Abstract

We have numerically investigated the supercontinuum generation and pulse compression in a specially designed all-normal dispersion photonic crystal fiber with a flat-top dispersion curve, pumped by typical pulses from state of the art Ti:Sapphire lasers at 800 nm. The optimal combination of pump pulse parameters for a given fiber was found, which provides a wide octave-spanning spectrum with superb spectral flatness (a drop in spectral intensity of ~1.7 dB). With regard to the pulse compression for these spectra, multiple-cycle pulses (~8 fs) can be obtained with the use of a simple quadratic compressor and nearly single-cycle pulses (3.3 fs) can be obtained with the application of full phase compensation. The impact of pump pulse wavelength-shifting relative to the top of the dispersion curve on the generated SC and pulse compression was also investigated. The optimal pump pulse wavelength range was found to be 750nm<λp<850nm, where the distortions of pulse shape are quite small (< −3.3 dB). The influences of realistic fiber fabrication errors on the SC generation and pulse compression were investigated systematically. We propose that the spectral shape distortions generated by fiber fabrication errors can be significantly attenuated by properly manipulating the pump.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber

Alexander M. Heidt, Jan Rothhardt, Alexander Hartung, Hartmut Bartelt, Erich G. Rohwer, Jens Limpert, and Andreas Tünnermann
Opt. Express 19(15) 13873-13879 (2011)

Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers

Alexander M. Heidt, Alexander Hartung, Gurthwin W. Bosman, Patrizia Krok, Erich G. Rohwer, Heinrich Schwoerer, and Hartmut Bartelt
Opt. Express 19(4) 3775-3787 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge 2010).
  2. R. R. Alfano, The Supercontinuum Laser Source, 2nd ed. (Springer, 2006).
  3. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  4. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
    [Crossref] [PubMed]
  5. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
    [Crossref] [PubMed]
  6. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
    [Crossref] [PubMed]
  7. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28(11), 944–946 (2003).
    [Crossref] [PubMed]
  8. K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12(6), 1045–1054 (2004).
    [Crossref] [PubMed]
  9. M. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13(16), 6181–6192 (2005).
    [Crossref] [PubMed]
  10. M.-L. V. Tse, P. Horak, F. Poletti, N. G. Broderick, J. H. Price, J. R. Hayes, and D. J. Richardson, “Supercontinuum generation at 1.06 mum in holey fibers with dispersion flattened profiles,” Opt. Express 14(10), 4445–4451 (2006).
    [Crossref] [PubMed]
  11. K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of Stable Continuum Generation at High Repetition Rates,” IEEE J. Quantum Electron. 36(7), 773–779 (2000).
    [Crossref]
  12. Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide Super-Continuum from a Normal Dispersion Fiber by using a Mode-Locked Semiconductor Laser Source,” IEEE Photon. Technol. Lett. 10(11), 1560–1562 (1998).
    [Crossref]
  13. K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33(21), 1806–1808 (1997).
    [Crossref]
  14. H. Sotobayashi and K. Kitayama, “325nm bandwidth supercontinuum generation at 10Gbit/s using dispersion flattened and non-decreasing normal dispersion fibre with pulse compression,” Electron. Lett. 34(13), 1336–1337 (1998).
    [Crossref]
  15. G. A. Nowak, J. Kim, and M. N. Islam, “Stable supercontinuum generation in short lengths of conventional dispersion-shifted fiber,” Appl. Opt. 38(36), 7364–7369 (1999).
    [Crossref] [PubMed]
  16. A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
    [Crossref] [PubMed]
  17. L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19(6), 4902–4907 (2011).
    [Crossref] [PubMed]
  18. A. M. Heidt, “Pulse preserving flat-top supercontinuum generation in all-normal dispersion photonic crystal fibers,” J. Opt. Soc. Am. B 27(3), 550–559 (2010).
    [Crossref]
  19. Nonlinear Photonic Crystal Fiber NL-1050-NEG-1, http://www.nktphotonics.com
  20. G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
    [Crossref]
  21. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24(8), 1786–1792 (2007).
    [Crossref]
  22. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Boston, 2007).
  23. K. J. Blow and D. Wood, “Theoretical Description of Transient Stimulated Scattering in Optical Fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
    [Crossref]
  24. J. Hult, “A fourth-order runge–kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25(12), 3770–3775 (2007).
    [Crossref]
  25. M. Koshiba and K. Saitoh, “Applicability of classical optical fiber theories to holey fibers,” Opt. Lett. 29(15), 1739–1741 (2004).
    [Crossref] [PubMed]
  26. K. Saitoh and M. Koshiba, “Empirical relations for simple design of photonic crystal fibers,” Opt. Express 13(1), 267–274 (2005).
    [Crossref] [PubMed]
  27. A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tünnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express 19(15), 13873–13879 (2011).
    [Crossref] [PubMed]
  28. S. Demmler, J. Rothhardt, A. M. Heidt, A. Hartung, E. G. Rohwer, H. Bartelt, J. Limpert, and A. Tünnermann, “Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum,” Opt. Express 19(21), 20151–20158 (2011).
    [Crossref] [PubMed]
  29. F. X. Kärtner, Few-Cycle Laser Pulse Generation and Its Applications (Springer, 2004).
  30. Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett. 37(12), 2172–2174 (2012).
    [Crossref] [PubMed]
  31. D. Castelló-Lurbe, P. Andrés, and E. Silvestre, “Dispersion-to-spectrum mapping in nonlinear fibers based on optical wave-breaking,” Opt. Express 21(23), 28550–28558 (2013).
    [Crossref] [PubMed]
  32. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett. 28(20), 1987–1989 (2003).
    [Crossref] [PubMed]

2014 (1)

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[Crossref]

2013 (1)

2012 (1)

2011 (4)

2010 (1)

2007 (2)

2006 (2)

2005 (2)

2004 (2)

2003 (3)

2002 (2)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in microstructure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
[Crossref] [PubMed]

2000 (1)

K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of Stable Continuum Generation at High Repetition Rates,” IEEE J. Quantum Electron. 36(7), 773–779 (2000).
[Crossref]

1999 (1)

1998 (2)

H. Sotobayashi and K. Kitayama, “325nm bandwidth supercontinuum generation at 10Gbit/s using dispersion flattened and non-decreasing normal dispersion fibre with pulse compression,” Electron. Lett. 34(13), 1336–1337 (1998).
[Crossref]

Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide Super-Continuum from a Normal Dispersion Fiber by using a Mode-Locked Semiconductor Laser Source,” IEEE Photon. Technol. Lett. 10(11), 1560–1562 (1998).
[Crossref]

1997 (1)

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33(21), 1806–1808 (1997).
[Crossref]

1989 (1)

K. J. Blow and D. Wood, “Theoretical Description of Transient Stimulated Scattering in Optical Fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[Crossref]

Andersen, T.

Andrés, P.

Bang, O.

Bartelt, H.

Biegert, J.

Blow, K. J.

K. J. Blow and D. Wood, “Theoretical Description of Transient Stimulated Scattering in Optical Fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[Crossref]

Bookey, H.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[Crossref]

Boppart, S. A.

Bosman, G. W.

Broderick, N. G.

Buczynski, R.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[Crossref]

Castelló-Lurbe, D.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28(11), 944–946 (2003).
[Crossref] [PubMed]

De Silvestri, S.

Demmler, S.

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Falk, P.

Frosz, M.

Futami, F.

Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide Super-Continuum from a Normal Dispersion Fiber by using a Mode-Locked Semiconductor Laser Source,” IEEE Photon. Technol. Lett. 10(11), 1560–1562 (1998).
[Crossref]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

Gu, X.

Hansen, K.

Hartung, A.

Hayes, J. R.

Heidt, A. M.

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

Hilligsøe, K. M.

Hooper, L. E.

Horak, P.

Hult, J.

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

Islam, M. N.

Kar, A. K.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[Crossref]

Kawanishi, S.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33(21), 1806–1808 (1997).
[Crossref]

Keiding, S.

Keller, U.

Kikuchi, K.

Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide Super-Continuum from a Normal Dispersion Fiber by using a Mode-Locked Semiconductor Laser Source,” IEEE Photon. Technol. Lett. 10(11), 1560–1562 (1998).
[Crossref]

Kim, J.

Kimmel, M.

Kitayama, K.

H. Sotobayashi and K. Kitayama, “325nm bandwidth supercontinuum generation at 10Gbit/s using dispersion flattened and non-decreasing normal dispersion fibre with pulse compression,” Electron. Lett. 34(13), 1336–1337 (1998).
[Crossref]

Klimczak, M.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[Crossref]

Knight, J. C.

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19(6), 4902–4907 (2011).
[Crossref] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

Koshiba, M.

Kristiansen, R.

Krok, P.

Kubota, H.

K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of Stable Continuum Generation at High Repetition Rates,” IEEE J. Quantum Electron. 36(7), 773–779 (2000).
[Crossref]

Larsen, J.

Limpert, J.

Liu, Y.

Mølmer, K.

Mori, K.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33(21), 1806–1808 (1997).
[Crossref]

Morioka, T.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33(21), 1806–1808 (1997).
[Crossref]

Mosley, P. J.

Muir, A. C.

Nakazawa, M.

K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of Stable Continuum Generation at High Repetition Rates,” IEEE J. Quantum Electron. 36(7), 773–779 (2000).
[Crossref]

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28(11), 944–946 (2003).
[Crossref] [PubMed]

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

Nielsen, C.

Nishizawa, N.

Nisoli, M.

Nowak, G. A.

O’Shea, P.

Paulsen, H.

Poletti, F.

Price, J. H.

Pysz, D.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[Crossref]

Richardson, D. J.

Rohwer, E. G.

Rothhardt, J.

Russell, P. S. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

Saitoh, K.

Sansone, G.

Saruwatari, M.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33(21), 1806–1808 (1997).
[Crossref]

Schenkel, B.

Schwoerer, H.

Shreenath, A. P.

Silvestre, E.

Siwicki, B.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[Crossref]

Sotobayashi, H.

H. Sotobayashi and K. Kitayama, “325nm bandwidth supercontinuum generation at 10Gbit/s using dispersion flattened and non-decreasing normal dispersion fibre with pulse compression,” Electron. Lett. 34(13), 1336–1337 (1998).
[Crossref]

Stagira, S.

Stepien, R.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[Crossref]

Stepniewski, G.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[Crossref]

Svelto, O.

Taghizadeh, M. R.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[Crossref]

Takara, H.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33(21), 1806–1808 (1997).
[Crossref]

Takayanagi, J.

Takushima, Y.

Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide Super-Continuum from a Normal Dispersion Fiber by using a Mode-Locked Semiconductor Laser Source,” IEEE Photon. Technol. Lett. 10(11), 1560–1562 (1998).
[Crossref]

Tamura, K. R.

K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of Stable Continuum Generation at High Repetition Rates,” IEEE J. Quantum Electron. 36(7), 773–779 (2000).
[Crossref]

Trebino, R.

Tse, M.-L. V.

Tu, H.

Tünnermann, A.

Vozzi, C.

Waddie, A. J.

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[Crossref]

Wadsworth, W. J.

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19(6), 4902–4907 (2011).
[Crossref] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

Washburn, B. R.

Weber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

Windeler, R. S.

Wood, D.

K. J. Blow and D. Wood, “Theoretical Description of Transient Stimulated Scattering in Optical Fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[Crossref]

Xu, L.

Zeek, E.

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

Appl. Opt. (1)

Electron. Lett. (2)

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33(21), 1806–1808 (1997).
[Crossref]

H. Sotobayashi and K. Kitayama, “325nm bandwidth supercontinuum generation at 10Gbit/s using dispersion flattened and non-decreasing normal dispersion fibre with pulse compression,” Electron. Lett. 34(13), 1336–1337 (1998).
[Crossref]

IEEE J. Quantum Electron. (2)

K. R. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of Stable Continuum Generation at High Repetition Rates,” IEEE J. Quantum Electron. 36(7), 773–779 (2000).
[Crossref]

K. J. Blow and D. Wood, “Theoretical Description of Transient Stimulated Scattering in Optical Fibers,” IEEE J. Quantum Electron. 25(12), 2665–2673 (1989).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Y. Takushima, F. Futami, and K. Kikuchi, “Generation of over 140-nm-wide Super-Continuum from a Normal Dispersion Fiber by using a Mode-Locked Semiconductor Laser Source,” IEEE Photon. Technol. Lett. 10(11), 1560–1562 (1998).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Laser Phys. Lett. (1)

G. Stepniewski, M. Klimczak, H. Bookey, B. Siwicki, D. Pysz, R. Stepien, A. K. Kar, A. J. Waddie, M. R. Taghizadeh, and R. Buczynski, “Broadband supercontinuum generation in normal dispersion all-solid photonic crystal fiber pumped near 1300 nm,” Laser Phys. Lett. 11(5), 055103 (2014).
[Crossref]

Opt. Express (9)

K. Saitoh and M. Koshiba, “Empirical relations for simple design of photonic crystal fibers,” Opt. Express 13(1), 267–274 (2005).
[Crossref] [PubMed]

A. M. Heidt, J. Rothhardt, A. Hartung, H. Bartelt, E. G. Rohwer, J. Limpert, and A. Tünnermann, “High quality sub-two cycle pulses from compression of supercontinuum generated in all-normal dispersion photonic crystal fiber,” Opt. Express 19(15), 13873–13879 (2011).
[Crossref] [PubMed]

S. Demmler, J. Rothhardt, A. M. Heidt, A. Hartung, E. G. Rohwer, H. Bartelt, J. Limpert, and A. Tünnermann, “Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum,” Opt. Express 19(21), 20151–20158 (2011).
[Crossref] [PubMed]

D. Castelló-Lurbe, P. Andrés, and E. Silvestre, “Dispersion-to-spectrum mapping in nonlinear fibers based on optical wave-breaking,” Opt. Express 21(23), 28550–28558 (2013).
[Crossref] [PubMed]

A. M. Heidt, A. Hartung, G. W. Bosman, P. Krok, E. G. Rohwer, H. Schwoerer, and H. Bartelt, “Coherent octave spanning near-infrared and visible supercontinuum generation in all-normal dispersion photonic crystal fibers,” Opt. Express 19(4), 3775–3787 (2011).
[Crossref] [PubMed]

L. E. Hooper, P. J. Mosley, A. C. Muir, W. J. Wadsworth, and J. C. Knight, “Coherent supercontinuum generation in photonic crystal fiber with all-normal group velocity dispersion,” Opt. Express 19(6), 4902–4907 (2011).
[Crossref] [PubMed]

K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12(6), 1045–1054 (2004).
[Crossref] [PubMed]

M. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13(16), 6181–6192 (2005).
[Crossref] [PubMed]

M.-L. V. Tse, P. Horak, F. Poletti, N. G. Broderick, J. H. Price, J. R. Hayes, and D. J. Richardson, “Supercontinuum generation at 1.06 mum in holey fibers with dispersion flattened profiles,” Opt. Express 14(10), 4445–4451 (2006).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Rev. Lett. (2)

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90(11), 113904 (2003).
[Crossref] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. S. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (5)

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge 2010).

R. R. Alfano, The Supercontinuum Laser Source, 2nd ed. (Springer, 2006).

Nonlinear Photonic Crystal Fiber NL-1050-NEG-1, http://www.nktphotonics.com

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Boston, 2007).

F. X. Kärtner, Few-Cycle Laser Pulse Generation and Its Applications (Springer, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Calculated dispersion profile and mode field diameter (MFD) of an all-normal dispersion photonic crystal fiber (ANDi PCF).
Fig. 2
Fig. 2 Microphotography of the cross-section and the core of the fabricated all-normal dispersion photonic crystal fiber (ANDi PCF), with Λ = 1.0 μm and d = 0.53 μm.
Fig. 3
Fig. 3 Supercontinuum generation in an all-normal dispersion photonic crystal fiber (ANDi PCF) of 10 cm length at 800 nm. a) Pulse profiles in temporal domain. b) Pulse spectra. c) Pulse spectra in a logarithmic scale. Peak powers of pump pulses are (color coded) 44 kW (pink), 88 kW (blue), 44 kW (black), 88 kW (green), 44 kW (red).
Fig. 4
Fig. 4 Compression of pulses obtained at the output of the all-normal dispersion photonic crystal fiber (ANDi PCF) shown in Fig. 3 a). a) Compensation of only linear chirp. b) Full phase compensation. Peak powers of pump pulses are (color coded) 44 kW (pink), 88 kW (blue), 44 kW (black), 88 kW (green), 44 kW (red).
Fig. 5
Fig. 5 Supercontinuum generation and pulse compression in an all-normal dispersion photonic crystal fiber (ANDi PCF) of 10 cm length at different wavelengths. In all cases, the initial pulse energy is 5 nJ and the pulse duration is 100 fs, which corresponds to 44 kW of peak power. a) Pulse profiles in temporal domain. b) Pulse spectra. c) Compressed pulses with compensation of only a linear chirp. d) Compressed pulses, full phase compensation.
Fig. 6
Fig. 6 The influence of fabrication errors on the properties of an all-normal dispersion photonic crystal fiber (ANDi PCF), supercontinuum (SC) spectrum, and pulse compression. Only diameter of air holes is changed ( Λ,d±5%; Λ,d±10% ). a) Fiber’s dispersion. b) Mode field diameter (MFD), c) Pulse profiles in temporal domain. d) Pulse spectra. e) Compressed pulses with compensation of only a linear chirp. f) Compressed pulses, full phase compensation.
Fig. 7
Fig. 7 The influence of fabrication errors on the properties of all-normal dispersion photonic crystal fiber (ANDi PCF), supercontinuum (SC) spectrum, and pulse compression. Only pitch is changed ( Λ±5%,d; Λ±10%,d ). a) Fiber’s dispersion. b) Mode field diameter (MFD). c) Pulse profiles in temporal domain. d) Pulse spectra. e) Compressed pulses with compensation of only a linear chirp. f) Compressed pulses, full phase compensation.
Fig. 8
Fig. 8 The influence of fabrication errors on the properties of all-normal dispersion photonic crystal fiber (ANDi PCF), supercontinuum (SC) spectrum, and pulse compression. Both diameter of air holes and pitch are changed ( Λ±5% , d±5% ; d±10% , Λ±10% ). a) Fiber dispersion. b) Mode field diameter (MFD). c) Pulse profiles in temporal domain. d) Pulse spectra, e) Compressed pulses with compensation of only a linear chirp. f) Compressed pulses, full phase compensation.
Fig. 9
Fig. 9 The influence of fabrication errors on the properties of all-normal dispersion photonic crystal fiber (ANDi PCF), supercontinuum (SC) spectrum and pulse compression. Both diameter of air holes and pitch are changed ( Λ±5% , d5% ; Λ±10% , d10% ). a) Fiber dispersion. b) Mode field diameter (MFD). c) Pulse profiles in temporal domain. d) Pulse spectra. e) Compressed pulses with compensation of only a linear chirp. f) Compressed pulses, full phase compensation.
Fig. 10
Fig. 10 Correction of spectral shape by tuning the pump. a) Correction of spectral shape for the case of fabrication error Λ, d10% (see Fig. 6). b) Correction of spectral shape for the case of fabrication error Λ, d+10% (see Fig. 6). c) Correction of spectral shape for the case of fabrication error Λ+10%, d (see Fig. 7). d) Correction of spectral shape for the case of fabrication error Λ10%, d (see Fig. 7). Peak powers of pump pulses are (color coded) 44 kW (pink), 88 kW (blue), 44 kW (black), 88 kW (green), 44 kW (red).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A(z,T) z =( D ^ + N ^ )A(z,T),
D ^ = α 2 +( k2 i k+1 k! β k k T k ).
N ^ =iγ 1 A(z,T) ( 1+i τ shock T )×( A(z,T) R ( T' )| A( z,T T ) |d T ).
h R (t)= τ 1 2 + τ 2 2 τ 1 τ 2 2 exp( t τ 2 )sin( t τ 1 ),
γ= ω 0 n 2 ( ω 0 ) c A eff ( ω 0 ) ,

Metrics