Abstract

We report the observation of the dichroism effect in simple wire grid structures made of graphite on a paper substrate, i.e. we investigate the feasibility of drawing polarizers for the THz band using conventional graphite-based lead pencils. The displacement of the maximum frequency of the selective absorption phenomenon by varying the wire pitch hints at a polarizing behavior. Measurements of the maximum and minimum of transmission efficiency, extinction ratio and degree of polarization are carried out with a transmission fiber THz-TDS setup. Experimental results show a 9 dB extinction ratio for an inexpensive (<1$) home-made component.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Composite THz materials using aligned metallic and semiconductor microwires, experiments and interpretation

Anna Mazhorova, Jian Feng Gu, Alexandre Dupuis, Marco Peccianti, Ozaki Tsuneyuki, Roberto Morandotti, Hiroaki Minamide, Ming Tang, Yuye Wang, Hiromasa Ito, and Maksim Skorobogatiy
Opt. Express 18(24) 24632-24647 (2010)

Design and fabrication of 3-D printed conductive polymer structures for THz polarization control

A. I. Hernandez-Serrano, Qiushuo Sun, Elizabeth G. Bishop, Elliott R. Griffiths, Christopher P. Purssell, Simon J. Leigh, J. Lloyd-Hughes, and Emma Pickwell-MacPherson
Opt. Express 27(8) 11635-11641 (2019)

High extinction ratio and low transmission loss thin-film terahertz polarizer with a tunable bilayer metal wire-grid structure

Zhe Huang, Edward P. J. Parrott, Hongkyu Park, Hau Ping Chan, and Emma Pickwell-MacPherson
Opt. Lett. 39(4) 793-796 (2014)

References

  • View by:
  • |
  • |
  • |

  1. C. C. Homes, G. L. Carr, R. P. S. M. Lobo, J. D. LaVeigne, and D. B. Tanner, “Silicon beam splitter for far-infrared and terahertz spectroscopy,” Appl. Phys. Lett. 46(32), 7884–7888 (2007).
  2. M. Nagai, N. Mukai, Y. Minowa, M. Ashida, J. Takayanagi, and H. Ohtake, “Achromatic THz wave plate composed of stacked parallel metal plates,” Opt. Lett. 39(1), 146–149 (2014).
    [Crossref]
  3. A. M. Melo, A. L. Gobbi, M. H. O. Piazzetta, and Alexandre M. P. A. Da Silva, “Cross-shaped terahertz metal mesh filters: historical review and results,” Adv. Opt. Tech. 2012, 530512 (2012).
    [Crossref]
  4. F. Yan, C. Yu, H. Park, E. P. J. Parrott, and E. Pickwell-MacPherson, “Advances in polarizer technology for terahertz frequency applications,” J. Infrared Milli Terahz Waves 34(9), 489–499 (2013).
    [Crossref]
  5. E. Castro-Camus, “Polarization-resolved terahertz time-domain spectroscopy,” J. Infrared Milli Terahz Waves 33(4), 418–430 (2011).
    [Crossref]
  6. I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett. 34(3), 103206 (2009).
    [Crossref]
  7. J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
    [Crossref]
  8. D. Polley, A. Ganguly, A. Barman, and R. K. Mitra, “Polarizing effect of aligned nanoparticles in terahertz frequency region,” Opt. Lett. 38(15), 188660 (2013).
    [Crossref]
  9. L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
    [Crossref] [PubMed]
  10. J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. Ovalle Robles, X. Lepró, Y. H. Kim, Ray H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
    [Crossref] [PubMed]
  11. L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
    [Crossref] [PubMed]
  12. B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express 19(25), 24884–24889 (2011).
    [Crossref]
  13. B. S.-Y. Ung, B. Weng, D. Abbott, S. T. Cundiff, and C. Fumeaux, “Inkjet printed conductive polymer-based beam-splitters for terahertz applications,” Opt. Mater. Express 3(9), 1242–1249 (2013).
    [Crossref]
  14. B. S.-Y. Ung, C. Fumeaux, H. Lin, B. M. Fischer, Brian W.-H. Ng, and D. Abbott, “Low-cost ultra-thin broadband terahertz beam-splitter,” Opt. Express 20(5), 4968–4978 (2012).
    [Crossref] [PubMed]
  15. S.-H. Lee, S. Gee, Ck, and C.-S. Kee, “Terahertz wave transmission properties of metallic periodic structures printed on a photo-paper,” J. Opt. Soc. Korea 14(3), 282–285 (2010).
    [Crossref]
  16. T. Kondo, T. Nagashima, and M. Hangyo, “Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer,” Jpn. J. Appl. Phys 42(4A), 373–375 (2003).
    [Crossref]
  17. M. Walther, A. Ortner, H. Meier, U. Löffelmann, P. J. Smith, and J. G. Korvink, “Terahertz metamaterials fabricated by inkjet printing,” Appl. Phys. Lett. 95, 251107 (2009).
    [Crossref]
  18. E. Abraham, A. Younus, A. El Fatimy, J. C. Delagnes, E. Nguéma, and P. Mounax, “Broadband terahertz imaging of documents written with lead pencils,” Opt. Commun. 282(15), 3104–3107 (2009).
    [Crossref]
  19. A. Pärtanen, J. Väyrynen, S. Hassinen, H. Tuovinen, J. Mutanen, T. Itkonen, P. Silfsten, P. Pääkkönen, M. Kuittinen, K. Mönkkönen, and T. Venälïnen, “Fabrication of terahertz wire-grid polarizers,” Appl. Opt. 51(35), 8360–8365 (2012).
    [Crossref] [PubMed]
  20. Nondestructive Resource Center, “The Physics FactBoook,” https://www.nde-ed.org/ .
  21. A. Das, T. Schutzius, C. M. Megaridis, S. Subhechha, T. Wang, and L. Liu, “Quasi-optical polarizers enabled by inkjet printing of carbon nanocomposites,” Appl. Phys. Lett. 101(24), 243108 (2012).
    [Crossref]

2014 (1)

2013 (3)

B. S.-Y. Ung, B. Weng, D. Abbott, S. T. Cundiff, and C. Fumeaux, “Inkjet printed conductive polymer-based beam-splitters for terahertz applications,” Opt. Mater. Express 3(9), 1242–1249 (2013).
[Crossref]

F. Yan, C. Yu, H. Park, E. P. J. Parrott, and E. Pickwell-MacPherson, “Advances in polarizer technology for terahertz frequency applications,” J. Infrared Milli Terahz Waves 34(9), 489–499 (2013).
[Crossref]

D. Polley, A. Ganguly, A. Barman, and R. K. Mitra, “Polarizing effect of aligned nanoparticles in terahertz frequency region,” Opt. Lett. 38(15), 188660 (2013).
[Crossref]

2012 (5)

A. M. Melo, A. L. Gobbi, M. H. O. Piazzetta, and Alexandre M. P. A. Da Silva, “Cross-shaped terahertz metal mesh filters: historical review and results,” Adv. Opt. Tech. 2012, 530512 (2012).
[Crossref]

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

A. Das, T. Schutzius, C. M. Megaridis, S. Subhechha, T. Wang, and L. Liu, “Quasi-optical polarizers enabled by inkjet printing of carbon nanocomposites,” Appl. Phys. Lett. 101(24), 243108 (2012).
[Crossref]

B. S.-Y. Ung, C. Fumeaux, H. Lin, B. M. Fischer, Brian W.-H. Ng, and D. Abbott, “Low-cost ultra-thin broadband terahertz beam-splitter,” Opt. Express 20(5), 4968–4978 (2012).
[Crossref] [PubMed]

A. Pärtanen, J. Väyrynen, S. Hassinen, H. Tuovinen, J. Mutanen, T. Itkonen, P. Silfsten, P. Pääkkönen, M. Kuittinen, K. Mönkkönen, and T. Venälïnen, “Fabrication of terahertz wire-grid polarizers,” Appl. Opt. 51(35), 8360–8365 (2012).
[Crossref] [PubMed]

2011 (3)

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. Ovalle Robles, X. Lepró, Y. H. Kim, Ray H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

E. Castro-Camus, “Polarization-resolved terahertz time-domain spectroscopy,” J. Infrared Milli Terahz Waves 33(4), 418–430 (2011).
[Crossref]

B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express 19(25), 24884–24889 (2011).
[Crossref]

2010 (1)

2009 (4)

M. Walther, A. Ortner, H. Meier, U. Löffelmann, P. J. Smith, and J. G. Korvink, “Terahertz metamaterials fabricated by inkjet printing,” Appl. Phys. Lett. 95, 251107 (2009).
[Crossref]

E. Abraham, A. Younus, A. El Fatimy, J. C. Delagnes, E. Nguéma, and P. Mounax, “Broadband terahertz imaging of documents written with lead pencils,” Opt. Commun. 282(15), 3104–3107 (2009).
[Crossref]

I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett. 34(3), 103206 (2009).
[Crossref]

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

2007 (2)

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[Crossref]

C. C. Homes, G. L. Carr, R. P. S. M. Lobo, J. D. LaVeigne, and D. B. Tanner, “Silicon beam splitter for far-infrared and terahertz spectroscopy,” Appl. Phys. Lett. 46(32), 7884–7888 (2007).

2003 (1)

T. Kondo, T. Nagashima, and M. Hangyo, “Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer,” Jpn. J. Appl. Phys 42(4A), 373–375 (2003).
[Crossref]

Abbott, D.

Abraham, E.

E. Abraham, A. Younus, A. El Fatimy, J. C. Delagnes, E. Nguéma, and P. Mounax, “Broadband terahertz imaging of documents written with lead pencils,” Opt. Commun. 282(15), 3104–3107 (2009).
[Crossref]

Arikawa, T.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Ashida, M.

Barman, A.

D. Polley, A. Ganguly, A. Barman, and R. K. Mitra, “Polarizing effect of aligned nanoparticles in terahertz frequency region,” Opt. Lett. 38(15), 188660 (2013).
[Crossref]

Baughman, Ray H.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. Ovalle Robles, X. Lepró, Y. H. Kim, Ray H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Booshehri, L. G.

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Carr, G. L.

C. C. Homes, G. L. Carr, R. P. S. M. Lobo, J. D. LaVeigne, and D. B. Tanner, “Silicon beam splitter for far-infrared and terahertz spectroscopy,” Appl. Phys. Lett. 46(32), 7884–7888 (2007).

Castro-Camus, E.

E. Castro-Camus, “Polarization-resolved terahertz time-domain spectroscopy,” J. Infrared Milli Terahz Waves 33(4), 418–430 (2011).
[Crossref]

Ck,

Cundiff, S. T.

Da Silva, Alexandre M. P. A.

A. M. Melo, A. L. Gobbi, M. H. O. Piazzetta, and Alexandre M. P. A. Da Silva, “Cross-shaped terahertz metal mesh filters: historical review and results,” Adv. Opt. Tech. 2012, 530512 (2012).
[Crossref]

Das, A.

A. Das, T. Schutzius, C. M. Megaridis, S. Subhechha, T. Wang, and L. Liu, “Quasi-optical polarizers enabled by inkjet printing of carbon nanocomposites,” Appl. Phys. Lett. 101(24), 243108 (2012).
[Crossref]

Delagnes, J. C.

E. Abraham, A. Younus, A. El Fatimy, J. C. Delagnes, E. Nguéma, and P. Mounax, “Broadband terahertz imaging of documents written with lead pencils,” Opt. Commun. 282(15), 3104–3107 (2009).
[Crossref]

Deng, X.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[Crossref]

El Fatimy, A.

E. Abraham, A. Younus, A. El Fatimy, J. C. Delagnes, E. Nguéma, and P. Mounax, “Broadband terahertz imaging of documents written with lead pencils,” Opt. Commun. 282(15), 3104–3107 (2009).
[Crossref]

Fischer, B. M.

Fumeaux, C.

Ganguly, A.

D. Polley, A. Ganguly, A. Barman, and R. K. Mitra, “Polarizing effect of aligned nanoparticles in terahertz frequency region,” Opt. Lett. 38(15), 188660 (2013).
[Crossref]

Gee, S.

Gobbi, A. L.

A. M. Melo, A. L. Gobbi, M. H. O. Piazzetta, and Alexandre M. P. A. Da Silva, “Cross-shaped terahertz metal mesh filters: historical review and results,” Adv. Opt. Tech. 2012, 530512 (2012).
[Crossref]

Hangyo, M.

I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett. 34(3), 103206 (2009).
[Crossref]

T. Kondo, T. Nagashima, and M. Hangyo, “Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer,” Jpn. J. Appl. Phys 42(4A), 373–375 (2003).
[Crossref]

Hassinen, S.

Hauge, R. H.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Hilton, D. J.

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Homes, C. C.

C. C. Homes, G. L. Carr, R. P. S. M. Lobo, J. D. LaVeigne, and D. B. Tanner, “Silicon beam splitter for far-infrared and terahertz spectroscopy,” Appl. Phys. Lett. 46(32), 7884–7888 (2007).

Itkonen, T.

Jang, E. Y.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. Ovalle Robles, X. Lepró, Y. H. Kim, Ray H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Kawayama, I.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Kee, C.-S.

Kim, D.-S.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. Ovalle Robles, X. Lepró, Y. H. Kim, Ray H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Kim, Y. H.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. Ovalle Robles, X. Lepró, Y. H. Kim, Ray H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Koch, M.

Kondo, T.

T. Kondo, T. Nagashima, and M. Hangyo, “Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer,” Jpn. J. Appl. Phys 42(4A), 373–375 (2003).
[Crossref]

Kono, J.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Korvink, J. G.

M. Walther, A. Ortner, H. Meier, U. Löffelmann, P. J. Smith, and J. G. Korvink, “Terahertz metamaterials fabricated by inkjet printing,” Appl. Phys. Lett. 95, 251107 (2009).
[Crossref]

Kuittinen, M.

Kyoung, J.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. Ovalle Robles, X. Lepró, Y. H. Kim, Ray H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

LaVeigne, J. D.

C. C. Homes, G. L. Carr, R. P. S. M. Lobo, J. D. LaVeigne, and D. B. Tanner, “Silicon beam splitter for far-infrared and terahertz spectroscopy,” Appl. Phys. Lett. 46(32), 7884–7888 (2007).

Lee, S.-H.

Lepró, X.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. Ovalle Robles, X. Lepró, Y. H. Kim, Ray H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Lima, M. D.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. Ovalle Robles, X. Lepró, Y. H. Kim, Ray H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Lin, H.

Liu, L.

A. Das, T. Schutzius, C. M. Megaridis, S. Subhechha, T. Wang, and L. Liu, “Quasi-optical polarizers enabled by inkjet printing of carbon nanocomposites,” Appl. Phys. Lett. 101(24), 243108 (2012).
[Crossref]

Liu, X.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[Crossref]

Lobo, R. P. S. M.

C. C. Homes, G. L. Carr, R. P. S. M. Lobo, J. D. LaVeigne, and D. B. Tanner, “Silicon beam splitter for far-infrared and terahertz spectroscopy,” Appl. Phys. Lett. 46(32), 7884–7888 (2007).

Löffelmann, U.

M. Walther, A. Ortner, H. Meier, U. Löffelmann, P. J. Smith, and J. G. Korvink, “Terahertz metamaterials fabricated by inkjet printing,” Appl. Phys. Lett. 95, 251107 (2009).
[Crossref]

Megaridis, C. M.

A. Das, T. Schutzius, C. M. Megaridis, S. Subhechha, T. Wang, and L. Liu, “Quasi-optical polarizers enabled by inkjet printing of carbon nanocomposites,” Appl. Phys. Lett. 101(24), 243108 (2012).
[Crossref]

Meier, H.

M. Walther, A. Ortner, H. Meier, U. Löffelmann, P. J. Smith, and J. G. Korvink, “Terahertz metamaterials fabricated by inkjet printing,” Appl. Phys. Lett. 95, 251107 (2009).
[Crossref]

Melo, A. M.

A. M. Melo, A. L. Gobbi, M. H. O. Piazzetta, and Alexandre M. P. A. Da Silva, “Cross-shaped terahertz metal mesh filters: historical review and results,” Adv. Opt. Tech. 2012, 530512 (2012).
[Crossref]

Minowa, Y.

Mitra, R. K.

D. Polley, A. Ganguly, A. Barman, and R. K. Mitra, “Polarizing effect of aligned nanoparticles in terahertz frequency region,” Opt. Lett. 38(15), 188660 (2013).
[Crossref]

Mönkkönen, K.

Mounax, P.

E. Abraham, A. Younus, A. El Fatimy, J. C. Delagnes, E. Nguéma, and P. Mounax, “Broadband terahertz imaging of documents written with lead pencils,” Opt. Commun. 282(15), 3104–3107 (2009).
[Crossref]

Mukai, N.

Mutanen, J.

Nagai, M.

Nagashima, T.

T. Kondo, T. Nagashima, and M. Hangyo, “Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer,” Jpn. J. Appl. Phys 42(4A), 373–375 (2003).
[Crossref]

Ng, Brian W.-H.

Nguéma, E.

E. Abraham, A. Younus, A. El Fatimy, J. C. Delagnes, E. Nguéma, and P. Mounax, “Broadband terahertz imaging of documents written with lead pencils,” Opt. Commun. 282(15), 3104–3107 (2009).
[Crossref]

Ohtake, H.

Ortner, A.

M. Walther, A. Ortner, H. Meier, U. Löffelmann, P. J. Smith, and J. G. Korvink, “Terahertz metamaterials fabricated by inkjet printing,” Appl. Phys. Lett. 95, 251107 (2009).
[Crossref]

Ovalle Robles, R.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. Ovalle Robles, X. Lepró, Y. H. Kim, Ray H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Pääkkönen, P.

Park, H.

F. Yan, C. Yu, H. Park, E. P. J. Parrott, and E. Pickwell-MacPherson, “Advances in polarizer technology for terahertz frequency applications,” J. Infrared Milli Terahz Waves 34(9), 489–499 (2013).
[Crossref]

Park, H.-R.

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. Ovalle Robles, X. Lepró, Y. H. Kim, Ray H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

Parrott, E. P. J.

F. Yan, C. Yu, H. Park, E. P. J. Parrott, and E. Pickwell-MacPherson, “Advances in polarizer technology for terahertz frequency applications,” J. Infrared Milli Terahz Waves 34(9), 489–499 (2013).
[Crossref]

Pärtanen, A.

Piazzetta, M. H. O.

A. M. Melo, A. L. Gobbi, M. H. O. Piazzetta, and Alexandre M. P. A. Da Silva, “Cross-shaped terahertz metal mesh filters: historical review and results,” Adv. Opt. Tech. 2012, 530512 (2012).
[Crossref]

Pickwell-MacPherson, E.

F. Yan, C. Yu, H. Park, E. P. J. Parrott, and E. Pickwell-MacPherson, “Advances in polarizer technology for terahertz frequency applications,” J. Infrared Milli Terahz Waves 34(9), 489–499 (2013).
[Crossref]

Pint, C. L.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Polley, D.

D. Polley, A. Ganguly, A. Barman, and R. K. Mitra, “Polarizing effect of aligned nanoparticles in terahertz frequency region,” Opt. Lett. 38(15), 188660 (2013).
[Crossref]

Ren, L.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Rice, W. D.

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Saito, M.

I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett. 34(3), 103206 (2009).
[Crossref]

Scheller, M.

Scherger, B.

Schutzius, T.

A. Das, T. Schutzius, C. M. Megaridis, S. Subhechha, T. Wang, and L. Liu, “Quasi-optical polarizers enabled by inkjet printing of carbon nanocomposites,” Appl. Phys. Lett. 101(24), 243108 (2012).
[Crossref]

Sciortino, P.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[Crossref]

Silfsten, P.

Smith, P. J.

M. Walther, A. Ortner, H. Meier, U. Löffelmann, P. J. Smith, and J. G. Korvink, “Terahertz metamaterials fabricated by inkjet printing,” Appl. Phys. Lett. 95, 251107 (2009).
[Crossref]

Subhechha, S.

A. Das, T. Schutzius, C. M. Megaridis, S. Subhechha, T. Wang, and L. Liu, “Quasi-optical polarizers enabled by inkjet printing of carbon nanocomposites,” Appl. Phys. Lett. 101(24), 243108 (2012).
[Crossref]

Takano, K.

I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett. 34(3), 103206 (2009).
[Crossref]

Takayanagi, J.

Takeya, K.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Tanner, D. B.

C. C. Homes, G. L. Carr, R. P. S. M. Lobo, J. D. LaVeigne, and D. B. Tanner, “Silicon beam splitter for far-infrared and terahertz spectroscopy,” Appl. Phys. Lett. 46(32), 7884–7888 (2007).

Tonouchi, M.

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Tuovinen, H.

Ung, B. S.-Y.

Väyrynen, J.

Venälïnen, T.

Vieweg, N.

Walters, F.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[Crossref]

Walther, M.

M. Walther, A. Ortner, H. Meier, U. Löffelmann, P. J. Smith, and J. G. Korvink, “Terahertz metamaterials fabricated by inkjet printing,” Appl. Phys. Lett. 95, 251107 (2009).
[Crossref]

Wang, J. J.

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[Crossref]

Wang, T.

A. Das, T. Schutzius, C. M. Megaridis, S. Subhechha, T. Wang, and L. Liu, “Quasi-optical polarizers enabled by inkjet printing of carbon nanocomposites,” Appl. Phys. Lett. 101(24), 243108 (2012).
[Crossref]

Wang, X.

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

Watanabe, W.

I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett. 34(3), 103206 (2009).
[Crossref]

Weng, B.

Yamada, I.

I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett. 34(3), 103206 (2009).
[Crossref]

Yan, F.

F. Yan, C. Yu, H. Park, E. P. J. Parrott, and E. Pickwell-MacPherson, “Advances in polarizer technology for terahertz frequency applications,” J. Infrared Milli Terahz Waves 34(9), 489–499 (2013).
[Crossref]

Younus, A.

E. Abraham, A. Younus, A. El Fatimy, J. C. Delagnes, E. Nguéma, and P. Mounax, “Broadband terahertz imaging of documents written with lead pencils,” Opt. Commun. 282(15), 3104–3107 (2009).
[Crossref]

Yu, C.

F. Yan, C. Yu, H. Park, E. P. J. Parrott, and E. Pickwell-MacPherson, “Advances in polarizer technology for terahertz frequency applications,” J. Infrared Milli Terahz Waves 34(9), 489–499 (2013).
[Crossref]

Adv. Opt. Tech. (1)

A. M. Melo, A. L. Gobbi, M. H. O. Piazzetta, and Alexandre M. P. A. Da Silva, “Cross-shaped terahertz metal mesh filters: historical review and results,” Adv. Opt. Tech. 2012, 530512 (2012).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

A. Das, T. Schutzius, C. M. Megaridis, S. Subhechha, T. Wang, and L. Liu, “Quasi-optical polarizers enabled by inkjet printing of carbon nanocomposites,” Appl. Phys. Lett. 101(24), 243108 (2012).
[Crossref]

C. C. Homes, G. L. Carr, R. P. S. M. Lobo, J. D. LaVeigne, and D. B. Tanner, “Silicon beam splitter for far-infrared and terahertz spectroscopy,” Appl. Phys. Lett. 46(32), 7884–7888 (2007).

J. J. Wang, F. Walters, X. Liu, P. Sciortino, and X. Deng, “High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids,” Appl. Phys. Lett. 90, 061104 (2007).
[Crossref]

M. Walther, A. Ortner, H. Meier, U. Löffelmann, P. J. Smith, and J. G. Korvink, “Terahertz metamaterials fabricated by inkjet printing,” Appl. Phys. Lett. 95, 251107 (2009).
[Crossref]

J. Infrared Milli Terahz Waves (2)

F. Yan, C. Yu, H. Park, E. P. J. Parrott, and E. Pickwell-MacPherson, “Advances in polarizer technology for terahertz frequency applications,” J. Infrared Milli Terahz Waves 34(9), 489–499 (2013).
[Crossref]

E. Castro-Camus, “Polarization-resolved terahertz time-domain spectroscopy,” J. Infrared Milli Terahz Waves 33(4), 418–430 (2011).
[Crossref]

J. Opt. Soc. Korea (1)

Jpn. J. Appl. Phys (1)

T. Kondo, T. Nagashima, and M. Hangyo, “Fabrication of wire-grid-type polarizers for THz region using a general-purpose color printer,” Jpn. J. Appl. Phys 42(4A), 373–375 (2003).
[Crossref]

Nano Lett. (3)

L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D. J. Hilton, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Carbon nanotube terahertz polarizer,” Nano Lett. 9(7), 2610–2613 (2009).
[Crossref] [PubMed]

J. Kyoung, E. Y. Jang, M. D. Lima, H.-R. Park, R. Ovalle Robles, X. Lepró, Y. H. Kim, Ray H. Baughman, and D.-S. Kim, “A reel-wound carbon nanotube polarizer for terahertz frequencies,” Nano Lett. 11(10), 4227–4231 (2011).
[Crossref] [PubMed]

L. Ren, C. L. Pint, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R. H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Lett. 12(2), 787–790 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

E. Abraham, A. Younus, A. El Fatimy, J. C. Delagnes, E. Nguéma, and P. Mounax, “Broadband terahertz imaging of documents written with lead pencils,” Opt. Commun. 282(15), 3104–3107 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

I. Yamada, K. Takano, M. Hangyo, M. Saito, and W. Watanabe, “Terahertz wire-grid polarizers with micrometer-pitch Al gratings,” Opt. Lett. 34(3), 103206 (2009).
[Crossref]

D. Polley, A. Ganguly, A. Barman, and R. K. Mitra, “Polarizing effect of aligned nanoparticles in terahertz frequency region,” Opt. Lett. 38(15), 188660 (2013).
[Crossref]

M. Nagai, N. Mukai, Y. Minowa, M. Ashida, J. Takayanagi, and H. Ohtake, “Achromatic THz wave plate composed of stacked parallel metal plates,” Opt. Lett. 39(1), 146–149 (2014).
[Crossref]

Opt. Mater. Express (1)

Other (1)

Nondestructive Resource Center, “The Physics FactBoook,” https://www.nde-ed.org/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Optical microscope image of the 0.8 mm pitch grid structure with 0.4 millimeters wire width (fill factor ranging from 0.5 to 0.8). Black graphite wires alternate with blank paper spacings.
Fig. 2
Fig. 2 Fig. 2(a) Frequency transmission spectra achieved by Fourier transforming the time-dependent THz electric field. The dotted red line represents the reference blank paper signal, whereas the other three traces are the 90° (blue line), 45° (green line) and the 0° (purple line). Fig. 2(b) shows the variation of the frequency of maximum ER as a function of the pitch dimensions.
Fig. 3
Fig. 3 Fig. 3(a) Transmission efficiencies for the 0.8 mm pitch structure. The maximum transmission efficiency exhibits a decreasing trend as the incoming THz wavelength becomes comparable to the pitch dimension. In addition to this behavior, the minimum transmission efficiency shows a maximum of transmission when λ = d. Fig. 3(b) displays the Degree of Polarization of the 800 μm pitch wire grid with a single layer structure.
Fig. 4
Fig. 4 The ER of three different structures and the corresponding IL are shown and compared with the basic one. The used wire grids are the 800 μm pitch. The ER value increases as the number of structure grows, reaching almost 10 dB.

Metrics