E. Bulgakov, K. Pichugin, and A. Sadreev, “Symmetry breaking for transmission in a photonic waveguide coupled with two off-channel nonlinear defects,” Phys. Rev. B 83, 045109 (2011).

[Crossref]

E. Bulgakov and A. Sadreev, “Switching through symmetry breaking for transmission in a T-shaped photonic waveguide coupled with two identical nonlinear micro-cavities,” J. Phys. Condens. Matter 23, 315303 (2011).

[Crossref]
[PubMed]

V. A. Brazhnyi and B. A. Malomed, “Spontaneous symmetry breaking in Schrödinger lattices with two nonlinear sites,” Phys. Rev. A 83, 053844 (2011).

[Crossref]

T. Mayteevarunyoo, B. A. Malomed, and A. Reoksabutr, “Spontaneous symmetry breaking of photonic and matter waves in two-dimensional pseudopotentials,” J. Mod. Opt. 58(21), 1977–1989 (2011).

[Crossref]

L. Yuan and Y. Y. Lu, “Analyzing second harmonic generation from arrays of cylinders using the Dirichlet-to-Neumann maps,” J. Opt. Soc. Am. B 26, 587–594 (2009).

[Crossref]

C. Wang, G. Theocharis, P. G. Kevrekidis, N. Whitaker, K. J. H. Law, D. J. Frantzeskakis, and B. A. Malomed, “Two-dimensional paradigm for symmetry breaking: The nonlinear Schrödinger equation with a four-well potential,” Phys. Rev. E 80, 046611 (2009).

[Crossref]

J. P. Torres, J. Boyce, and R.Y. Chiao, “Bilateral symmetry breaking in a nonlinear Fabry-Perot cavity exhibiting optical tristability,” Phys. Rev. Lett. 83, 4293–4296 (1999).

[Crossref]

T. Peschel, U. Peschel, and F. Lederer, “Bistability and symmetry breaking in distributed coupling of counter-propagating beams into nonlinear waveguides,” Phys. Rev. A 50, 5153–5163 (1994).

[Crossref]
[PubMed]

K. Otsuka, “Pitchfork bifurcation and all-optical digital signal-processing with a coupled-element bistable system,” Opt. Lett. 14, 7274 (1989).

[Crossref]

N. N. Akhmediev, “Novel class of nonlinear surface waves: asymmetric modes in a symmetric layered structure,” Sov. Phys. JETP 56(2), 299–303 (1982).

A. E. Kaplan and P. Meystre, “Directionally asymmetrical bistability in a symmetrically pumped nonlinear ring interferometer,” Opt. Commun. 40(3), 229–232 (1982).

[Crossref]

J. M. Soto-Crespo and N. Akhmediev, “Stability of the soliton states in a nonlinear fiber coupler,” Phys. Rev. E 48, 4710–4715 (1993).

[Crossref]

N. N. Akhmediev, “Novel class of nonlinear surface waves: asymmetric modes in a symmetric layered structure,” Sov. Phys. JETP 56(2), 299–303 (1982).

B. Maes, P. Bienstman, and R. Baets, “Symmetry breaking with coupled Fano resonances,” Opt. Express 16, 3069–3076 (2008).

[Crossref]
[PubMed]

B. Maes, M. Soljačić, J. D. Joannopoulos, P. Bienstman, R. Baets, S.-P. Gorza, and M. Haelterman, “Switching through symmetry breaking in coupled nonlinear micro-cavities,” Opt. Express 14, 10678–10683 (2006).

[Crossref]
[PubMed]

B. Maes, P. Bienstman, and R. Baets, “Symmetry breaking with coupled Fano resonances,” Opt. Express 16, 3069–3076 (2008).

[Crossref]
[PubMed]

B. Maes, M. Soljačić, J. D. Joannopoulos, P. Bienstman, R. Baets, S.-P. Gorza, and M. Haelterman, “Switching through symmetry breaking in coupled nonlinear micro-cavities,” Opt. Express 14, 10678–10683 (2006).

[Crossref]
[PubMed]

J. P. Torres, J. Boyce, and R.Y. Chiao, “Bilateral symmetry breaking in a nonlinear Fabry-Perot cavity exhibiting optical tristability,” Phys. Rev. Lett. 83, 4293–4296 (1999).

[Crossref]

V. A. Brazhnyi and B. A. Malomed, “Spontaneous symmetry breaking in Schrödinger lattices with two nonlinear sites,” Phys. Rev. A 83, 053844 (2011).

[Crossref]

E. Bulgakov, K. Pichugin, and A. Sadreev, “Symmetry breaking for transmission in a photonic waveguide coupled with two off-channel nonlinear defects,” Phys. Rev. B 83, 045109 (2011).

[Crossref]

E. Bulgakov and A. Sadreev, “Switching through symmetry breaking for transmission in a T-shaped photonic waveguide coupled with two identical nonlinear micro-cavities,” J. Phys. Condens. Matter 23, 315303 (2011).

[Crossref]
[PubMed]

J. P. Torres, J. Boyce, and R.Y. Chiao, “Bilateral symmetry breaking in a nonlinear Fabry-Perot cavity exhibiting optical tristability,” Phys. Rev. Lett. 83, 4293–4296 (1999).

[Crossref]

C. Paré and M. Florjańczyk, “Approximate model of soliton dynamics in all-optical couplers,” Phys. Rev. A 41, 6287–6295 (1990).

[Crossref]
[PubMed]

C. Wang, G. Theocharis, P. G. Kevrekidis, N. Whitaker, K. J. H. Law, D. J. Frantzeskakis, and B. A. Malomed, “Two-dimensional paradigm for symmetry breaking: The nonlinear Schrödinger equation with a four-well potential,” Phys. Rev. E 80, 046611 (2009).

[Crossref]

B. Maes, M. Soljačić, J. D. Joannopoulos, P. Bienstman, R. Baets, S.-P. Gorza, and M. Haelterman, “Switching through symmetry breaking in coupled nonlinear micro-cavities,” Opt. Express 14, 10678–10683 (2006).

[Crossref]
[PubMed]

M. Haelterman and P. Mandel, “Pitchfork bifurcation using a 2-beam nonlinear Fabry-Perot interferometer: an analytical study,” Opt. Lett. 15, 1412–1414 (1990).

[Crossref]
[PubMed]

A. E. Kaplan and P. Meystre, “Directionally asymmetrical bistability in a symmetrically pumped nonlinear ring interferometer,” Opt. Commun. 40(3), 229–232 (1982).

[Crossref]

C. Wang, G. Theocharis, P. G. Kevrekidis, N. Whitaker, K. J. H. Law, D. J. Frantzeskakis, and B. A. Malomed, “Two-dimensional paradigm for symmetry breaking: The nonlinear Schrödinger equation with a four-well potential,” Phys. Rev. E 80, 046611 (2009).

[Crossref]

C. Wang, G. Theocharis, P. G. Kevrekidis, N. Whitaker, K. J. H. Law, D. J. Frantzeskakis, and B. A. Malomed, “Two-dimensional paradigm for symmetry breaking: The nonlinear Schrödinger equation with a four-well potential,” Phys. Rev. E 80, 046611 (2009).

[Crossref]

T. Peschel, U. Peschel, and F. Lederer, “Bistability and symmetry breaking in distributed coupling of counter-propagating beams into nonlinear waveguides,” Phys. Rev. A 50, 5153–5163 (1994).

[Crossref]
[PubMed]

L. Yuan and Y. Y. Lu, “Efficient numerical method for analyzing optical bistability in photonic crystal microcavities,” Opt. Express 21(10), 11952–11964 (2013).

[Crossref]
[PubMed]

Z. Hu and Y. Y. Lu, “A simple boundary condition for terminating photonic crystal waveguides,” J. Opt. Soc. Am. B 29, 1356–1360 (2012).

[Crossref]

L. Yuan and Y. Y. Lu, “Analyzing second harmonic generation from arrays of cylinders using the Dirichlet-to-Neumann maps,” J. Opt. Soc. Am. B 26, 587–594 (2009).

[Crossref]

Z. Hu and Y. Y. Lu, “Efficient analysis of photonic crystal devices by Dirichlet-to-Neumann maps,” Opt. Express 16, 17383–17399 (2008).

[Crossref]
[PubMed]

K. Huybrechts, G. Morthier, and B. Maes, “Symmetry breaking in networks of nonlinear cavities,” J. Opt. Soc. Am. B 27, 708–713 (2010).

[Crossref]

B. Maes, P. Bienstman, and R. Baets, “Symmetry breaking with coupled Fano resonances,” Opt. Express 16, 3069–3076 (2008).

[Crossref]
[PubMed]

B. Maes, M. Soljačić, J. D. Joannopoulos, P. Bienstman, R. Baets, S.-P. Gorza, and M. Haelterman, “Switching through symmetry breaking in coupled nonlinear micro-cavities,” Opt. Express 14, 10678–10683 (2006).

[Crossref]
[PubMed]

V. A. Brazhnyi and B. A. Malomed, “Spontaneous symmetry breaking in Schrödinger lattices with two nonlinear sites,” Phys. Rev. A 83, 053844 (2011).

[Crossref]

T. Mayteevarunyoo, B. A. Malomed, and A. Reoksabutr, “Spontaneous symmetry breaking of photonic and matter waves in two-dimensional pseudopotentials,” J. Mod. Opt. 58(21), 1977–1989 (2011).

[Crossref]

C. Wang, G. Theocharis, P. G. Kevrekidis, N. Whitaker, K. J. H. Law, D. J. Frantzeskakis, and B. A. Malomed, “Two-dimensional paradigm for symmetry breaking: The nonlinear Schrödinger equation with a four-well potential,” Phys. Rev. E 80, 046611 (2009).

[Crossref]

P. L. Chu, B. A. Malomed, and G. D. Peng, “Soliton switching and propagation in nonlinear fiber couplers: analytical results,” J. Opt. Soc. Am. B 10, 1379–1385 (1993).

[Crossref]

T. Mayteevarunyoo, B. A. Malomed, and A. Reoksabutr, “Spontaneous symmetry breaking of photonic and matter waves in two-dimensional pseudopotentials,” J. Mod. Opt. 58(21), 1977–1989 (2011).

[Crossref]

A. E. Kaplan and P. Meystre, “Directionally asymmetrical bistability in a symmetrically pumped nonlinear ring interferometer,” Opt. Commun. 40(3), 229–232 (1982).

[Crossref]

K. Otsuka, “Pitchfork bifurcation and all-optical digital signal-processing with a coupled-element bistable system,” Opt. Lett. 14, 7274 (1989).

[Crossref]

C. Paré and M. Florjańczyk, “Approximate model of soliton dynamics in all-optical couplers,” Phys. Rev. A 41, 6287–6295 (1990).

[Crossref]
[PubMed]

T. Peschel, U. Peschel, and F. Lederer, “Bistability and symmetry breaking in distributed coupling of counter-propagating beams into nonlinear waveguides,” Phys. Rev. A 50, 5153–5163 (1994).

[Crossref]
[PubMed]

T. Peschel, U. Peschel, and F. Lederer, “Bistability and symmetry breaking in distributed coupling of counter-propagating beams into nonlinear waveguides,” Phys. Rev. A 50, 5153–5163 (1994).

[Crossref]
[PubMed]

E. Bulgakov, K. Pichugin, and A. Sadreev, “Symmetry breaking for transmission in a photonic waveguide coupled with two off-channel nonlinear defects,” Phys. Rev. B 83, 045109 (2011).

[Crossref]

T. Mayteevarunyoo, B. A. Malomed, and A. Reoksabutr, “Spontaneous symmetry breaking of photonic and matter waves in two-dimensional pseudopotentials,” J. Mod. Opt. 58(21), 1977–1989 (2011).

[Crossref]

E. Bulgakov, K. Pichugin, and A. Sadreev, “Symmetry breaking for transmission in a photonic waveguide coupled with two off-channel nonlinear defects,” Phys. Rev. B 83, 045109 (2011).

[Crossref]

E. Bulgakov and A. Sadreev, “Switching through symmetry breaking for transmission in a T-shaped photonic waveguide coupled with two identical nonlinear micro-cavities,” J. Phys. Condens. Matter 23, 315303 (2011).

[Crossref]
[PubMed]

J. M. Soto-Crespo and N. Akhmediev, “Stability of the soliton states in a nonlinear fiber coupler,” Phys. Rev. E 48, 4710–4715 (1993).

[Crossref]

C. Wang, G. Theocharis, P. G. Kevrekidis, N. Whitaker, K. J. H. Law, D. J. Frantzeskakis, and B. A. Malomed, “Two-dimensional paradigm for symmetry breaking: The nonlinear Schrödinger equation with a four-well potential,” Phys. Rev. E 80, 046611 (2009).

[Crossref]

J. P. Torres, J. Boyce, and R.Y. Chiao, “Bilateral symmetry breaking in a nonlinear Fabry-Perot cavity exhibiting optical tristability,” Phys. Rev. Lett. 83, 4293–4296 (1999).

[Crossref]

L. N. Trefethen, Spectral Methods in MATLAB, Society for Industrial and Applied Mathematics, 2000.

[Crossref]

C. Wang, G. Theocharis, P. G. Kevrekidis, N. Whitaker, K. J. H. Law, D. J. Frantzeskakis, and B. A. Malomed, “Two-dimensional paradigm for symmetry breaking: The nonlinear Schrödinger equation with a four-well potential,” Phys. Rev. E 80, 046611 (2009).

[Crossref]

C. Wang, G. Theocharis, P. G. Kevrekidis, N. Whitaker, K. J. H. Law, D. J. Frantzeskakis, and B. A. Malomed, “Two-dimensional paradigm for symmetry breaking: The nonlinear Schrödinger equation with a four-well potential,” Phys. Rev. E 80, 046611 (2009).

[Crossref]

T. Mayteevarunyoo, B. A. Malomed, and A. Reoksabutr, “Spontaneous symmetry breaking of photonic and matter waves in two-dimensional pseudopotentials,” J. Mod. Opt. 58(21), 1977–1989 (2011).

[Crossref]

Z. Hu and Y. Y. Lu, “A simple boundary condition for terminating photonic crystal waveguides,” J. Opt. Soc. Am. B 29, 1356–1360 (2012).

[Crossref]

L. Yuan and Y. Y. Lu, “Analyzing second harmonic generation from arrays of cylinders using the Dirichlet-to-Neumann maps,” J. Opt. Soc. Am. B 26, 587–594 (2009).

[Crossref]

P. L. Chu, B. A. Malomed, and G. D. Peng, “Soliton switching and propagation in nonlinear fiber couplers: analytical results,” J. Opt. Soc. Am. B 10, 1379–1385 (1993).

[Crossref]

K. Huybrechts, G. Morthier, and B. Maes, “Symmetry breaking in networks of nonlinear cavities,” J. Opt. Soc. Am. B 27, 708–713 (2010).

[Crossref]

E. N. Bulgakov and A. F. Sadreev, “Symmetry breaking in photonic crystal waveguide coupled with the dipole modes of a nonlinear optical cavity,” J. Opt. Soc. Am. B 29, 2924–2928 (2012).

[Crossref]

E. Bulgakov and A. Sadreev, “Switching through symmetry breaking for transmission in a T-shaped photonic waveguide coupled with two identical nonlinear micro-cavities,” J. Phys. Condens. Matter 23, 315303 (2011).

[Crossref]
[PubMed]

A. E. Kaplan and P. Meystre, “Directionally asymmetrical bistability in a symmetrically pumped nonlinear ring interferometer,” Opt. Commun. 40(3), 229–232 (1982).

[Crossref]

B. Maes, M. Soljačić, J. D. Joannopoulos, P. Bienstman, R. Baets, S.-P. Gorza, and M. Haelterman, “Switching through symmetry breaking in coupled nonlinear micro-cavities,” Opt. Express 14, 10678–10683 (2006).

[Crossref]
[PubMed]

B. Maes, P. Bienstman, and R. Baets, “Symmetry breaking with coupled Fano resonances,” Opt. Express 16, 3069–3076 (2008).

[Crossref]
[PubMed]

L. Yuan and Y. Y. Lu, “Efficient numerical method for analyzing optical bistability in photonic crystal microcavities,” Opt. Express 21(10), 11952–11964 (2013).

[Crossref]
[PubMed]

Z. Hu and Y. Y. Lu, “Efficient analysis of photonic crystal devices by Dirichlet-to-Neumann maps,” Opt. Express 16, 17383–17399 (2008).

[Crossref]
[PubMed]

C. Paré and M. Florjańczyk, “Approximate model of soliton dynamics in all-optical couplers,” Phys. Rev. A 41, 6287–6295 (1990).

[Crossref]
[PubMed]

T. Peschel, U. Peschel, and F. Lederer, “Bistability and symmetry breaking in distributed coupling of counter-propagating beams into nonlinear waveguides,” Phys. Rev. A 50, 5153–5163 (1994).

[Crossref]
[PubMed]

V. A. Brazhnyi and B. A. Malomed, “Spontaneous symmetry breaking in Schrödinger lattices with two nonlinear sites,” Phys. Rev. A 83, 053844 (2011).

[Crossref]

E. Bulgakov, K. Pichugin, and A. Sadreev, “Symmetry breaking for transmission in a photonic waveguide coupled with two off-channel nonlinear defects,” Phys. Rev. B 83, 045109 (2011).

[Crossref]

C. Wang, G. Theocharis, P. G. Kevrekidis, N. Whitaker, K. J. H. Law, D. J. Frantzeskakis, and B. A. Malomed, “Two-dimensional paradigm for symmetry breaking: The nonlinear Schrödinger equation with a four-well potential,” Phys. Rev. E 80, 046611 (2009).

[Crossref]

J. M. Soto-Crespo and N. Akhmediev, “Stability of the soliton states in a nonlinear fiber coupler,” Phys. Rev. E 48, 4710–4715 (1993).

[Crossref]

J. P. Torres, J. Boyce, and R.Y. Chiao, “Bilateral symmetry breaking in a nonlinear Fabry-Perot cavity exhibiting optical tristability,” Phys. Rev. Lett. 83, 4293–4296 (1999).

[Crossref]

N. N. Akhmediev, “Novel class of nonlinear surface waves: asymmetric modes in a symmetric layered structure,” Sov. Phys. JETP 56(2), 299–303 (1982).

L. N. Trefethen, Spectral Methods in MATLAB, Society for Industrial and Applied Mathematics, 2000.

[Crossref]