoped oxyfluoride glass ceramic,” Sen. Actuators B 178, 520–524 (2013).
[Crossref]

Zhao, Y. L.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Zheng, K. Z.

K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C 1(35), 5502–5507 (2013).
[Crossref]

Zheng, L. J.

Zhou, L. J.

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Zhou, S. S.

G. C. Jiang, X. T. Wei, S. S. Zhou, Y. H. Chen, C. K. Duan, and M. Yin, “Neodymium doped lanthanum oxysulfide as optical temperature sensors,” J. Lumin. 152, 156–159 (2014).
[Crossref]

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloy. Comp. 588, 654–657 (2014).
[Crossref]

Adv. Mater. (1)

G. Tian, Z. J. Gu, L. J. Zhou, W. Y. Yin, X. X. Liu, L. Yan, S. Jin, W. L. Ren, G. M. Xing, S. J. Li, and Y. L. Zhao, “Mn2+ dopant-controlled synthesis of NaYF4:Yb/Er upconversion nanoparticles for in vivo imaging and drug delivery,” Adv. Mater. 24(9), 1226–1231 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+ codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–580 (1998).
[Crossref]

Dalton Trans. (1)

A. K. Singh, S. K. Singh, B. K. Gupta, R. Prakash, and S. B. Rai, “Probing a highly efficient dual mode: down-upconversion luminescence and temperature sensing performance of rare-earth oxide phosphors,” Dalton Trans. 42(4), 1065–1072 (2012).
[Crossref] [PubMed]

J. Alloy. Comp. (1)

S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, and M. Yin, “Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4,” J. Alloy. Comp. 588, 654–657 (2014).
[Crossref]

J. Appl. Phys. (3)

A. S. Oliveira, E. A. Gouveia, M. T. de Araujo, A. S. Gouveia-Neto, C. B. de Araújo, and Y. Messaddeq, “Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm,” J. Appl. Phys. 87(9), 4274–4278 (2000).
[Crossref]

L. de S. Menezes, G. S. Maciel, C. B. de Araújo, and Y. Messaddeq, “Thermally enhanced frequency upconversion in Nd3+-doped fluoroindate glass,” J. Appl. Phys. 90(9), 4498–4501 (2001).
[Crossref]

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[Crossref]

J. Lumin. (1)

G. C. Jiang, X. T. Wei, S. S. Zhou, Y. H. Chen, C. K. Duan, and M. Yin, “Neodymium doped lanthanum oxysulfide as optical temperature sensors,” J. Lumin. 152, 156–159 (2014).
[Crossref]

J. Mater. Chem. C (1)

K. Z. Zheng, Z. Y. Liu, C. J. Lv, and W. P. Qin, “Temperature sensor based on the UV upconversion luminescence of Gd3+ in Yb3+-Tm3+-Gd3+ codoped NaLuF4 microcrystals,” J. Mater. Chem. C 1(35), 5502–5507 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

F. Auzel, “Multiphonon-assisted anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” Phys. Rev. B 13(7), 2809–2817 (1976).
[Crossref]

Rev. Sci. Instrum. (1)

S. A. Wade, J. C. Muscat, S. F. Collins, and G. W. Baxter, “Nd3+-doped optical fiber temperature sensor using the fluorescence intensity ratio technique,” Rev. Sci. Instrum. 70(11), 4279–4282 (1999).
[Crossref]

Sen. Actuators A (1)

V. K. Rai, D. K. Rai, and S. B. Rai, “Pr3+ doped lithium tellurite glass as a temperature sensor,” Sen. Actuators A 128(1), 14–17 (2006).
[Crossref]

Sen. Actuators B (1)

W. Xu, H. Zhao, Z. G. Zhang, and W. W. Cao, “Highly sensitive optical thermometry through thermally enhanced near infrared emissions from Nd3+/Yb3+ codoped oxyfluoride glass ceramic,” Sen. Actuators B 178, 520–524 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a,b,c,d) SEM images of β-NaYF4: 1% Nd3+. (e) The X-ray diffraction patterns of four samples and index data of β-NaYF4.
Fig. 2
Fig. 2 Upconversion emission spectra of (a,b) β-NaYF4: 1% Nd3+ and (c) β-NaYF4: (0.5-5%) Nd3+. (d) NIR spectra of β-NaYF4: (0.5-5%) Nd3+. The measurements were conducted under 793.8 nm pulsed laser excitation.
Fig. 3
Fig. 3 (a,b) Emission spectra of β-NaYF4: 1% Nd3+ excited at 864.2 nm and 574.8 nm, respectively. Pump power dependence of the UC intensity of 4F7/2-4I9/2 and 4F5/2-4I9/2 excited at 864.2 nm (c) and 4F7/2-4I9/2 excited at 793.8 nm (d).
Fig. 4
Fig. 4 Energy leveldiagram of Nd3+ ions and three dynamical processes under the excitation wavelength of (1) 574.8 nm, (2) 793.8 nm, and (3) 864.2 nm.
Fig. 5
Fig. 5 Normalized emission spectra of β-NaYF4: 1% Nd3+ sample with the excitation of 574.8 nm at various temperatures from 323 K to 673 K.
Fig. 6
Fig. 6 Temperature dependence of the logarithm of the ratio R between the integral intensities of (a) 4F7/2-4I9/2 transitions (740 nm) and 4F3/2-4I9/2 transitions (864 nm), (b) 4F5/2-4I9/2 transitions (803 nm) and 4F3/2-4I9/2 transitions (864 nm), and (c) 4F7/2-4I9/2 transitions (740 nm) and 4F5/2-4I9/2 transitions (803 nm) for β-NaYF4: 1% Nd3+ sample. (d) Plot of the relative sensitivity SR and the absolute sensitivity SA versus temperature for the β-NaYF4: 1% Nd3+ sample (blue line: (a); green line: (b); red line: (c)).
Fig. 7
Fig. 7 (a) Emission spectra of β-NaYF4: 1% Nd3+ sample with the excitation of 793.8 nm at various temperatures from 298 K to 458 K. (b) Temperature dependence of the integral intensity of 4F7/2-4I9/2 transitions. (c) Plot of the relative sensitivity SR versus temperature for the β-NaYF4: 1% Nd3+ sample.
Fig. 8
Fig. 8 (a) Emission spectra of β-NaYF4: 1% Nd3+ sample with the excitation of 864.2 nm at different temperatures from 323 K to 673 K. (b) Temperature dependence of the ratio R between the integral intensities of 4F7/2-4I9/2 transitions (740 nm) and 4F5/2-4I9/2 transitions (803 nm). Temperature dependence of the integrate intensity of (c) 4F7/2-4I9/2 transitions and (d) 4F5/2-4I9/2 transitions. (e) Plot of the relative sensitivity SR and the absolute sensitivity SA versus temperature for the β-NaYF4: 1% Nd3+ sample (blue line: (b); green line: (c)).

Tables (1)

Tables Icon

Table 1 FIR parameters for several typical temperature sensors based on FIR technique doped with different RE3+ ions, the corresponding relative sensitivities and the absolute sensitivities at 500 K derived from the followed references.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

R=Bexp( ΔE k B T ),
S A =| dR dT |=R ΔE k T 2 .
S R =| 1 R dR dT |= ΔE k T 2
d n 2 dt = σ 0 Φ n 0 [ Λ 23 (T)+ σ 2 (T)Φ+ W 2 NR (T)+ γ 2 rad ] n 2 ,
σ i (T)= σ i 0 [exp(ω/ k B T)1] q ,
P ij ( T)= [ exp(ω/ k B  T)1 ] q ij ,
W i NR (T)= W i NR ( T 0 ) [ 1exp(ω/ k B T) 1exp(ω/ k B T 0 ) ] q i ,
n 2 ( T)= σ 0 Φ n 0 Λ 23 (T)+ σ 2 (T)Φ+ W 2 NR ( T)+ γ 2 rad .
n 3 (T)= A σ 0 Φ n 0 exp(ΔE/ k B T) Λ 23 ( T)+ σ 2 ( T)Φ+ W 2 NR (T)+ γ 2 rad ,
n 3 ( T)=A( T)exp(ΔE/ k B T),
A(T)= A σ 0 Φ n 0 Λ 23 (T)+ σ 2 (T)Φ+ W 2 NR (T)+ γ 2 .
n 2 (T)=B(T)exp(ΔE/ k B T),
B(T)= B σ 0 Φ n 0 Λ 12 (T)+ γ 1 (T)+ σ 1 (T)Φ ,

Metrics