Abstract

The selection of an appropriate pump concept has a major impact on amplifier cost and power consumption. The energy efficiency of different pump concepts is compared for multi core and multi mode active fibers. In preamplifier stages, pump power density requirements derived from full C-band low noise WDM operation result in superior energy efficiency of direct pumping of individual cores in a multi core fiber with single mode pump lasers compared to cladding pumping with uncooled multi mode lasers. Even better energy efficiency is achieved by direct pumping of the core in multi mode active fibers. Complexity of pump signal combiners for direct pumping of multi core fibers can be reduced by deploying integrated components.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband amplification of high power 40 Gb/s channels using multimode Er-Yb doped fiber

Raja Ahmad, Stephane Chatigny, and Martin Rochette
Opt. Express 18(19) 19983-19993 (2010)

Cladding-pumped erbium-doped multicore fiber amplifier

K. S. Abedin, T. F. Taunay, M. Fishteyn, D. J. DiGiovanni, V.R. Supradeepa, J. M. Fini, M. F. Yan, B. Zhu, E. M. Monberg, and F.V. Dimarcello
Opt. Express 20(18) 20191-20200 (2012)

References

  • View by:
  • |
  • |
  • |

  1. G. Gilder, “The rise of Exaflood Optics,” 35th European Conference on Optical Communication (ECOC 2009), Vienna, Austria, Sept. 20 – 24, paper 1.0.1.
  2. A. Chraplyvy, “The Coming Capacity Crunch,” 35th European Conference on Optical Communication (ECOC 2009), Vienna, Austria, Sept. 20 – 24, paper 1.0.2.
  3. P. J. Winzer, “Challenges and evolution of optical transport networks,” 36th European Conference on Optical Communication (ECOC 2010), Torino, Italy, Sept. 19 – 23, paper We.8.D.1.
    [Crossref]
  4. R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
    [Crossref]
  5. P. M. Krummrich, “Optical amplification and optical filter based signal processing for cost and energy efficient spatial multiplexing,” Opt. Express 19(17), 16636–16652 (2011).
    [Crossref] [PubMed]
  6. K. Abedin, T. Thierry, J. Fini, M. Yan, B. Zhu, E. Monberg, F. Dimarcello, V. R. Supradeepa, and D. DiGiovanni, “Multicore erbium doped fiber amplifiers for space division multiplexed system,” 39th European Conference on Optical Communication (ECOC 2013), London, United Kingdom, Sept. 22 – 26, paper We.4.A.1.
    [Crossref]
  7. D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136(4A), A954–A957 (1964).
    [Crossref]
  8. K. S. Abedin, J. M. Fini, T. F. Thierry, B. Zhu, M. F. Yan, L. Bansal, F. V. Dimarcello, E. M. Monberg, and D. J. DiGiovanni, “Seven-core erbium-doped double-clad fiber amplifier pumped simultaneously by side-coupled multimode fiber,” Opt. Lett. 39(4), 993–996 (2014).
    [Crossref] [PubMed]
  9. P. M. Krummrich and K. Petermann, “Evaluation of Potential Optical Amplifier Concepts for Coherent Mode Multiplexing,” in Optical Fiber Communication Conference (Optical Society of America, 2011), March 6–10, Los Angeles, CA, USA, paper OMH5.
    [Crossref]
  10. S. U. Alam, P. W. Turner, A. B. Grudinin, J. Nilsson, and J. A. Alvarez-Chavez, “High-power cladding pumped erbium-ytterbium co-doped fiber laser,” in Optical Fiber Communication Conference (Optical Society of America, 2001), March 17–22, Anaheim, CA, USA, paper TuI4.
  11. P. M. Krummrich, “Efficient optical amplification for spatial division multiplexing,” Proceedings of SPIE Photonics West (2012), Next-Generation Optical Communication: Components, Sub-Systems, and Systems, Vol. 8284, January 24 – 26, San Francisco, CA, USA, pp. 82840F 1 - 7.
    [Crossref]
  12. K. S. Abedin, T. F. Taunay, M. Fishteyn, M. F. Yan, B. Zhu, J. M. Fini, E. M. Monberg, F. V. Dimarcello, and P. W. Wisk, “Amplification and noise properties of an erbium-doped multicore fiber amplifier,” Opt. Express 19(17), 16715–16721 (2011).
    [Crossref] [PubMed]

2014 (1)

2011 (2)

2010 (1)

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
[Crossref]

1964 (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136(4A), A954–A957 (1964).
[Crossref]

Abedin, K. S.

Bansal, L.

DiGiovanni, D. J.

Dimarcello, F. V.

Fini, J. M.

Fishteyn, M.

Krummrich, P. M.

McCumber, D. E.

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136(4A), A954–A957 (1964).
[Crossref]

Monberg, E. M.

Taunay, T. F.

Thierry, T. F.

Tkach, R. W.

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
[Crossref]

Wisk, P. W.

Yan, M. F.

Zhu, B.

Bell Labs Tech. J. (1)

R. W. Tkach, “Scaling optical communications for the next decade and beyond,” Bell Labs Tech. J. 14(4), 3–9 (2010).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

D. E. McCumber, “Einstein relations connecting broadband emission and absorption spectra,” Phys. Rev. A 136(4A), A954–A957 (1964).
[Crossref]

Other (7)

G. Gilder, “The rise of Exaflood Optics,” 35th European Conference on Optical Communication (ECOC 2009), Vienna, Austria, Sept. 20 – 24, paper 1.0.1.

A. Chraplyvy, “The Coming Capacity Crunch,” 35th European Conference on Optical Communication (ECOC 2009), Vienna, Austria, Sept. 20 – 24, paper 1.0.2.

P. J. Winzer, “Challenges and evolution of optical transport networks,” 36th European Conference on Optical Communication (ECOC 2010), Torino, Italy, Sept. 19 – 23, paper We.8.D.1.
[Crossref]

P. M. Krummrich and K. Petermann, “Evaluation of Potential Optical Amplifier Concepts for Coherent Mode Multiplexing,” in Optical Fiber Communication Conference (Optical Society of America, 2011), March 6–10, Los Angeles, CA, USA, paper OMH5.
[Crossref]

S. U. Alam, P. W. Turner, A. B. Grudinin, J. Nilsson, and J. A. Alvarez-Chavez, “High-power cladding pumped erbium-ytterbium co-doped fiber laser,” in Optical Fiber Communication Conference (Optical Society of America, 2001), March 17–22, Anaheim, CA, USA, paper TuI4.

P. M. Krummrich, “Efficient optical amplification for spatial division multiplexing,” Proceedings of SPIE Photonics West (2012), Next-Generation Optical Communication: Components, Sub-Systems, and Systems, Vol. 8284, January 24 – 26, San Francisco, CA, USA, pp. 82840F 1 - 7.
[Crossref]

K. Abedin, T. Thierry, J. Fini, M. Yan, B. Zhu, E. Monberg, F. Dimarcello, V. R. Supradeepa, and D. DiGiovanni, “Multicore erbium doped fiber amplifiers for space division multiplexed system,” 39th European Conference on Optical Communication (ECOC 2013), London, United Kingdom, Sept. 22 – 26, paper We.4.A.1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Energy levels of Er3+ ions which are most relevant for the amplification process.
Fig. 2
Fig. 2 Measured absorption and emission cross section spectra of Er3+-ions in a silica fiber core.
Fig. 3
Fig. 3 Gain spectra for different spatial power densities of the pump radiation at the input of the active fiber.
Fig. 4
Fig. 4 Noise figure spectra for different spatial power densities of the pump radiation at the input of the active fiber.
Fig. 5
Fig. 5 Cross section of a multi core fiber with seven cores which can be cladding pumped.
Fig. 6
Fig. 6 Gain spectrum with direct pumping of the core.
Fig. 7
Fig. 7 Noise figure spectra for direct pumping of the core with complete and partial doping.
Fig. 8
Fig. 8 Gain spectra of modes in a multi mode fiber.
Fig. 9
Fig. 9 Noise figure spectra of modes in a multi mode fiber.
Fig. 10
Fig. 10 Profile of the Er3+ doping concentration selected for improved gain of the LP02 mode.
Fig. 11
Fig. 11 Gain spectra of modes in a multi mode fiber with a ring doped core.
Fig. 12
Fig. 12 Noise figure spectra of modes in a multi mode fiber with a ring doped core.
Fig. 13
Fig. 13 Concept of a pump signal combiner for direct pumping of multi core fibers.
Fig. 14
Fig. 14 Integration of the fiber taper and the GRIN lens array in a 3D laser inscribed waveguide.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d N 3 dt = W 13 N 1 A 31 N 3 A 32 N 3 ,
d N 2 dt = A 32 N 3 + W 12 N 1 W 21 N 2 A 21 N 2 ,
d N 1 dt =- W 13 N 1 + A 31 N 3 - W 12 N 1 + W 12 N 2 + A 21 N 2 ,
W ik = σ ik S hν ,
N t = N 1 + N 2 + N 3 ,
d S P dz = σ E N 2 S P σ A N 1 S P α P S P ,
d S S dz = σ E N 2 S S σ A N 1 S S α S S S ,
± d S ASE +/ dz = σ E N 2 hνB A eff + σ E N 2 S ASE +/ σ A N 1 S ASE +/ α ASE S ASE +/ ,

Metrics