Abstract

In this article we present a new all-optical method to measure elastic constants connected with twist and bend deformations. The method is based on the optical Freedericksz threshold effect induced by the linearly polarized electro-magnetic wave. In the experiment elastic constants are measured of commonly used liquid crystals 6CHBT and E7 and two new nematic mixtures with low birefringence. The proposed method is neither very sensitive on the variation of cell thickness, beam waist or the power of a light beam nor does it need any special design of a liquid crystal cell. The experimental results are in good agreement with the values obtain by other methods based on an electro-optical effect.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Modeling of molecular reorientation and beam propagation in chiral and non-chiral nematic liquid crystals

Filip A. Sala and Miroslaw A. Karpierz
Opt. Express 20(13) 13923-13938 (2012)

Dynamical optical response of nematic liquid crystal cells through electrically driven Fréedericksz transition: influence of the nematic layer thickness

Vittorio Maria Di Pietro, Aurélie Jullien, Umberto Bortolozzo, Nicolas Forget, and Stefania Residori
Opt. Express 26(8) 10716-10728 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc. 29(140), 883 (1933).
    [Crossref]
  2. F. C. Frank, “Liquid crystals. On the theory of liquid crystals,” Discuss. Faraday Soc. 25, 19 (1958).
    [Crossref]
  3. R. G. Pries, “Theory of the Frank Elastic Constants of Nematic Liquid Crystals,” Phys. Rev. A 7(2), 720–729 (1973).
    [Crossref]
  4. A. V. Zakharov, M. N. Tsvetkova, and V. G. Korsakov, “Elastic Properties of Liquid Crystals,” Phys. Solid State 44(9), 1795–1801 (2002).
    [Crossref]
  5. V. Volkmar, Liquid crystals databas, LiqCryst 4.2, (University of Hamburg, 2002).
  6. D. K. Yang and S. T. Wu, Fundamentals of liquid crystals devices, (John Wiley & Sons, 2006).
  7. I.-Ch. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals, (World Scientific Publ., Singapore, 1993).
  8. G. Assanto and M. A. Karpierz, “Nematicons: self-localized beams in nematic liquid crystals,” Liq. Cryst. 36(10-11), 1161–1172 (2009).
    [Crossref]
  9. M. Kwasny, U. A. Laudyn, F. A. Sala, A. Alberucci, M. A. Karpierz, and G. Assanto, “Self-guided beams in low birefringence nematic liquid crystals,” Phys. Rev. A 86(1), 013824 (2012).
    [Crossref]
  10. J. F. Strömer, E. P. Raynes, and C. V. Brown, “Study of elastic constant ratios in nematic liquid crystals,” Appl. Phys. Lett. 88(5), 051915 (2006).
    [Crossref]
  11. J. Kędzierski, Z. Raszewski, J. Rutkowska, T. Opara, J. Zieliński, J. Żmija, and R. Dąbrowski, “Optical investigation of the vector field of directors in the L.C,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 249, 199 (1994).
  12. H. Mada, “Wall Effect of Frederiks Transition in Nematic Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 82(2), 53–59 (1982).
    [Crossref]
  13. S. Dasgupta and S. K. Roy, “Effect of a rigid, non-polar solute on the dielectric anisotropy, the splay and bend elastic constants, and on the rotational viscosity coefficient of 4-4′-n-heptylcyanobiphenyl,” J. Liq. Cryst. 30(1), 31–37 (2003).
    [Crossref]
  14. S. W. Morris, P. P. Muhoray, and D. A. Balzarini, “Measurements of the Bend and Splay Elastic Constants of Octyl-Cyanobiphenyl,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 139(3-4), 263–280 (1986).
    [Crossref]
  15. M. Ginovska, G. Czechowski, A. Andonovski, and J. Jadzyn, “Dielectric, viscous and elastic properties of nematogenic 1-(4- trans -propylcyclohexyl)-2-(4-cyanophenyl)ethane,” Liq. Cryst. 29(9), 1201–1207 (2002).
    [Crossref]
  16. M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
    [Crossref]
  17. S. Faetti and B. Cocciaro, “Elastic, dielectric and optical constans of the nematic mixture E49,” Liq. Cryst. 36(2), 147–156 (2009).
    [Crossref]
  18. Y. Zhou and S. Sato, “A method for determining elastic constants of nematic liquid crystals at high electric fields,” Jpn. J. Appl. Phys. 36(Part 1, No. 7A), 4397–4400 (1997).
    [Crossref]
  19. H. Ishikawa, A. Toda, H. Okada, and H. Onnagawa, “Relationship between order parameter and physical constants in fluorinated liquid crystals,” Liq. Cryst. 22(6), 743–747 (1997).
    [Crossref]
  20. S. DasGupta and S. K. Roy, “Splay and bend elastic constants and rotational viscosity coefficient in a mixture of 4–4-n-pentyl- yanobiphenyl and 4–4-n-decyl-cyanobiphenyl,” Phys. Lett. A 306(4), 235–242 (2003).
    [Crossref]
  21. L. A. Parry-Jones and M. A. Geday, “Measurement of Twist Elastic Constant in Nematic Liquid Crystals using Conoscopic Illumination,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 436(1), 259 (2005).
    [Crossref]
  22. K. Koyama, M. Kawaida, and T. Akahane, “A method for determination of elastic constants K1, K2, K3 of a nematic liquid crystal only using a homogeneously aligned cel,” Jpn. J. Appl. Phys. 28(8), 1412–1416 (1989).
    [Crossref]
  23. A. V. Dubtsov, S. V. Pasechnik, D. V. Shmeliova, V. A. Tsvetkov, and V. G. Chigrinov, “Special optical geometry for measuring twist module K22 and rotation viscosity of nematic liquid crystals,” Appl. Phys. Lett. 94, 181910 (2009).
    [Crossref]
  24. N. V. Madhusudana and R. Pratibha, “Elasticity and Orientational Order in Some Cyanobiphenyls: Part IV. Reanalysis of the Data,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 89(1-4), 249–257 (1982).
    [Crossref]
  25. S. Singh, Liquid Crystal: Fundamental, Chapter 4, (World Scientific, 2002).
  26. H. L. Ong, “Measurement of nematic liquid crystal splay elastic constants with obliquely incident light,” J. Appl. Phys. 70(4), 2023 (1991).
    [Crossref]
  27. A. Kumar, “On the Dielectric and Splay Elastic Constants of Nematic Liquid crystals with Positive Dielectric Anisotropy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 575(1), 30–39 (2013).
    [Crossref]
  28. A. Srivastava and S. I. Singh, “Elastic constants of nematic liquid crystals of uniaxial symmetry,” J. Phys. Condens. Matter 16(41), 7169–7182 (2004).
    [Crossref]
  29. D. J. Cleaver and M. P. Allen, “Computer simulations of the elastic properties of liquid crystals,” Phys. Rev. A 43(4), 1918–1931 (1991).
    [Crossref] [PubMed]
  30. M. P. Allen, M. A. Warren, M. R. Wilson, A. Sauron, and W. Smith, “Molecular dynamics calculation of elastic constants in Gay–Berne nematic liquid crystals,” J. Chem. Phys. 105(7), 2850 (1996).
    [Crossref]
  31. P. I. C. Teixeira, V. M. Pergamenshchik, and T. J. Sluckin, “A model calculation of the surface elastic constants of a nematic liquid crystal,” Mol. Phys. 80(6), 1339–1357 (1993).
    [Crossref]
  32. T. Toyooka, G. Chen, H. Takezoe, and A. Fukuda, “Deteremination of twist elastic constant in 5CB by four independent light-scattering techniques,” Jpn. J. Appl. Phys. 26(12), 1959–1966 (1987).
    [Crossref]
  33. W. K. Bajdecki and M. A. Karpierz, “Nonlinear optical measurements of elastic constants in nematic liquid crystals,” Acta Physica Polonica A. 95, 793–800 (1999).
  34. L. Calero, W. K. Bajdecki, and R. Meucci, “Reorientation effect induced by a CW CO2 laser in nematic liquid crystal,” Opt. Commun. 168(1-4), 201–206 (1999).
    [Crossref]
  35. R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18(3), 194 (1993).
    [Crossref] [PubMed]
  36. M. H. Majles Ara, S. H. Mousav, M. Rafiee, and M. S. Zakerhamidi, “Determination of Temperature Dependence of Kerr Constant for Nematic Liquid Crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544, 227 (2011).

2013 (1)

A. Kumar, “On the Dielectric and Splay Elastic Constants of Nematic Liquid crystals with Positive Dielectric Anisotropy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 575(1), 30–39 (2013).
[Crossref]

2012 (1)

M. Kwasny, U. A. Laudyn, F. A. Sala, A. Alberucci, M. A. Karpierz, and G. Assanto, “Self-guided beams in low birefringence nematic liquid crystals,” Phys. Rev. A 86(1), 013824 (2012).
[Crossref]

2011 (1)

M. H. Majles Ara, S. H. Mousav, M. Rafiee, and M. S. Zakerhamidi, “Determination of Temperature Dependence of Kerr Constant for Nematic Liquid Crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544, 227 (2011).

2009 (3)

A. V. Dubtsov, S. V. Pasechnik, D. V. Shmeliova, V. A. Tsvetkov, and V. G. Chigrinov, “Special optical geometry for measuring twist module K22 and rotation viscosity of nematic liquid crystals,” Appl. Phys. Lett. 94, 181910 (2009).
[Crossref]

G. Assanto and M. A. Karpierz, “Nematicons: self-localized beams in nematic liquid crystals,” Liq. Cryst. 36(10-11), 1161–1172 (2009).
[Crossref]

S. Faetti and B. Cocciaro, “Elastic, dielectric and optical constans of the nematic mixture E49,” Liq. Cryst. 36(2), 147–156 (2009).
[Crossref]

2006 (2)

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
[Crossref]

J. F. Strömer, E. P. Raynes, and C. V. Brown, “Study of elastic constant ratios in nematic liquid crystals,” Appl. Phys. Lett. 88(5), 051915 (2006).
[Crossref]

2005 (1)

L. A. Parry-Jones and M. A. Geday, “Measurement of Twist Elastic Constant in Nematic Liquid Crystals using Conoscopic Illumination,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 436(1), 259 (2005).
[Crossref]

2004 (1)

A. Srivastava and S. I. Singh, “Elastic constants of nematic liquid crystals of uniaxial symmetry,” J. Phys. Condens. Matter 16(41), 7169–7182 (2004).
[Crossref]

2003 (2)

S. DasGupta and S. K. Roy, “Splay and bend elastic constants and rotational viscosity coefficient in a mixture of 4–4-n-pentyl- yanobiphenyl and 4–4-n-decyl-cyanobiphenyl,” Phys. Lett. A 306(4), 235–242 (2003).
[Crossref]

S. Dasgupta and S. K. Roy, “Effect of a rigid, non-polar solute on the dielectric anisotropy, the splay and bend elastic constants, and on the rotational viscosity coefficient of 4-4′-n-heptylcyanobiphenyl,” J. Liq. Cryst. 30(1), 31–37 (2003).
[Crossref]

2002 (2)

M. Ginovska, G. Czechowski, A. Andonovski, and J. Jadzyn, “Dielectric, viscous and elastic properties of nematogenic 1-(4- trans -propylcyclohexyl)-2-(4-cyanophenyl)ethane,” Liq. Cryst. 29(9), 1201–1207 (2002).
[Crossref]

A. V. Zakharov, M. N. Tsvetkova, and V. G. Korsakov, “Elastic Properties of Liquid Crystals,” Phys. Solid State 44(9), 1795–1801 (2002).
[Crossref]

1999 (2)

W. K. Bajdecki and M. A. Karpierz, “Nonlinear optical measurements of elastic constants in nematic liquid crystals,” Acta Physica Polonica A. 95, 793–800 (1999).

L. Calero, W. K. Bajdecki, and R. Meucci, “Reorientation effect induced by a CW CO2 laser in nematic liquid crystal,” Opt. Commun. 168(1-4), 201–206 (1999).
[Crossref]

1997 (2)

Y. Zhou and S. Sato, “A method for determining elastic constants of nematic liquid crystals at high electric fields,” Jpn. J. Appl. Phys. 36(Part 1, No. 7A), 4397–4400 (1997).
[Crossref]

H. Ishikawa, A. Toda, H. Okada, and H. Onnagawa, “Relationship between order parameter and physical constants in fluorinated liquid crystals,” Liq. Cryst. 22(6), 743–747 (1997).
[Crossref]

1996 (1)

M. P. Allen, M. A. Warren, M. R. Wilson, A. Sauron, and W. Smith, “Molecular dynamics calculation of elastic constants in Gay–Berne nematic liquid crystals,” J. Chem. Phys. 105(7), 2850 (1996).
[Crossref]

1994 (1)

J. Kędzierski, Z. Raszewski, J. Rutkowska, T. Opara, J. Zieliński, J. Żmija, and R. Dąbrowski, “Optical investigation of the vector field of directors in the L.C,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 249, 199 (1994).

1993 (2)

P. I. C. Teixeira, V. M. Pergamenshchik, and T. J. Sluckin, “A model calculation of the surface elastic constants of a nematic liquid crystal,” Mol. Phys. 80(6), 1339–1357 (1993).
[Crossref]

R. DeSalvo, M. Sheik-Bahae, A. A. Said, D. J. Hagan, and E. W. Van Stryland, “Z-scan measurements of the anisotropy of nonlinear refraction and absorption in crystals,” Opt. Lett. 18(3), 194 (1993).
[Crossref] [PubMed]

1991 (2)

H. L. Ong, “Measurement of nematic liquid crystal splay elastic constants with obliquely incident light,” J. Appl. Phys. 70(4), 2023 (1991).
[Crossref]

D. J. Cleaver and M. P. Allen, “Computer simulations of the elastic properties of liquid crystals,” Phys. Rev. A 43(4), 1918–1931 (1991).
[Crossref] [PubMed]

1989 (1)

K. Koyama, M. Kawaida, and T. Akahane, “A method for determination of elastic constants K1, K2, K3 of a nematic liquid crystal only using a homogeneously aligned cel,” Jpn. J. Appl. Phys. 28(8), 1412–1416 (1989).
[Crossref]

1987 (1)

T. Toyooka, G. Chen, H. Takezoe, and A. Fukuda, “Deteremination of twist elastic constant in 5CB by four independent light-scattering techniques,” Jpn. J. Appl. Phys. 26(12), 1959–1966 (1987).
[Crossref]

1986 (1)

S. W. Morris, P. P. Muhoray, and D. A. Balzarini, “Measurements of the Bend and Splay Elastic Constants of Octyl-Cyanobiphenyl,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 139(3-4), 263–280 (1986).
[Crossref]

1982 (2)

H. Mada, “Wall Effect of Frederiks Transition in Nematic Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 82(2), 53–59 (1982).
[Crossref]

N. V. Madhusudana and R. Pratibha, “Elasticity and Orientational Order in Some Cyanobiphenyls: Part IV. Reanalysis of the Data,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 89(1-4), 249–257 (1982).
[Crossref]

1973 (1)

R. G. Pries, “Theory of the Frank Elastic Constants of Nematic Liquid Crystals,” Phys. Rev. A 7(2), 720–729 (1973).
[Crossref]

1958 (1)

F. C. Frank, “Liquid crystals. On the theory of liquid crystals,” Discuss. Faraday Soc. 25, 19 (1958).
[Crossref]

1933 (1)

C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc. 29(140), 883 (1933).
[Crossref]

Akahane, T.

K. Koyama, M. Kawaida, and T. Akahane, “A method for determination of elastic constants K1, K2, K3 of a nematic liquid crystal only using a homogeneously aligned cel,” Jpn. J. Appl. Phys. 28(8), 1412–1416 (1989).
[Crossref]

Alberucci, A.

M. Kwasny, U. A. Laudyn, F. A. Sala, A. Alberucci, M. A. Karpierz, and G. Assanto, “Self-guided beams in low birefringence nematic liquid crystals,” Phys. Rev. A 86(1), 013824 (2012).
[Crossref]

Allen, M. P.

M. P. Allen, M. A. Warren, M. R. Wilson, A. Sauron, and W. Smith, “Molecular dynamics calculation of elastic constants in Gay–Berne nematic liquid crystals,” J. Chem. Phys. 105(7), 2850 (1996).
[Crossref]

D. J. Cleaver and M. P. Allen, “Computer simulations of the elastic properties of liquid crystals,” Phys. Rev. A 43(4), 1918–1931 (1991).
[Crossref] [PubMed]

Andonovski, A.

M. Ginovska, G. Czechowski, A. Andonovski, and J. Jadzyn, “Dielectric, viscous and elastic properties of nematogenic 1-(4- trans -propylcyclohexyl)-2-(4-cyanophenyl)ethane,” Liq. Cryst. 29(9), 1201–1207 (2002).
[Crossref]

Assanto, G.

M. Kwasny, U. A. Laudyn, F. A. Sala, A. Alberucci, M. A. Karpierz, and G. Assanto, “Self-guided beams in low birefringence nematic liquid crystals,” Phys. Rev. A 86(1), 013824 (2012).
[Crossref]

G. Assanto and M. A. Karpierz, “Nematicons: self-localized beams in nematic liquid crystals,” Liq. Cryst. 36(10-11), 1161–1172 (2009).
[Crossref]

Bajdecki, W. K.

W. K. Bajdecki and M. A. Karpierz, “Nonlinear optical measurements of elastic constants in nematic liquid crystals,” Acta Physica Polonica A. 95, 793–800 (1999).

L. Calero, W. K. Bajdecki, and R. Meucci, “Reorientation effect induced by a CW CO2 laser in nematic liquid crystal,” Opt. Commun. 168(1-4), 201–206 (1999).
[Crossref]

Balzarini, D. A.

S. W. Morris, P. P. Muhoray, and D. A. Balzarini, “Measurements of the Bend and Splay Elastic Constants of Octyl-Cyanobiphenyl,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 139(3-4), 263–280 (1986).
[Crossref]

Brown, C. V.

J. F. Strömer, E. P. Raynes, and C. V. Brown, “Study of elastic constant ratios in nematic liquid crystals,” Appl. Phys. Lett. 88(5), 051915 (2006).
[Crossref]

Calero, L.

L. Calero, W. K. Bajdecki, and R. Meucci, “Reorientation effect induced by a CW CO2 laser in nematic liquid crystal,” Opt. Commun. 168(1-4), 201–206 (1999).
[Crossref]

Chen, G.

T. Toyooka, G. Chen, H. Takezoe, and A. Fukuda, “Deteremination of twist elastic constant in 5CB by four independent light-scattering techniques,” Jpn. J. Appl. Phys. 26(12), 1959–1966 (1987).
[Crossref]

Chigrinov, V. G.

A. V. Dubtsov, S. V. Pasechnik, D. V. Shmeliova, V. A. Tsvetkov, and V. G. Chigrinov, “Special optical geometry for measuring twist module K22 and rotation viscosity of nematic liquid crystals,” Appl. Phys. Lett. 94, 181910 (2009).
[Crossref]

Cleaver, D. J.

D. J. Cleaver and M. P. Allen, “Computer simulations of the elastic properties of liquid crystals,” Phys. Rev. A 43(4), 1918–1931 (1991).
[Crossref] [PubMed]

Cocciaro, B.

S. Faetti and B. Cocciaro, “Elastic, dielectric and optical constans of the nematic mixture E49,” Liq. Cryst. 36(2), 147–156 (2009).
[Crossref]

Czechowski, G.

M. Ginovska, G. Czechowski, A. Andonovski, and J. Jadzyn, “Dielectric, viscous and elastic properties of nematogenic 1-(4- trans -propylcyclohexyl)-2-(4-cyanophenyl)ethane,” Liq. Cryst. 29(9), 1201–1207 (2002).
[Crossref]

Dabrowski, R.

J. Kędzierski, Z. Raszewski, J. Rutkowska, T. Opara, J. Zieliński, J. Żmija, and R. Dąbrowski, “Optical investigation of the vector field of directors in the L.C,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 249, 199 (1994).

Dark, M. L.

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
[Crossref]

Dasgupta, S.

S. Dasgupta and S. K. Roy, “Effect of a rigid, non-polar solute on the dielectric anisotropy, the splay and bend elastic constants, and on the rotational viscosity coefficient of 4-4′-n-heptylcyanobiphenyl,” J. Liq. Cryst. 30(1), 31–37 (2003).
[Crossref]

S. DasGupta and S. K. Roy, “Splay and bend elastic constants and rotational viscosity coefficient in a mixture of 4–4-n-pentyl- yanobiphenyl and 4–4-n-decyl-cyanobiphenyl,” Phys. Lett. A 306(4), 235–242 (2003).
[Crossref]

DeSalvo, R.

Dubtsov, A. V.

A. V. Dubtsov, S. V. Pasechnik, D. V. Shmeliova, V. A. Tsvetkov, and V. G. Chigrinov, “Special optical geometry for measuring twist module K22 and rotation viscosity of nematic liquid crystals,” Appl. Phys. Lett. 94, 181910 (2009).
[Crossref]

Faetti, S.

S. Faetti and B. Cocciaro, “Elastic, dielectric and optical constans of the nematic mixture E49,” Liq. Cryst. 36(2), 147–156 (2009).
[Crossref]

Frank, F. C.

F. C. Frank, “Liquid crystals. On the theory of liquid crystals,” Discuss. Faraday Soc. 25, 19 (1958).
[Crossref]

Fukuda, A.

T. Toyooka, G. Chen, H. Takezoe, and A. Fukuda, “Deteremination of twist elastic constant in 5CB by four independent light-scattering techniques,” Jpn. J. Appl. Phys. 26(12), 1959–1966 (1987).
[Crossref]

Geday, M. A.

L. A. Parry-Jones and M. A. Geday, “Measurement of Twist Elastic Constant in Nematic Liquid Crystals using Conoscopic Illumination,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 436(1), 259 (2005).
[Crossref]

Ginovska, M.

M. Ginovska, G. Czechowski, A. Andonovski, and J. Jadzyn, “Dielectric, viscous and elastic properties of nematogenic 1-(4- trans -propylcyclohexyl)-2-(4-cyanophenyl)ethane,” Liq. Cryst. 29(9), 1201–1207 (2002).
[Crossref]

Hagan, D. J.

Ishikawa, H.

H. Ishikawa, A. Toda, H. Okada, and H. Onnagawa, “Relationship between order parameter and physical constants in fluorinated liquid crystals,” Liq. Cryst. 22(6), 743–747 (1997).
[Crossref]

Jadzyn, J.

M. Ginovska, G. Czechowski, A. Andonovski, and J. Jadzyn, “Dielectric, viscous and elastic properties of nematogenic 1-(4- trans -propylcyclohexyl)-2-(4-cyanophenyl)ethane,” Liq. Cryst. 29(9), 1201–1207 (2002).
[Crossref]

Karpierz, M. A.

M. Kwasny, U. A. Laudyn, F. A. Sala, A. Alberucci, M. A. Karpierz, and G. Assanto, “Self-guided beams in low birefringence nematic liquid crystals,” Phys. Rev. A 86(1), 013824 (2012).
[Crossref]

G. Assanto and M. A. Karpierz, “Nematicons: self-localized beams in nematic liquid crystals,” Liq. Cryst. 36(10-11), 1161–1172 (2009).
[Crossref]

W. K. Bajdecki and M. A. Karpierz, “Nonlinear optical measurements of elastic constants in nematic liquid crystals,” Acta Physica Polonica A. 95, 793–800 (1999).

Kawaida, M.

K. Koyama, M. Kawaida, and T. Akahane, “A method for determination of elastic constants K1, K2, K3 of a nematic liquid crystal only using a homogeneously aligned cel,” Jpn. J. Appl. Phys. 28(8), 1412–1416 (1989).
[Crossref]

Kedzierski, J.

J. Kędzierski, Z. Raszewski, J. Rutkowska, T. Opara, J. Zieliński, J. Żmija, and R. Dąbrowski, “Optical investigation of the vector field of directors in the L.C,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 249, 199 (1994).

Korsakov, V. G.

A. V. Zakharov, M. N. Tsvetkova, and V. G. Korsakov, “Elastic Properties of Liquid Crystals,” Phys. Solid State 44(9), 1795–1801 (2002).
[Crossref]

Koyama, K.

K. Koyama, M. Kawaida, and T. Akahane, “A method for determination of elastic constants K1, K2, K3 of a nematic liquid crystal only using a homogeneously aligned cel,” Jpn. J. Appl. Phys. 28(8), 1412–1416 (1989).
[Crossref]

Kumar, A.

A. Kumar, “On the Dielectric and Splay Elastic Constants of Nematic Liquid crystals with Positive Dielectric Anisotropy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 575(1), 30–39 (2013).
[Crossref]

Kwasny, M.

M. Kwasny, U. A. Laudyn, F. A. Sala, A. Alberucci, M. A. Karpierz, and G. Assanto, “Self-guided beams in low birefringence nematic liquid crystals,” Phys. Rev. A 86(1), 013824 (2012).
[Crossref]

Laudyn, U. A.

M. Kwasny, U. A. Laudyn, F. A. Sala, A. Alberucci, M. A. Karpierz, and G. Assanto, “Self-guided beams in low birefringence nematic liquid crystals,” Phys. Rev. A 86(1), 013824 (2012).
[Crossref]

Mada, H.

H. Mada, “Wall Effect of Frederiks Transition in Nematic Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 82(2), 53–59 (1982).
[Crossref]

Madhusudana, N. V.

N. V. Madhusudana and R. Pratibha, “Elasticity and Orientational Order in Some Cyanobiphenyls: Part IV. Reanalysis of the Data,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 89(1-4), 249–257 (1982).
[Crossref]

Majles Ara, M. H.

M. H. Majles Ara, S. H. Mousav, M. Rafiee, and M. S. Zakerhamidi, “Determination of Temperature Dependence of Kerr Constant for Nematic Liquid Crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544, 227 (2011).

Meucci, R.

L. Calero, W. K. Bajdecki, and R. Meucci, “Reorientation effect induced by a CW CO2 laser in nematic liquid crystal,” Opt. Commun. 168(1-4), 201–206 (1999).
[Crossref]

Moore, M. H.

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
[Crossref]

Morris, S. W.

S. W. Morris, P. P. Muhoray, and D. A. Balzarini, “Measurements of the Bend and Splay Elastic Constants of Octyl-Cyanobiphenyl,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 139(3-4), 263–280 (1986).
[Crossref]

Mousav, S. H.

M. H. Majles Ara, S. H. Mousav, M. Rafiee, and M. S. Zakerhamidi, “Determination of Temperature Dependence of Kerr Constant for Nematic Liquid Crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544, 227 (2011).

Muhoray, P. P.

S. W. Morris, P. P. Muhoray, and D. A. Balzarini, “Measurements of the Bend and Splay Elastic Constants of Octyl-Cyanobiphenyl,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 139(3-4), 263–280 (1986).
[Crossref]

Okada, H.

H. Ishikawa, A. Toda, H. Okada, and H. Onnagawa, “Relationship between order parameter and physical constants in fluorinated liquid crystals,” Liq. Cryst. 22(6), 743–747 (1997).
[Crossref]

Ong, H. L.

H. L. Ong, “Measurement of nematic liquid crystal splay elastic constants with obliquely incident light,” J. Appl. Phys. 70(4), 2023 (1991).
[Crossref]

Onnagawa, H.

H. Ishikawa, A. Toda, H. Okada, and H. Onnagawa, “Relationship between order parameter and physical constants in fluorinated liquid crystals,” Liq. Cryst. 22(6), 743–747 (1997).
[Crossref]

Opara, T.

J. Kędzierski, Z. Raszewski, J. Rutkowska, T. Opara, J. Zieliński, J. Żmija, and R. Dąbrowski, “Optical investigation of the vector field of directors in the L.C,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 249, 199 (1994).

Oseen, C. W.

C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc. 29(140), 883 (1933).
[Crossref]

Parry-Jones, L. A.

L. A. Parry-Jones and M. A. Geday, “Measurement of Twist Elastic Constant in Nematic Liquid Crystals using Conoscopic Illumination,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 436(1), 259 (2005).
[Crossref]

Pasechnik, S. V.

A. V. Dubtsov, S. V. Pasechnik, D. V. Shmeliova, V. A. Tsvetkov, and V. G. Chigrinov, “Special optical geometry for measuring twist module K22 and rotation viscosity of nematic liquid crystals,” Appl. Phys. Lett. 94, 181910 (2009).
[Crossref]

Pergamenshchik, V. M.

P. I. C. Teixeira, V. M. Pergamenshchik, and T. J. Sluckin, “A model calculation of the surface elastic constants of a nematic liquid crystal,” Mol. Phys. 80(6), 1339–1357 (1993).
[Crossref]

Pratibha, R.

N. V. Madhusudana and R. Pratibha, “Elasticity and Orientational Order in Some Cyanobiphenyls: Part IV. Reanalysis of the Data,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 89(1-4), 249–257 (1982).
[Crossref]

Pries, R. G.

R. G. Pries, “Theory of the Frank Elastic Constants of Nematic Liquid Crystals,” Phys. Rev. A 7(2), 720–729 (1973).
[Crossref]

Rafiee, M.

M. H. Majles Ara, S. H. Mousav, M. Rafiee, and M. S. Zakerhamidi, “Determination of Temperature Dependence of Kerr Constant for Nematic Liquid Crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544, 227 (2011).

Raszewski, Z.

J. Kędzierski, Z. Raszewski, J. Rutkowska, T. Opara, J. Zieliński, J. Żmija, and R. Dąbrowski, “Optical investigation of the vector field of directors in the L.C,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 249, 199 (1994).

Raynes, E. P.

J. F. Strömer, E. P. Raynes, and C. V. Brown, “Study of elastic constant ratios in nematic liquid crystals,” Appl. Phys. Lett. 88(5), 051915 (2006).
[Crossref]

Roy, S. K.

S. Dasgupta and S. K. Roy, “Effect of a rigid, non-polar solute on the dielectric anisotropy, the splay and bend elastic constants, and on the rotational viscosity coefficient of 4-4′-n-heptylcyanobiphenyl,” J. Liq. Cryst. 30(1), 31–37 (2003).
[Crossref]

S. DasGupta and S. K. Roy, “Splay and bend elastic constants and rotational viscosity coefficient in a mixture of 4–4-n-pentyl- yanobiphenyl and 4–4-n-decyl-cyanobiphenyl,” Phys. Lett. A 306(4), 235–242 (2003).
[Crossref]

Rutkowska, J.

J. Kędzierski, Z. Raszewski, J. Rutkowska, T. Opara, J. Zieliński, J. Żmija, and R. Dąbrowski, “Optical investigation of the vector field of directors in the L.C,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 249, 199 (1994).

Said, A. A.

Sala, F. A.

M. Kwasny, U. A. Laudyn, F. A. Sala, A. Alberucci, M. A. Karpierz, and G. Assanto, “Self-guided beams in low birefringence nematic liquid crystals,” Phys. Rev. A 86(1), 013824 (2012).
[Crossref]

Sato, S.

Y. Zhou and S. Sato, “A method for determining elastic constants of nematic liquid crystals at high electric fields,” Jpn. J. Appl. Phys. 36(Part 1, No. 7A), 4397–4400 (1997).
[Crossref]

Sauron, A.

M. P. Allen, M. A. Warren, M. R. Wilson, A. Sauron, and W. Smith, “Molecular dynamics calculation of elastic constants in Gay–Berne nematic liquid crystals,” J. Chem. Phys. 105(7), 2850 (1996).
[Crossref]

Shashidhar, R.

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
[Crossref]

Sheik-Bahae, M.

Shenoy, D. K.

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
[Crossref]

Shmeliova, D. V.

A. V. Dubtsov, S. V. Pasechnik, D. V. Shmeliova, V. A. Tsvetkov, and V. G. Chigrinov, “Special optical geometry for measuring twist module K22 and rotation viscosity of nematic liquid crystals,” Appl. Phys. Lett. 94, 181910 (2009).
[Crossref]

Singh, S. I.

A. Srivastava and S. I. Singh, “Elastic constants of nematic liquid crystals of uniaxial symmetry,” J. Phys. Condens. Matter 16(41), 7169–7182 (2004).
[Crossref]

Sluckin, T. J.

P. I. C. Teixeira, V. M. Pergamenshchik, and T. J. Sluckin, “A model calculation of the surface elastic constants of a nematic liquid crystal,” Mol. Phys. 80(6), 1339–1357 (1993).
[Crossref]

Smith, W.

M. P. Allen, M. A. Warren, M. R. Wilson, A. Sauron, and W. Smith, “Molecular dynamics calculation of elastic constants in Gay–Berne nematic liquid crystals,” J. Chem. Phys. 105(7), 2850 (1996).
[Crossref]

Srivastava, A.

A. Srivastava and S. I. Singh, “Elastic constants of nematic liquid crystals of uniaxial symmetry,” J. Phys. Condens. Matter 16(41), 7169–7182 (2004).
[Crossref]

Strömer, J. F.

J. F. Strömer, E. P. Raynes, and C. V. Brown, “Study of elastic constant ratios in nematic liquid crystals,” Appl. Phys. Lett. 88(5), 051915 (2006).
[Crossref]

Takezoe, H.

T. Toyooka, G. Chen, H. Takezoe, and A. Fukuda, “Deteremination of twist elastic constant in 5CB by four independent light-scattering techniques,” Jpn. J. Appl. Phys. 26(12), 1959–1966 (1987).
[Crossref]

Teixeira, P. I. C.

P. I. C. Teixeira, V. M. Pergamenshchik, and T. J. Sluckin, “A model calculation of the surface elastic constants of a nematic liquid crystal,” Mol. Phys. 80(6), 1339–1357 (1993).
[Crossref]

Toda, A.

H. Ishikawa, A. Toda, H. Okada, and H. Onnagawa, “Relationship between order parameter and physical constants in fluorinated liquid crystals,” Liq. Cryst. 22(6), 743–747 (1997).
[Crossref]

Toyooka, T.

T. Toyooka, G. Chen, H. Takezoe, and A. Fukuda, “Deteremination of twist elastic constant in 5CB by four independent light-scattering techniques,” Jpn. J. Appl. Phys. 26(12), 1959–1966 (1987).
[Crossref]

Tsvetkov, V. A.

A. V. Dubtsov, S. V. Pasechnik, D. V. Shmeliova, V. A. Tsvetkov, and V. G. Chigrinov, “Special optical geometry for measuring twist module K22 and rotation viscosity of nematic liquid crystals,” Appl. Phys. Lett. 94, 181910 (2009).
[Crossref]

Tsvetkova, M. N.

A. V. Zakharov, M. N. Tsvetkova, and V. G. Korsakov, “Elastic Properties of Liquid Crystals,” Phys. Solid State 44(9), 1795–1801 (2002).
[Crossref]

Van Stryland, E. W.

Warren, M. A.

M. P. Allen, M. A. Warren, M. R. Wilson, A. Sauron, and W. Smith, “Molecular dynamics calculation of elastic constants in Gay–Berne nematic liquid crystals,” J. Chem. Phys. 105(7), 2850 (1996).
[Crossref]

Wilson, M. R.

M. P. Allen, M. A. Warren, M. R. Wilson, A. Sauron, and W. Smith, “Molecular dynamics calculation of elastic constants in Gay–Berne nematic liquid crystals,” J. Chem. Phys. 105(7), 2850 (1996).
[Crossref]

Zakerhamidi, M. S.

M. H. Majles Ara, S. H. Mousav, M. Rafiee, and M. S. Zakerhamidi, “Determination of Temperature Dependence of Kerr Constant for Nematic Liquid Crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544, 227 (2011).

Zakharov, A. V.

A. V. Zakharov, M. N. Tsvetkova, and V. G. Korsakov, “Elastic Properties of Liquid Crystals,” Phys. Solid State 44(9), 1795–1801 (2002).
[Crossref]

Zhou, Y.

Y. Zhou and S. Sato, “A method for determining elastic constants of nematic liquid crystals at high electric fields,” Jpn. J. Appl. Phys. 36(Part 1, No. 7A), 4397–4400 (1997).
[Crossref]

Zielinski, J.

J. Kędzierski, Z. Raszewski, J. Rutkowska, T. Opara, J. Zieliński, J. Żmija, and R. Dąbrowski, “Optical investigation of the vector field of directors in the L.C,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 249, 199 (1994).

Zmija, J.

J. Kędzierski, Z. Raszewski, J. Rutkowska, T. Opara, J. Zieliński, J. Żmija, and R. Dąbrowski, “Optical investigation of the vector field of directors in the L.C,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 249, 199 (1994).

Acta Physica Polonica A. (1)

W. K. Bajdecki and M. A. Karpierz, “Nonlinear optical measurements of elastic constants in nematic liquid crystals,” Acta Physica Polonica A. 95, 793–800 (1999).

Appl. Phys. Lett. (2)

A. V. Dubtsov, S. V. Pasechnik, D. V. Shmeliova, V. A. Tsvetkov, and V. G. Chigrinov, “Special optical geometry for measuring twist module K22 and rotation viscosity of nematic liquid crystals,” Appl. Phys. Lett. 94, 181910 (2009).
[Crossref]

J. F. Strömer, E. P. Raynes, and C. V. Brown, “Study of elastic constant ratios in nematic liquid crystals,” Appl. Phys. Lett. 88(5), 051915 (2006).
[Crossref]

Discuss. Faraday Soc. (1)

F. C. Frank, “Liquid crystals. On the theory of liquid crystals,” Discuss. Faraday Soc. 25, 19 (1958).
[Crossref]

J. Appl. Phys. (1)

H. L. Ong, “Measurement of nematic liquid crystal splay elastic constants with obliquely incident light,” J. Appl. Phys. 70(4), 2023 (1991).
[Crossref]

J. Chem. Phys. (1)

M. P. Allen, M. A. Warren, M. R. Wilson, A. Sauron, and W. Smith, “Molecular dynamics calculation of elastic constants in Gay–Berne nematic liquid crystals,” J. Chem. Phys. 105(7), 2850 (1996).
[Crossref]

J. Liq. Cryst. (1)

S. Dasgupta and S. K. Roy, “Effect of a rigid, non-polar solute on the dielectric anisotropy, the splay and bend elastic constants, and on the rotational viscosity coefficient of 4-4′-n-heptylcyanobiphenyl,” J. Liq. Cryst. 30(1), 31–37 (2003).
[Crossref]

J. Phys. Condens. Matter (1)

A. Srivastava and S. I. Singh, “Elastic constants of nematic liquid crystals of uniaxial symmetry,” J. Phys. Condens. Matter 16(41), 7169–7182 (2004).
[Crossref]

Jpn. J. Appl. Phys. (3)

K. Koyama, M. Kawaida, and T. Akahane, “A method for determination of elastic constants K1, K2, K3 of a nematic liquid crystal only using a homogeneously aligned cel,” Jpn. J. Appl. Phys. 28(8), 1412–1416 (1989).
[Crossref]

T. Toyooka, G. Chen, H. Takezoe, and A. Fukuda, “Deteremination of twist elastic constant in 5CB by four independent light-scattering techniques,” Jpn. J. Appl. Phys. 26(12), 1959–1966 (1987).
[Crossref]

Y. Zhou and S. Sato, “A method for determining elastic constants of nematic liquid crystals at high electric fields,” Jpn. J. Appl. Phys. 36(Part 1, No. 7A), 4397–4400 (1997).
[Crossref]

Liq. Cryst. (5)

H. Ishikawa, A. Toda, H. Okada, and H. Onnagawa, “Relationship between order parameter and physical constants in fluorinated liquid crystals,” Liq. Cryst. 22(6), 743–747 (1997).
[Crossref]

M. Ginovska, G. Czechowski, A. Andonovski, and J. Jadzyn, “Dielectric, viscous and elastic properties of nematogenic 1-(4- trans -propylcyclohexyl)-2-(4-cyanophenyl)ethane,” Liq. Cryst. 29(9), 1201–1207 (2002).
[Crossref]

M. L. Dark, M. H. Moore, D. K. Shenoy, and R. Shashidhar, “Rotational viscosity and molecular structure of nematic liquid crystals,” Liq. Cryst. 33(1), 67–73 (2006).
[Crossref]

S. Faetti and B. Cocciaro, “Elastic, dielectric and optical constans of the nematic mixture E49,” Liq. Cryst. 36(2), 147–156 (2009).
[Crossref]

G. Assanto and M. A. Karpierz, “Nematicons: self-localized beams in nematic liquid crystals,” Liq. Cryst. 36(10-11), 1161–1172 (2009).
[Crossref]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (7)

J. Kędzierski, Z. Raszewski, J. Rutkowska, T. Opara, J. Zieliński, J. Żmija, and R. Dąbrowski, “Optical investigation of the vector field of directors in the L.C,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 249, 199 (1994).

H. Mada, “Wall Effect of Frederiks Transition in Nematic Liquid Crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 82(2), 53–59 (1982).
[Crossref]

S. W. Morris, P. P. Muhoray, and D. A. Balzarini, “Measurements of the Bend and Splay Elastic Constants of Octyl-Cyanobiphenyl,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 139(3-4), 263–280 (1986).
[Crossref]

L. A. Parry-Jones and M. A. Geday, “Measurement of Twist Elastic Constant in Nematic Liquid Crystals using Conoscopic Illumination,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 436(1), 259 (2005).
[Crossref]

M. H. Majles Ara, S. H. Mousav, M. Rafiee, and M. S. Zakerhamidi, “Determination of Temperature Dependence of Kerr Constant for Nematic Liquid Crystal,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 544, 227 (2011).

A. Kumar, “On the Dielectric and Splay Elastic Constants of Nematic Liquid crystals with Positive Dielectric Anisotropy,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 575(1), 30–39 (2013).
[Crossref]

N. V. Madhusudana and R. Pratibha, “Elasticity and Orientational Order in Some Cyanobiphenyls: Part IV. Reanalysis of the Data,” Mol. Cryst. Liq. Cryst. (Phila. Pa.) 89(1-4), 249–257 (1982).
[Crossref]

Mol. Phys. (1)

P. I. C. Teixeira, V. M. Pergamenshchik, and T. J. Sluckin, “A model calculation of the surface elastic constants of a nematic liquid crystal,” Mol. Phys. 80(6), 1339–1357 (1993).
[Crossref]

Opt. Commun. (1)

L. Calero, W. K. Bajdecki, and R. Meucci, “Reorientation effect induced by a CW CO2 laser in nematic liquid crystal,” Opt. Commun. 168(1-4), 201–206 (1999).
[Crossref]

Opt. Lett. (1)

Phys. Lett. A (1)

S. DasGupta and S. K. Roy, “Splay and bend elastic constants and rotational viscosity coefficient in a mixture of 4–4-n-pentyl- yanobiphenyl and 4–4-n-decyl-cyanobiphenyl,” Phys. Lett. A 306(4), 235–242 (2003).
[Crossref]

Phys. Rev. A (3)

M. Kwasny, U. A. Laudyn, F. A. Sala, A. Alberucci, M. A. Karpierz, and G. Assanto, “Self-guided beams in low birefringence nematic liquid crystals,” Phys. Rev. A 86(1), 013824 (2012).
[Crossref]

R. G. Pries, “Theory of the Frank Elastic Constants of Nematic Liquid Crystals,” Phys. Rev. A 7(2), 720–729 (1973).
[Crossref]

D. J. Cleaver and M. P. Allen, “Computer simulations of the elastic properties of liquid crystals,” Phys. Rev. A 43(4), 1918–1931 (1991).
[Crossref] [PubMed]

Phys. Solid State (1)

A. V. Zakharov, M. N. Tsvetkova, and V. G. Korsakov, “Elastic Properties of Liquid Crystals,” Phys. Solid State 44(9), 1795–1801 (2002).
[Crossref]

Trans. Faraday Soc. (1)

C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc. 29(140), 883 (1933).
[Crossref]

Other (4)

V. Volkmar, Liquid crystals databas, LiqCryst 4.2, (University of Hamburg, 2002).

D. K. Yang and S. T. Wu, Fundamentals of liquid crystals devices, (John Wiley & Sons, 2006).

I.-Ch. Khoo and S. T. Wu, Optics and Nonlinear Optics of Liquid Crystals, (World Scientific Publ., Singapore, 1993).

S. Singh, Liquid Crystal: Fundamental, Chapter 4, (World Scientific, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The three principal types of deformations: (a) splay, (b) twist, (c) bend. On the left – initially oriented NLC cell planar (a), (b) and homeotropic (c), in the middle – deformations induced by electric fields E >> Eth; on the right a sketch of molecular reorientation.
Fig. 2
Fig. 2 Experimental setup for an all-optical method with a fixed beam waist and fixed power of the light beam. λ/2 half-wave plate, P polarizer, BS beamsplitter, L lens, A aperture, Det detector, NLC nematic liquid crystal sample. Polarizer and half-wave plate allow to control the polarization and input beam power. The insets show the homeotropic and planarly oriented NLC sample.
Fig. 3
Fig. 3 (a) Typical light intensity distribution in the far field for input intensities higher than threshold value; (b) Output power of the beam as a function of the input power by 3 measurements for w0 = 12.7 µm and d = 50µm for homeotropic cell containing 6CHBT NLC;
Fig. 4
Fig. 4 Transmittance (Pout/Pin) as a function of distance z obtained by 6 measurements for P = 140mW, w0 = 18,3 µm in homeotropic cell containing 6CHBT NLC. Position z1 and z2 determines the region where the nonlinear effects are observed.
Fig. 5
Fig. 5 Measurement of the constant Kii for different input beam waist (lenses with different focal length).The dashed lines correspond to the average value of each Kii.

Tables (4)

Tables Icon

Table 1 Results of experimental measurements

Tables Icon

Table 2 Results of experimental measurements

Tables Icon

Table 3 Influence of w0 on Kii for FP method

Tables Icon

Table 4 Influence of the beam power in FP method on K22 in 6CHBT.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

f= 1 2 K 11 ( n ) 2 + 1 2 K 22 ( n × n ) 2 + 1 2 K 33 ( n × n ) 2 ε 0 ε a 2 ( n E ),
K ii d 2 θ d z 2 + ε 0 ε a 2 E 2 sin2θ=0,
E th = π d K ii ε 0 ε a .
P= n 0 2 μ 0 c 0 0 2π E opt 2 rdrdφ= n 0 π w 2 4 μ 0 c E 0 2 .
I th = K ii n 0 π 2 c 2 d 2 ε a ,
K ii =2 I th d 2 ε a π 2 n 0 c ,
Δ( K ii ) K ii = ( Δ I th I th ) 2 +4 ( Δd d ) 2 + ( Δ ε a ε a ) 2 ,
Δ I th I th = σ p 2 +4 ( Δ w 0 w 0 ) 2 ,
w 2 ( z )= w 0 2 [ 1+ ( λz π w 0 2 ) 2 ],
Δ I th I th = 1 3 ( ΔP P ) 2 +4 ( w w 0 ) 2 ( Δw w 0 ) 2 +4 ( w z th ) 2 σ z th 2 ,

Metrics