Abstract

We investigate THz absorption properties of graphene-based heterostructures by using characteristics matrix method based on conductivity. We demonstrate that the proposed structure can lead to perfect THz absorption because of strong photon localization in the defect layer of the heterostructure. The THz absorption may be tuned continuously from 0 to 100% by controlling the chemical potential through a gate voltage. By adjusting the incident angle or the period number of the two PCs with respect to the graphene layer, one can tailor the maximum THz absorption value. The position of the THz absorption peaks can be tuned by changing either the center wavelength or the thicknesses ratio of the layers constituting the heterostructure. Our proposal may have potentially important applications in optoelectronic devices.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hollow-petal graphene metasurface for broadband tunable THz absorption

Shuang Wu and Jiu-sheng Li
Appl. Opt. 58(11) 3023-3028 (2019)

Magnetically tunable enhanced absorption of circularly polarized light in graphene-based 1D photonic crystals

Arezou Rashidi, Abdolrahman Namdar, and Reza Abdi-Ghaleh
Appl. Opt. 56(21) 5914-5919 (2017)

Tunable, omnidirectional, and nearly perfect resonant absorptions by a graphene-hBN-based hole array metamaterial

Hodjat Hajian, Amir Ghobadi, Bayram Butun, and Ekmel Ozbay
Opt. Express 26(13) 16940-16954 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
    [Crossref] [PubMed]
  2. N. M. R. Peres, “Transport properties of grapheme,” Rev. Mod. Phys. 82, 2673–2700 (2010).
    [Crossref]
  3. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  4. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  5. F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
    [Crossref] [PubMed]
  6. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  7. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  8. C. Hägglund and S. P. Apell, “Resource efficient plasmon-based 2D-photovoltaics with reflective support,” Opt. Express 18(S3Suppl 3), A343–A356 (2010).
    [Crossref] [PubMed]
  9. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
    [Crossref] [PubMed]
  10. A. Ferreira and N. M. R. Peres, “Complete light absorption in graphene metamaterial corrugated structures,” Phys. Rev. B 86(20), 205401 (2012).
    [Crossref]
  11. G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
    [Crossref] [PubMed]
  12. Q. Ye, J. Wang, Z. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
    [Crossref]
  13. Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci Rep 4, 5483 (2014).
    [Crossref] [PubMed]
  14. A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
    [Crossref]
  15. A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
    [Crossref] [PubMed]
  16. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  17. A. C. Neto, F. Guinea, N. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
    [Crossref]
  18. K. Ziegler, “Robust transport properties in graphene,” Phys. Rev. Lett. 97(26), 266802 (2006).
    [Crossref] [PubMed]
  19. V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Unusual microwave response of dirac quasiparticles in graphene,” Phys. Rev. Lett. 96(25), 256802 (2006).
    [Crossref] [PubMed]
  20. S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
    [Crossref] [PubMed]
  21. G. W. Hanson, “Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104(8), 084314 (2008).
    [Crossref]
  22. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1998).
  23. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

2014 (1)

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci Rep 4, 5483 (2014).
[Crossref] [PubMed]

2013 (3)

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Q. Ye, J. Wang, Z. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
[Crossref] [PubMed]

2012 (4)

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

A. Ferreira and N. M. R. Peres, “Complete light absorption in graphene metamaterial corrugated structures,” Phys. Rev. B 86(20), 205401 (2012).
[Crossref]

2011 (1)

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

2010 (4)

N. M. R. Peres, “Transport properties of grapheme,” Rev. Mod. Phys. 82, 2673–2700 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

C. Hägglund and S. P. Apell, “Resource efficient plasmon-based 2D-photovoltaics with reflective support,” Opt. Express 18(S3Suppl 3), A343–A356 (2010).
[Crossref] [PubMed]

2009 (1)

A. C. Neto, F. Guinea, N. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

2008 (2)

G. W. Hanson, “Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104(8), 084314 (2008).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

2007 (3)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
[Crossref] [PubMed]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2006 (2)

K. Ziegler, “Robust transport properties in graphene,” Phys. Rev. Lett. 97(26), 266802 (2006).
[Crossref] [PubMed]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Unusual microwave response of dirac quasiparticles in graphene,” Phys. Rev. Lett. 96(25), 256802 (2006).
[Crossref] [PubMed]

Andryieuski, A.

Apell, S. P.

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Carbotte, J. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Unusual microwave response of dirac quasiparticles in graphene,” Phys. Rev. Lett. 96(25), 256802 (2006).
[Crossref] [PubMed]

Chang, D. E.

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Chen, X. D.

Q. Ye, J. Wang, Z. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

Dai, X.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci Rep 4, 5483 (2014).
[Crossref] [PubMed]

Deng, Z. C.

Q. Ye, J. Wang, Z. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

Fallahi, A.

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

Ferrari, A.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Ferreira, A.

A. Ferreira and N. M. R. Peres, “Complete light absorption in graphene metamaterial corrugated structures,” Phys. Rev. B 86(20), 205401 (2012).
[Crossref]

García de Abajo, F. J.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Geim, A. K.

A. C. Neto, F. Guinea, N. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Gómez Rivas, J.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Guinea, F.

A. C. Neto, F. Guinea, N. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Guo, J.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci Rep 4, 5483 (2014).
[Crossref] [PubMed]

Gusynin, V. P.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Unusual microwave response of dirac quasiparticles in graphene,” Phys. Rev. Lett. 96(25), 256802 (2006).
[Crossref] [PubMed]

Hägglund, C.

Hanson, G. W.

G. W. Hanson, “Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104(8), 084314 (2008).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Kong, X. T.

Q. Ye, J. Wang, Z. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lavrinenko, A. V.

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, Z.

Q. Ye, J. Wang, Z. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

Lozano, G.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Martín Moreno, L.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Mikhailov, S. A.

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
[Crossref] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Neto, A. C.

A. C. Neto, F. Guinea, N. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

A. C. Neto, F. Guinea, N. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Peres, N.

A. C. Neto, F. Guinea, N. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Peres, N. M. R.

A. Ferreira and N. M. R. Peres, “Complete light absorption in graphene metamaterial corrugated structures,” Phys. Rev. B 86(20), 205401 (2012).
[Crossref]

N. M. R. Peres, “Transport properties of grapheme,” Rev. Mod. Phys. 82, 2673–2700 (2010).
[Crossref]

Perruisseau-Carrier, J.

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

Pirruccio, G.

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sharapov, S. G.

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Unusual microwave response of dirac quasiparticles in graphene,” Phys. Rev. Lett. 96(25), 256802 (2006).
[Crossref] [PubMed]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Tang, D.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci Rep 4, 5483 (2014).
[Crossref] [PubMed]

Thongrattanasiri, S.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

Tian, J. G.

Q. Ye, J. Wang, Z. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Wang, J.

Q. Ye, J. Wang, Z. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Wen, S.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci Rep 4, 5483 (2014).
[Crossref] [PubMed]

Xiang, Y.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci Rep 4, 5483 (2014).
[Crossref] [PubMed]

Xing, F.

Q. Ye, J. Wang, Z. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

Ye, Q.

Q. Ye, J. Wang, Z. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

Zhang, C. P.

Q. Ye, J. Wang, Z. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

Zhang, H.

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci Rep 4, 5483 (2014).
[Crossref] [PubMed]

Zhou, W. Y.

Q. Ye, J. Wang, Z. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

Ziegler, K.

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
[Crossref] [PubMed]

K. Ziegler, “Robust transport properties in graphene,” Phys. Rev. Lett. 97(26), 266802 (2006).
[Crossref] [PubMed]

ACS Nano (1)

G. Pirruccio, L. Martín Moreno, G. Lozano, and J. Gómez Rivas, “Coherent and broadband enhanced optical absorption in graphene,” ACS Nano 7(6), 4810–4817 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

Q. Ye, J. Wang, Z. Liu, Z. C. Deng, X. T. Kong, F. Xing, X. D. Chen, W. Y. Zhou, C. P. Zhang, and J. G. Tian, “Polarization-dependent optical absorption of graphene under total internal reflection,” Appl. Phys. Lett. 102(2), 021912 (2013).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide,” J. Appl. Phys. 104(8), 084314 (2008).
[Crossref]

Nano Lett. (2)

F. H. L. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light-matter interactions,” Nano Lett. 11(8), 3370–3377 (2011).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6(3), 183–191 (2007).
[Crossref] [PubMed]

Nat. Photonics (3)

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Opt. Express (2)

Phys. Rev. B (2)

A. Ferreira and N. M. R. Peres, “Complete light absorption in graphene metamaterial corrugated structures,” Phys. Rev. B 86(20), 205401 (2012).
[Crossref]

A. Fallahi and J. Perruisseau-Carrier, “Design of tunable biperiodic graphene metasurfaces,” Phys. Rev. B 86(19), 195408 (2012).
[Crossref]

Phys. Rev. Lett. (5)

K. Ziegler, “Robust transport properties in graphene,” Phys. Rev. Lett. 97(26), 266802 (2006).
[Crossref] [PubMed]

V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, “Unusual microwave response of dirac quasiparticles in graphene,” Phys. Rev. Lett. 96(25), 256802 (2006).
[Crossref] [PubMed]

S. A. Mikhailov and K. Ziegler, “New electromagnetic mode in graphene,” Phys. Rev. Lett. 99(1), 016803 (2007).
[Crossref] [PubMed]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012).
[Crossref] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Rev. Mod. Phys. (2)

N. M. R. Peres, “Transport properties of grapheme,” Rev. Mod. Phys. 82, 2673–2700 (2010).
[Crossref]

A. C. Neto, F. Guinea, N. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys. 81(1), 109–162 (2009).
[Crossref]

Sci Rep (1)

Y. Xiang, X. Dai, J. Guo, H. Zhang, S. Wen, and D. Tang, “Critical coupling with graphene-based hyperbolic metamaterials,” Sci Rep 4, 5483 (2014).
[Crossref] [PubMed]

Other (2)

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1998).

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Sketch of the heterostructure (ab) M Gr (ba) N with a monolayer graphene defect layer.
Fig. 2
Fig. 2 (a) Absorption as a function of frequencies ω of light for bare graphene and graphene within the defect layer of the heterostructure (Si/SiO2)MGr(SiO2/Si)N in Fig. 1 with μ c = 0.378 eV and ε Si O 2 = 3.9, (inset) electric field distribution in the 1DPC with ε Si O 2 = 3.9. (b) Map of the absorption peak value as a function of the period number M and N. (c) THz absorption and electric field distribution for the case of M = 2 and N = 5 with a finite absorption loss in SiO2. A typical value, for reference, 4.14 meV corresponds to 1 THz.
Fig. 3
Fig. 3 THz absorption maps as a function of the light frequencies and the incident angles for TE and TM incident lights for the heterostructure (Si/SiO2)2Gr(SiO2/Si)5 with μ c = 0.25 eV.
Fig. 4
Fig. 4 (a) THz absorption as a function of the chemical potentials μ c for graphene within the defect layer of the heterostructure (Si/SiO2)2Gr(SiO2/Si)5 with ω = 16 meV. (b) Intensity plot of the absorption as a function of the chemical potentials μ c and the light frequenciesω.
Fig. 5
Fig. 5 (a) THz absorption as a function of d Si O 2 / d Si for graphene within the defect layer of the 1DPC heterostructure (Si/SiO2)2Gr(SiO2/Si)5 with ω = 16 meV and μ c = 0.25 eV in Fig. 1. (b) Intensity plot of the absorption as a function of λ 0 and ω with μ c = 0.25 eV.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

σ= e 2 π 2 k B T Γiω [ μ c k B T +2ln(e μ c / k B T +1)].
E j =( A j + e i k j,z z + A j e i k j,z z ) e ^ x ,
H j = 1 iω μ 0 μ j × E j = k j,z μ 0 μ j ω ( A j + e i k j,z z A j e i k j,z z ) e ^ y ,
D i,j = 1 2 ( 1+ κ j,z / κ i,z 1 κ j,z / κ i,z 1 κ j,z / κ i,z 1+ κ j,z / κ i,z ),
P j =( exp(-i k j,z d j ) 0 0 exp(i k j,z d j ) ),
n ^ ×( E L E R )=0,
n ^ ×( H L H R )=σ E R ,
( A L + A L )= T g ( A R + A R ),
( A 0 + A 0 )= T L T g T R ( A sub + 0 )=( T 11 T 12 T 21 T 22 )( A sub + 0 ),

Metrics