Abstract

An optical parametric generator and amplifier producing 15 ps pulses at wavelengths tunable around 2 μm, with energies up to 15 mJ/pulse, has been realized and characterized. The output wavelength is chosen to match a vibrational combination band of water. By measuring the induced birefringence changes we prove that a single pulse is able to completely melt samples of ice in the 10−6 cm3 volume range, both at room pressure (263 K) and at high pressure (298 K, 1 GPa) in a sapphire anvil cell. This source opens the possibility of studying melting and freezing processes by spectroscopic probes in water or water solutions in a wide range of conditions as found in natural environments.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-power picosecond mid-infrared optical parametric amplifier for infrared Raman spectroscopy

John C. Deàk, Lawrence K. Iwaki, and Dana D. Dlott
Opt. Lett. 22(23) 1796-1798 (1997)

Generation and optical parametric amplification of picosecond supercontinuum

Jing Zhang, Qiu-lin Zhang, Dong-xiang Zhang, Bao-hua Feng, and Jing-yuan Zhang
Appl. Opt. 49(34) 6645-6650 (2010)

Seeding of picosecond and femtosecond optical parametric amplifiers by weak single mode continuous lasers

Christian Homann, Markus Breuer, Frank Setzpfandt, Thomas Pertsch, and Eberhard Riedle
Opt. Express 21(1) 730-739 (2013)

References

  • View by:
  • |
  • |
  • |

  1. K. C. Jones, Z. Ganim, C. S. Peng, and A. Tokmakoff, “Transient two-dimensional spectroscopy with linear absorption corrections applied to temperature-jump two-dimensional infrared,” J. Opt. Soc. Am. B 29, 118–129 (2012).
    [Crossref]
  2. P. Wernet, G. Gavrila, K. Godehusen, C. Weniger, E. Nibbering, T. Elsaesser, and W. Eberhardt, “Ultrafast temperature jump in liquid water studied by a novel infrared pump-x-ray probe technique,” Applied Physics A 92, 511–516 (2008).
    [Crossref]
  3. O. Mohammed, G. Jas, M. Lin, and A. Zewail, “Primary peptide folding dynamics observed with ultrafast temperature jump,” Angewandte Chemie 121, 5738–5742 (2009).
    [Crossref]
  4. H. Iglev, M. Schmeisser, K. Simeonidis, A. Thaller, and A. Laubereau, “Ultrafast superheating and melting of bulk ice,” Nature 439, 183–186 (2006).
    [Crossref] [PubMed]
  5. C. M. Phillips, Y. Mizutani, and R. M. Hochstrasser, “Ultrafast thermally induced unfolding of rnase a,” Proceedings of the National Academy of Sciences 92, 7292–7296 (1995).
    [Crossref]
  6. S. Fanetti, A. Lapini, M. Pagliai, M. Citroni, M. Di Donato, S. Scandolo, R. Righini, and R. Bini, “Structure and dynamics of low-density and high-density liquid water at high pressure,” The Journal of Physical Chemistry Letters 5, 235–240 (2014).
    [Crossref]
  7. M. Citroni, R. Bini, P. Foggi, and V. Schettino, “Role of excited electronic states in the high-pressure amorphization of benzene,” Proceedings of the National Academy of Sciences 105, 7658–7663 (2008).
    [Crossref]
  8. S. Fanetti, M. Ceppatelli, M. Citroni, and R. Bini, “Changing the dissociative character of the lowest excited state of ethanol by pressure,” The Journal of Physical Chemistry B 115, 15236–15240 (2011).
    [Crossref] [PubMed]
  9. K.-H. Hong, C.-J. Lai, J. P. Siqueira, P. Krogen, J. Moses, C.-L. Chang, G. J. Stein, L. E. Zapata, and F. X. Kärtner, “Multi-mj, khz, 2.1 μm optical parametric chirped-pulse amplifier and high-flux soft x-ray high-harmonic generation,” Opt. Lett. 39, 3145–3148 (2014).
    [Crossref] [PubMed]
  10. A. Dergachev, “High-energy, khz-rate, picosecond, 2-m laser pump source for mid-ir nonlinear optical devices,” Proc. SPIE 8599, 85990B (2013).
    [Crossref]
  11. M. Hemmer, D. Sanchez, M. Jelínek, H. Jelínkova, V. Kubeček, and J. Biegert, “Fiber-seeded, 10-ps, 2050-nm, multi-mj, cryogenic ho:ylf cpa,” CLEO: 2014 p. SM1F.3 (2014).
  12. G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Review of Scientific Instruments 74, 1–18 (2003).
    [Crossref]
  13. J. M. Roth, T. E. Murphy, and C. Xu, “Ultrasensitive and high-dynamic-range two-photon absorption in a gaas photomultiplier tube,” Opt. Lett. 27, 2076–2078 (2002).
    [Crossref]
  14. K. Syassen, “Ruby under pressure,” High Pressure Research 28, 75–126 (2008).
    [Crossref]
  15. B. J. Murray, S. L. Broadley, T. W. Wilson, S. J. Bull, R. H. Wills, H. K. Christenson, and E. J. Murray, “Kinetics of the homogeneous freezing of water,” Phys. Chem. Chem. Phys. 12, 10380–10387 (2010).
    [Crossref] [PubMed]
  16. T. Li, D. Donadio, and G. Galli, “Ice nucleation at the nanoscale probes no mans land of water,” Nature Communications 4, 1887 (2013).
    [Crossref]
  17. G. W. Lee, W. J. Evans, and C.-S. Yoo, “Dynamic pressure-induced dendritic and shock crystal growth of ice vi,” Proceedings of the National Academy of Sciences 104, 9178–9181 (2007).
    [Crossref]

2014 (2)

K.-H. Hong, C.-J. Lai, J. P. Siqueira, P. Krogen, J. Moses, C.-L. Chang, G. J. Stein, L. E. Zapata, and F. X. Kärtner, “Multi-mj, khz, 2.1 μm optical parametric chirped-pulse amplifier and high-flux soft x-ray high-harmonic generation,” Opt. Lett. 39, 3145–3148 (2014).
[Crossref] [PubMed]

S. Fanetti, A. Lapini, M. Pagliai, M. Citroni, M. Di Donato, S. Scandolo, R. Righini, and R. Bini, “Structure and dynamics of low-density and high-density liquid water at high pressure,” The Journal of Physical Chemistry Letters 5, 235–240 (2014).
[Crossref]

2013 (2)

T. Li, D. Donadio, and G. Galli, “Ice nucleation at the nanoscale probes no mans land of water,” Nature Communications 4, 1887 (2013).
[Crossref]

A. Dergachev, “High-energy, khz-rate, picosecond, 2-m laser pump source for mid-ir nonlinear optical devices,” Proc. SPIE 8599, 85990B (2013).
[Crossref]

2012 (1)

2011 (1)

S. Fanetti, M. Ceppatelli, M. Citroni, and R. Bini, “Changing the dissociative character of the lowest excited state of ethanol by pressure,” The Journal of Physical Chemistry B 115, 15236–15240 (2011).
[Crossref] [PubMed]

2010 (1)

B. J. Murray, S. L. Broadley, T. W. Wilson, S. J. Bull, R. H. Wills, H. K. Christenson, and E. J. Murray, “Kinetics of the homogeneous freezing of water,” Phys. Chem. Chem. Phys. 12, 10380–10387 (2010).
[Crossref] [PubMed]

2009 (1)

O. Mohammed, G. Jas, M. Lin, and A. Zewail, “Primary peptide folding dynamics observed with ultrafast temperature jump,” Angewandte Chemie 121, 5738–5742 (2009).
[Crossref]

2008 (3)

P. Wernet, G. Gavrila, K. Godehusen, C. Weniger, E. Nibbering, T. Elsaesser, and W. Eberhardt, “Ultrafast temperature jump in liquid water studied by a novel infrared pump-x-ray probe technique,” Applied Physics A 92, 511–516 (2008).
[Crossref]

K. Syassen, “Ruby under pressure,” High Pressure Research 28, 75–126 (2008).
[Crossref]

M. Citroni, R. Bini, P. Foggi, and V. Schettino, “Role of excited electronic states in the high-pressure amorphization of benzene,” Proceedings of the National Academy of Sciences 105, 7658–7663 (2008).
[Crossref]

2007 (1)

G. W. Lee, W. J. Evans, and C.-S. Yoo, “Dynamic pressure-induced dendritic and shock crystal growth of ice vi,” Proceedings of the National Academy of Sciences 104, 9178–9181 (2007).
[Crossref]

2006 (1)

H. Iglev, M. Schmeisser, K. Simeonidis, A. Thaller, and A. Laubereau, “Ultrafast superheating and melting of bulk ice,” Nature 439, 183–186 (2006).
[Crossref] [PubMed]

2003 (1)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Review of Scientific Instruments 74, 1–18 (2003).
[Crossref]

2002 (1)

1995 (1)

C. M. Phillips, Y. Mizutani, and R. M. Hochstrasser, “Ultrafast thermally induced unfolding of rnase a,” Proceedings of the National Academy of Sciences 92, 7292–7296 (1995).
[Crossref]

Biegert, J.

M. Hemmer, D. Sanchez, M. Jelínek, H. Jelínkova, V. Kubeček, and J. Biegert, “Fiber-seeded, 10-ps, 2050-nm, multi-mj, cryogenic ho:ylf cpa,” CLEO: 2014 p. SM1F.3 (2014).

Bini, R.

S. Fanetti, A. Lapini, M. Pagliai, M. Citroni, M. Di Donato, S. Scandolo, R. Righini, and R. Bini, “Structure and dynamics of low-density and high-density liquid water at high pressure,” The Journal of Physical Chemistry Letters 5, 235–240 (2014).
[Crossref]

S. Fanetti, M. Ceppatelli, M. Citroni, and R. Bini, “Changing the dissociative character of the lowest excited state of ethanol by pressure,” The Journal of Physical Chemistry B 115, 15236–15240 (2011).
[Crossref] [PubMed]

M. Citroni, R. Bini, P. Foggi, and V. Schettino, “Role of excited electronic states in the high-pressure amorphization of benzene,” Proceedings of the National Academy of Sciences 105, 7658–7663 (2008).
[Crossref]

Broadley, S. L.

B. J. Murray, S. L. Broadley, T. W. Wilson, S. J. Bull, R. H. Wills, H. K. Christenson, and E. J. Murray, “Kinetics of the homogeneous freezing of water,” Phys. Chem. Chem. Phys. 12, 10380–10387 (2010).
[Crossref] [PubMed]

Bull, S. J.

B. J. Murray, S. L. Broadley, T. W. Wilson, S. J. Bull, R. H. Wills, H. K. Christenson, and E. J. Murray, “Kinetics of the homogeneous freezing of water,” Phys. Chem. Chem. Phys. 12, 10380–10387 (2010).
[Crossref] [PubMed]

Ceppatelli, M.

S. Fanetti, M. Ceppatelli, M. Citroni, and R. Bini, “Changing the dissociative character of the lowest excited state of ethanol by pressure,” The Journal of Physical Chemistry B 115, 15236–15240 (2011).
[Crossref] [PubMed]

Cerullo, G.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Review of Scientific Instruments 74, 1–18 (2003).
[Crossref]

Chang, C.-L.

Christenson, H. K.

B. J. Murray, S. L. Broadley, T. W. Wilson, S. J. Bull, R. H. Wills, H. K. Christenson, and E. J. Murray, “Kinetics of the homogeneous freezing of water,” Phys. Chem. Chem. Phys. 12, 10380–10387 (2010).
[Crossref] [PubMed]

Citroni, M.

S. Fanetti, A. Lapini, M. Pagliai, M. Citroni, M. Di Donato, S. Scandolo, R. Righini, and R. Bini, “Structure and dynamics of low-density and high-density liquid water at high pressure,” The Journal of Physical Chemistry Letters 5, 235–240 (2014).
[Crossref]

S. Fanetti, M. Ceppatelli, M. Citroni, and R. Bini, “Changing the dissociative character of the lowest excited state of ethanol by pressure,” The Journal of Physical Chemistry B 115, 15236–15240 (2011).
[Crossref] [PubMed]

M. Citroni, R. Bini, P. Foggi, and V. Schettino, “Role of excited electronic states in the high-pressure amorphization of benzene,” Proceedings of the National Academy of Sciences 105, 7658–7663 (2008).
[Crossref]

De Silvestri, S.

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Review of Scientific Instruments 74, 1–18 (2003).
[Crossref]

Dergachev, A.

A. Dergachev, “High-energy, khz-rate, picosecond, 2-m laser pump source for mid-ir nonlinear optical devices,” Proc. SPIE 8599, 85990B (2013).
[Crossref]

Di Donato, M.

S. Fanetti, A. Lapini, M. Pagliai, M. Citroni, M. Di Donato, S. Scandolo, R. Righini, and R. Bini, “Structure and dynamics of low-density and high-density liquid water at high pressure,” The Journal of Physical Chemistry Letters 5, 235–240 (2014).
[Crossref]

Donadio, D.

T. Li, D. Donadio, and G. Galli, “Ice nucleation at the nanoscale probes no mans land of water,” Nature Communications 4, 1887 (2013).
[Crossref]

Eberhardt, W.

P. Wernet, G. Gavrila, K. Godehusen, C. Weniger, E. Nibbering, T. Elsaesser, and W. Eberhardt, “Ultrafast temperature jump in liquid water studied by a novel infrared pump-x-ray probe technique,” Applied Physics A 92, 511–516 (2008).
[Crossref]

Elsaesser, T.

P. Wernet, G. Gavrila, K. Godehusen, C. Weniger, E. Nibbering, T. Elsaesser, and W. Eberhardt, “Ultrafast temperature jump in liquid water studied by a novel infrared pump-x-ray probe technique,” Applied Physics A 92, 511–516 (2008).
[Crossref]

Evans, W. J.

G. W. Lee, W. J. Evans, and C.-S. Yoo, “Dynamic pressure-induced dendritic and shock crystal growth of ice vi,” Proceedings of the National Academy of Sciences 104, 9178–9181 (2007).
[Crossref]

Fanetti, S.

S. Fanetti, A. Lapini, M. Pagliai, M. Citroni, M. Di Donato, S. Scandolo, R. Righini, and R. Bini, “Structure and dynamics of low-density and high-density liquid water at high pressure,” The Journal of Physical Chemistry Letters 5, 235–240 (2014).
[Crossref]

S. Fanetti, M. Ceppatelli, M. Citroni, and R. Bini, “Changing the dissociative character of the lowest excited state of ethanol by pressure,” The Journal of Physical Chemistry B 115, 15236–15240 (2011).
[Crossref] [PubMed]

Foggi, P.

M. Citroni, R. Bini, P. Foggi, and V. Schettino, “Role of excited electronic states in the high-pressure amorphization of benzene,” Proceedings of the National Academy of Sciences 105, 7658–7663 (2008).
[Crossref]

Galli, G.

T. Li, D. Donadio, and G. Galli, “Ice nucleation at the nanoscale probes no mans land of water,” Nature Communications 4, 1887 (2013).
[Crossref]

Ganim, Z.

Gavrila, G.

P. Wernet, G. Gavrila, K. Godehusen, C. Weniger, E. Nibbering, T. Elsaesser, and W. Eberhardt, “Ultrafast temperature jump in liquid water studied by a novel infrared pump-x-ray probe technique,” Applied Physics A 92, 511–516 (2008).
[Crossref]

Godehusen, K.

P. Wernet, G. Gavrila, K. Godehusen, C. Weniger, E. Nibbering, T. Elsaesser, and W. Eberhardt, “Ultrafast temperature jump in liquid water studied by a novel infrared pump-x-ray probe technique,” Applied Physics A 92, 511–516 (2008).
[Crossref]

Hemmer, M.

M. Hemmer, D. Sanchez, M. Jelínek, H. Jelínkova, V. Kubeček, and J. Biegert, “Fiber-seeded, 10-ps, 2050-nm, multi-mj, cryogenic ho:ylf cpa,” CLEO: 2014 p. SM1F.3 (2014).

Hochstrasser, R. M.

C. M. Phillips, Y. Mizutani, and R. M. Hochstrasser, “Ultrafast thermally induced unfolding of rnase a,” Proceedings of the National Academy of Sciences 92, 7292–7296 (1995).
[Crossref]

Hong, K.-H.

Iglev, H.

H. Iglev, M. Schmeisser, K. Simeonidis, A. Thaller, and A. Laubereau, “Ultrafast superheating and melting of bulk ice,” Nature 439, 183–186 (2006).
[Crossref] [PubMed]

Jas, G.

O. Mohammed, G. Jas, M. Lin, and A. Zewail, “Primary peptide folding dynamics observed with ultrafast temperature jump,” Angewandte Chemie 121, 5738–5742 (2009).
[Crossref]

Jelínek, M.

M. Hemmer, D. Sanchez, M. Jelínek, H. Jelínkova, V. Kubeček, and J. Biegert, “Fiber-seeded, 10-ps, 2050-nm, multi-mj, cryogenic ho:ylf cpa,” CLEO: 2014 p. SM1F.3 (2014).

Jelínkova, H.

M. Hemmer, D. Sanchez, M. Jelínek, H. Jelínkova, V. Kubeček, and J. Biegert, “Fiber-seeded, 10-ps, 2050-nm, multi-mj, cryogenic ho:ylf cpa,” CLEO: 2014 p. SM1F.3 (2014).

Jones, K. C.

Kärtner, F. X.

Krogen, P.

Kubecek, V.

M. Hemmer, D. Sanchez, M. Jelínek, H. Jelínkova, V. Kubeček, and J. Biegert, “Fiber-seeded, 10-ps, 2050-nm, multi-mj, cryogenic ho:ylf cpa,” CLEO: 2014 p. SM1F.3 (2014).

Lai, C.-J.

Lapini, A.

S. Fanetti, A. Lapini, M. Pagliai, M. Citroni, M. Di Donato, S. Scandolo, R. Righini, and R. Bini, “Structure and dynamics of low-density and high-density liquid water at high pressure,” The Journal of Physical Chemistry Letters 5, 235–240 (2014).
[Crossref]

Laubereau, A.

H. Iglev, M. Schmeisser, K. Simeonidis, A. Thaller, and A. Laubereau, “Ultrafast superheating and melting of bulk ice,” Nature 439, 183–186 (2006).
[Crossref] [PubMed]

Lee, G. W.

G. W. Lee, W. J. Evans, and C.-S. Yoo, “Dynamic pressure-induced dendritic and shock crystal growth of ice vi,” Proceedings of the National Academy of Sciences 104, 9178–9181 (2007).
[Crossref]

Li, T.

T. Li, D. Donadio, and G. Galli, “Ice nucleation at the nanoscale probes no mans land of water,” Nature Communications 4, 1887 (2013).
[Crossref]

Lin, M.

O. Mohammed, G. Jas, M. Lin, and A. Zewail, “Primary peptide folding dynamics observed with ultrafast temperature jump,” Angewandte Chemie 121, 5738–5742 (2009).
[Crossref]

Mizutani, Y.

C. M. Phillips, Y. Mizutani, and R. M. Hochstrasser, “Ultrafast thermally induced unfolding of rnase a,” Proceedings of the National Academy of Sciences 92, 7292–7296 (1995).
[Crossref]

Mohammed, O.

O. Mohammed, G. Jas, M. Lin, and A. Zewail, “Primary peptide folding dynamics observed with ultrafast temperature jump,” Angewandte Chemie 121, 5738–5742 (2009).
[Crossref]

Moses, J.

Murphy, T. E.

Murray, B. J.

B. J. Murray, S. L. Broadley, T. W. Wilson, S. J. Bull, R. H. Wills, H. K. Christenson, and E. J. Murray, “Kinetics of the homogeneous freezing of water,” Phys. Chem. Chem. Phys. 12, 10380–10387 (2010).
[Crossref] [PubMed]

Murray, E. J.

B. J. Murray, S. L. Broadley, T. W. Wilson, S. J. Bull, R. H. Wills, H. K. Christenson, and E. J. Murray, “Kinetics of the homogeneous freezing of water,” Phys. Chem. Chem. Phys. 12, 10380–10387 (2010).
[Crossref] [PubMed]

Nibbering, E.

P. Wernet, G. Gavrila, K. Godehusen, C. Weniger, E. Nibbering, T. Elsaesser, and W. Eberhardt, “Ultrafast temperature jump in liquid water studied by a novel infrared pump-x-ray probe technique,” Applied Physics A 92, 511–516 (2008).
[Crossref]

Pagliai, M.

S. Fanetti, A. Lapini, M. Pagliai, M. Citroni, M. Di Donato, S. Scandolo, R. Righini, and R. Bini, “Structure and dynamics of low-density and high-density liquid water at high pressure,” The Journal of Physical Chemistry Letters 5, 235–240 (2014).
[Crossref]

Peng, C. S.

Phillips, C. M.

C. M. Phillips, Y. Mizutani, and R. M. Hochstrasser, “Ultrafast thermally induced unfolding of rnase a,” Proceedings of the National Academy of Sciences 92, 7292–7296 (1995).
[Crossref]

Righini, R.

S. Fanetti, A. Lapini, M. Pagliai, M. Citroni, M. Di Donato, S. Scandolo, R. Righini, and R. Bini, “Structure and dynamics of low-density and high-density liquid water at high pressure,” The Journal of Physical Chemistry Letters 5, 235–240 (2014).
[Crossref]

Roth, J. M.

Sanchez, D.

M. Hemmer, D. Sanchez, M. Jelínek, H. Jelínkova, V. Kubeček, and J. Biegert, “Fiber-seeded, 10-ps, 2050-nm, multi-mj, cryogenic ho:ylf cpa,” CLEO: 2014 p. SM1F.3 (2014).

Scandolo, S.

S. Fanetti, A. Lapini, M. Pagliai, M. Citroni, M. Di Donato, S. Scandolo, R. Righini, and R. Bini, “Structure and dynamics of low-density and high-density liquid water at high pressure,” The Journal of Physical Chemistry Letters 5, 235–240 (2014).
[Crossref]

Schettino, V.

M. Citroni, R. Bini, P. Foggi, and V. Schettino, “Role of excited electronic states in the high-pressure amorphization of benzene,” Proceedings of the National Academy of Sciences 105, 7658–7663 (2008).
[Crossref]

Schmeisser, M.

H. Iglev, M. Schmeisser, K. Simeonidis, A. Thaller, and A. Laubereau, “Ultrafast superheating and melting of bulk ice,” Nature 439, 183–186 (2006).
[Crossref] [PubMed]

Simeonidis, K.

H. Iglev, M. Schmeisser, K. Simeonidis, A. Thaller, and A. Laubereau, “Ultrafast superheating and melting of bulk ice,” Nature 439, 183–186 (2006).
[Crossref] [PubMed]

Siqueira, J. P.

Stein, G. J.

Syassen, K.

K. Syassen, “Ruby under pressure,” High Pressure Research 28, 75–126 (2008).
[Crossref]

Thaller, A.

H. Iglev, M. Schmeisser, K. Simeonidis, A. Thaller, and A. Laubereau, “Ultrafast superheating and melting of bulk ice,” Nature 439, 183–186 (2006).
[Crossref] [PubMed]

Tokmakoff, A.

Weniger, C.

P. Wernet, G. Gavrila, K. Godehusen, C. Weniger, E. Nibbering, T. Elsaesser, and W. Eberhardt, “Ultrafast temperature jump in liquid water studied by a novel infrared pump-x-ray probe technique,” Applied Physics A 92, 511–516 (2008).
[Crossref]

Wernet, P.

P. Wernet, G. Gavrila, K. Godehusen, C. Weniger, E. Nibbering, T. Elsaesser, and W. Eberhardt, “Ultrafast temperature jump in liquid water studied by a novel infrared pump-x-ray probe technique,” Applied Physics A 92, 511–516 (2008).
[Crossref]

Wills, R. H.

B. J. Murray, S. L. Broadley, T. W. Wilson, S. J. Bull, R. H. Wills, H. K. Christenson, and E. J. Murray, “Kinetics of the homogeneous freezing of water,” Phys. Chem. Chem. Phys. 12, 10380–10387 (2010).
[Crossref] [PubMed]

Wilson, T. W.

B. J. Murray, S. L. Broadley, T. W. Wilson, S. J. Bull, R. H. Wills, H. K. Christenson, and E. J. Murray, “Kinetics of the homogeneous freezing of water,” Phys. Chem. Chem. Phys. 12, 10380–10387 (2010).
[Crossref] [PubMed]

Xu, C.

Yoo, C.-S.

G. W. Lee, W. J. Evans, and C.-S. Yoo, “Dynamic pressure-induced dendritic and shock crystal growth of ice vi,” Proceedings of the National Academy of Sciences 104, 9178–9181 (2007).
[Crossref]

Zapata, L. E.

Zewail, A.

O. Mohammed, G. Jas, M. Lin, and A. Zewail, “Primary peptide folding dynamics observed with ultrafast temperature jump,” Angewandte Chemie 121, 5738–5742 (2009).
[Crossref]

Angewandte Chemie (1)

O. Mohammed, G. Jas, M. Lin, and A. Zewail, “Primary peptide folding dynamics observed with ultrafast temperature jump,” Angewandte Chemie 121, 5738–5742 (2009).
[Crossref]

Applied Physics A (1)

P. Wernet, G. Gavrila, K. Godehusen, C. Weniger, E. Nibbering, T. Elsaesser, and W. Eberhardt, “Ultrafast temperature jump in liquid water studied by a novel infrared pump-x-ray probe technique,” Applied Physics A 92, 511–516 (2008).
[Crossref]

High Pressure Research (1)

K. Syassen, “Ruby under pressure,” High Pressure Research 28, 75–126 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

Nature (1)

H. Iglev, M. Schmeisser, K. Simeonidis, A. Thaller, and A. Laubereau, “Ultrafast superheating and melting of bulk ice,” Nature 439, 183–186 (2006).
[Crossref] [PubMed]

Nature Communications (1)

T. Li, D. Donadio, and G. Galli, “Ice nucleation at the nanoscale probes no mans land of water,” Nature Communications 4, 1887 (2013).
[Crossref]

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

B. J. Murray, S. L. Broadley, T. W. Wilson, S. J. Bull, R. H. Wills, H. K. Christenson, and E. J. Murray, “Kinetics of the homogeneous freezing of water,” Phys. Chem. Chem. Phys. 12, 10380–10387 (2010).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Dergachev, “High-energy, khz-rate, picosecond, 2-m laser pump source for mid-ir nonlinear optical devices,” Proc. SPIE 8599, 85990B (2013).
[Crossref]

Proceedings of the National Academy of Sciences (3)

M. Citroni, R. Bini, P. Foggi, and V. Schettino, “Role of excited electronic states in the high-pressure amorphization of benzene,” Proceedings of the National Academy of Sciences 105, 7658–7663 (2008).
[Crossref]

C. M. Phillips, Y. Mizutani, and R. M. Hochstrasser, “Ultrafast thermally induced unfolding of rnase a,” Proceedings of the National Academy of Sciences 92, 7292–7296 (1995).
[Crossref]

G. W. Lee, W. J. Evans, and C.-S. Yoo, “Dynamic pressure-induced dendritic and shock crystal growth of ice vi,” Proceedings of the National Academy of Sciences 104, 9178–9181 (2007).
[Crossref]

Review of Scientific Instruments (1)

G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Review of Scientific Instruments 74, 1–18 (2003).
[Crossref]

The Journal of Physical Chemistry B (1)

S. Fanetti, M. Ceppatelli, M. Citroni, and R. Bini, “Changing the dissociative character of the lowest excited state of ethanol by pressure,” The Journal of Physical Chemistry B 115, 15236–15240 (2011).
[Crossref] [PubMed]

The Journal of Physical Chemistry Letters (1)

S. Fanetti, A. Lapini, M. Pagliai, M. Citroni, M. Di Donato, S. Scandolo, R. Righini, and R. Bini, “Structure and dynamics of low-density and high-density liquid water at high pressure,” The Journal of Physical Chemistry Letters 5, 235–240 (2014).
[Crossref]

Other (1)

M. Hemmer, D. Sanchez, M. Jelínek, H. Jelínkova, V. Kubeček, and J. Biegert, “Fiber-seeded, 10-ps, 2050-nm, multi-mj, cryogenic ho:ylf cpa,” CLEO: 2014 p. SM1F.3 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Scheme of the OPA. Wavelengths present in the path are indicated in μm.
Fig. 2
Fig. 2 Characterization of the T-jump beam. (a) Spectrum of the output beam (black), of the preamplified beam after the second pass in BBO I (blue), of the beam after the second pass in BBO II in the absence of seed beam (red). (b) Energy/pulse at 1.9 μm as a function of the energy/pulse of the pump at 1.06 μm. (c) Autocorrelation profile (see text). (d) Spatial profile (see text).
Fig. 3
Fig. 3 (a) Scheme of the experiment. (b) Phase diagram of water in the range where the present measurements have been perfomed. In the inset: FTIR spectra in the overtone region showing a marked difference between liquid and ice VI phases.
Fig. 4
Fig. 4 (a) Birefringence signal measured pumping at 5 Hz with 7.5 mJ/pulse of the T-jump beam. Black curve: room pressure, T0 = −2°C. Red curve: P = 1.12 GPa, T0 = 23°C. (b) Maximum birefringence signal variation as a function of the pulse energy.

Metrics