Abstract

We demonstrate a high-efficiency and CMOS-compatible silicon Mach-Zehnder Interferometer (MZI) optical modulator with Cu traveling-wave electrode and doping compensation. The measured electro-optic bandwidth at Vbias = −5 V is above 30 GHz when it is operated at 1550 nm. At a data rate of 50 Gbps, the dynamic extinction ratio is more than 7 dB. The phase shifter is composed of a 3 mm-long reverse-biased PN junction with modulation efficiency (Vπ·Lπ) of ~18.5 V·mm. Such a Cu-photonics technology provides an attractive potentiality for integration development of silicon photonics and CMOS circuits on SOI wafer in the future.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
50-Gb/s silicon optical modulator with traveling-wave electrodes

Xiaoguang Tu, Tsung-Yang Liow, Junfeng Song, Xianshu Luo, Qing Fang, Mingbin Yu, and Guo-Qiang Lo
Opt. Express 21(10) 12776-12782 (2013)

Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators

Hui Yu, Marianna Pantouvaki, Joris Van Campenhout, Dietmar Korn, Katarzyna Komorowska, Pieter Dumon, Yanlu Li, Peter Verheyen, Philippe Absil, Luca Alloatti, David Hillerkuss, Juerg Leuthold, Roel Baets, and Wim Bogaerts
Opt. Express 20(12) 12926-12938 (2012)

Silicon optical modulator with shield coplanar waveguide electrodes

Xiaoguang Tu, Ka-Fai Chang, Tsung-Yang Liow, Junfeng Song, Xianshu Luo, Lianxi Jia, Qing Fang, Mingbin Yu, Guo-Qiang Lo, Po Dong, and Young-Kai Chen
Opt. Express 22(19) 23724-23731 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Paniccia, “Integrating silicon photonics,” Nat. Photonics 4(8), 498–499 (2010).
    [Crossref]
  2. L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
    [Crossref]
  3. Y. H. D. Lee and M. Lipson, “Back-end deposited silicon photonics for monolithic integration on CMOS,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200207 (2013).
    [Crossref]
  4. Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
    [Crossref] [PubMed]
  5. D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
    [Crossref]
  6. X. N. Chen, Y. S. Chen, Y. Zhao, W. Jiang, and R. T. Chen, “Capacitor-embedded 0.54 pJ/bit silicon-slot photonic crystal waveguide modulator,” Opt. Lett. 34(5), 602–604 (2009).
    [Crossref] [PubMed]
  7. K. Ogawa, K. Goi, Y. T. Tan, T. Y. Liow, X. G. Tu, Q. Fang, G. Q. Lo, and D. L. Kwong, “Silicon Mach-Zehnder modulator of extinction ratio beyond 10 dB at 10.0-12.5 Gbps,” Opt. Express 19(26), B26–B31 (2011).
    [Crossref] [PubMed]
  8. J. F. Ding, H. T. Chen, L. Yang, L. Zhang, R. Q. Ji, Y. H. Tian, W. W. Zhu, Y. Y. Lu, P. Zhou, and R. Min, “Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration,” Opt. Express 20(3), 3209–3218 (2012).
    [Crossref] [PubMed]
  9. P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20(6), 6163–6169 (2012).
    [Crossref] [PubMed]
  10. X. G. Tu, T. Y. Liow, J. F. Song, X. S. Luo, Q. Fang, M. B. Yu, and G. Q. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Opt. Express 21(10), 12776–12782 (2013).
    [Crossref] [PubMed]
  11. X. G. Tu, T. Y. Liow, J. F. Song, M. B. Yu, and G. Q. Lo, “Fabrication of low loss and high speed silicon optical modulator using doping compensation method,” Opt. Express 19(19), 18029–18035 (2011).
    [Crossref] [PubMed]
  12. L. Yang and J. F. Ding, “High-speed silicon Mach-Zehnder optical modulator with large optical bandwidth,” J. Lightwave Technol. 32(5), 966–970 (2014).
    [Crossref]
  13. H. Xu, X. Y. Li, X. Xiao, Z. Y. Li, Y. D. Yu, and J. Z. Yu, “Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400110 (2013).
  14. M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. S. Yang, Y. J. Ma, X. G. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350 (2013).
    [Crossref]
  15. M. Ziebell, D. Marris-Morini, G. Rasigade, J. M. Fédéli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express 20(10), 10591–10596 (2012).
    [Crossref] [PubMed]
  16. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
    [PubMed]
  17. H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20(12), 12926–12938 (2012).
    [Crossref] [PubMed]
  18. J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express 20(24), 26411–26423 (2012).
    [Crossref] [PubMed]
  19. D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. Mcdevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full copper wiring in a sub-0.25um CMOS ULSI technology,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 1997), pp. 773–776.
  20. X. Zhu, S. Santhanam, H. Lakdawala, H. Luo, and G. K. Fedder, “Copper interconnect low-K dielectric post-CMOS micromachining,” Proceedings of 11th International Conference on Solid-State Sensors and Actuators (Munich, Germany, 2001), pp. 1548–1551.
    [Crossref]
  21. Q. Jiang, Y. F. Zhu, and M. Zhao, “Copper metallization for current very large scale integration,” Recent Pat. Nanotechnol. 5(2), 106–137 (2011).
    [Crossref] [PubMed]
  22. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, ” A 90nm CMOS integrated nano-photonics technology for 25Gbps WDM optical communications applications,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 2012), postdeadline session 33.8. pp. 809–811.
    [Crossref]
  23. J. E. Cunningham, I. Shubin, H. D. Thacker, L. Jin-Hyoung, L. Guoliang, Z. Xuezhe, J. Lexau, R. Ho, J. G. Mitchell, L. Ying, Y. Jin, K. Raj, and A. V. Krishnamoorthy, “Scaling hybrid-integration of silicon photonics in Freescale 130nm to TSMC 40nm-CMOS VLSI drivers for low power communications,” Electronic Components and Technology Conference (ECTC) (IEEE 62nd, 2012), pp. 1518–1525.
    [Crossref]
  24. T. Pinguet, P. M. D. Dobbelaere, D. Foltz, S. Gloeckner, S. Hovey, Y. Liang, M. Mack, G. Masini, A. Mekis, M. Peterson, T. Pinguet, S. Sahni, J. Schramm, M. Sharp, L. Verslegers, B. P. Welch, K. Yokoyama, and S. H. Yu, “25 Gb/s silicon photonic transceivers,” 2012 IEEE 9th International Conference on Group IV Photonics (GFP) (IEEE, 2012), pp.189–191.
    [Crossref]
  25. R. H. Havemann and J. A. Hutchby, “High-performance interconnects: an integration overview,” Proc. IEEE 89(5), 586–601 (2001).
    [Crossref]
  26. M. Matsumoto, K. Suzuki, T. Sakamoto, and A. Kamisawa, “Technology challenges for advanced Cu CMP using a new slurry free process,” Proceedings of IEEE international conference on interconnect technology (IEEE, 1999), pp. 92–94.
    [Crossref]
  27. R. Chang and C. J. Spanos, “Dishing-radius model of copper CMP dishing effects,” IEEE Trans. Semicond. Manuf. 18(2), 297–303 (2005).
    [Crossref]
  28. S. Lakshminarayanan, P. J. Wright, and J. Pallinti, “Electrical characterization of the copper CMP process and derivation of metal layout rules,” IEEE Trans. Semicond. Manuf. 16(4), 668–676 (2003).
    [Crossref]
  29. R. Ding, Y. Liu, Q. Li, Y. S. Yang, Y. J. Ma, K. Padmaraju, A. E. J. Lim, G. Q. Lo, K. Bergman, T. B. Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
    [Crossref]
  30. J. M. Liu, Photonic Devices (Cambridge University, 2005), Chap. 6.

2014 (2)

L. Yang and J. F. Ding, “High-speed silicon Mach-Zehnder optical modulator with large optical bandwidth,” J. Lightwave Technol. 32(5), 966–970 (2014).
[Crossref]

R. Ding, Y. Liu, Q. Li, Y. S. Yang, Y. J. Ma, K. Padmaraju, A. E. J. Lim, G. Q. Lo, K. Bergman, T. B. Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

2013 (4)

X. G. Tu, T. Y. Liow, J. F. Song, X. S. Luo, Q. Fang, M. B. Yu, and G. Q. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Opt. Express 21(10), 12776–12782 (2013).
[Crossref] [PubMed]

H. Xu, X. Y. Li, X. Xiao, Z. Y. Li, Y. D. Yu, and J. Z. Yu, “Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400110 (2013).

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. S. Yang, Y. J. Ma, X. G. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350 (2013).
[Crossref]

Y. H. D. Lee and M. Lipson, “Back-end deposited silicon photonics for monolithic integration on CMOS,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200207 (2013).
[Crossref]

2012 (6)

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

J. F. Ding, H. T. Chen, L. Yang, L. Zhang, R. Q. Ji, Y. H. Tian, W. W. Zhu, Y. Y. Lu, P. Zhou, and R. Min, “Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration,” Opt. Express 20(3), 3209–3218 (2012).
[Crossref] [PubMed]

P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20(6), 6163–6169 (2012).
[Crossref] [PubMed]

M. Ziebell, D. Marris-Morini, G. Rasigade, J. M. Fédéli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express 20(10), 10591–10596 (2012).
[Crossref] [PubMed]

H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20(12), 12926–12938 (2012).
[Crossref] [PubMed]

J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express 20(24), 26411–26423 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (2)

2009 (2)

2005 (1)

R. Chang and C. J. Spanos, “Dishing-radius model of copper CMP dishing effects,” IEEE Trans. Semicond. Manuf. 18(2), 297–303 (2005).
[Crossref]

2003 (1)

S. Lakshminarayanan, P. J. Wright, and J. Pallinti, “Electrical characterization of the copper CMP process and derivation of metal layout rules,” IEEE Trans. Semicond. Manuf. 16(4), 668–676 (2003).
[Crossref]

2001 (1)

R. H. Havemann and J. A. Hutchby, “High-performance interconnects: an integration overview,” Proc. IEEE 89(5), 586–601 (2001).
[Crossref]

Absil, P.

Alic, N.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Alloatti, L.

Ang, K. W.

Assefa, S.

Baehr-Jones, T.

Baets, R.

Barwicz, T.

Bergman, K.

R. Ding, Y. Liu, Q. Li, Y. S. Yang, Y. J. Ma, K. Padmaraju, A. E. J. Lim, G. Q. Lo, K. Bergman, T. B. Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Bogaerts, W.

Bouville, D.

Cassan, E.

Chang, R.

R. Chang and C. J. Spanos, “Dishing-radius model of copper CMP dishing effects,” IEEE Trans. Semicond. Manuf. 18(2), 297–303 (2005).
[Crossref]

Chee, E. K. S.

Chen, H. T.

Chen, L.

Chen, R. T.

Chen, X. N.

Chen, Y. S.

Chen, Y.-K.

Cote, W.

D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. Mcdevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full copper wiring in a sub-0.25um CMOS ULSI technology,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 1997), pp. 773–776.

Crozat, P.

Ding, J. F.

Ding, R.

R. Ding, Y. Liu, Q. Li, Y. S. Yang, Y. J. Ma, K. Padmaraju, A. E. J. Lim, G. Q. Lo, K. Bergman, T. B. Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. S. Yang, Y. J. Ma, X. G. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350 (2013).
[Crossref]

Dong, P.

Dukovic, J.

D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. Mcdevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full copper wiring in a sub-0.25um CMOS ULSI technology,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 1997), pp. 773–776.

Dumon, P.

Edelstein, D.

D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. Mcdevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full copper wiring in a sub-0.25um CMOS ULSI technology,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 1997), pp. 773–776.

Fang, Q.

Fedeli, J. M.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Fedeli, J.-M.

Fédéli, J. M.

Fournier, M.

Gardes, F. Y.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
[PubMed]

Gill, D. M.

Goi, K.

Goldblatt, R.

D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. Mcdevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full copper wiring in a sub-0.25um CMOS ULSI technology,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 1997), pp. 773–776.

Green, W. M. J.

Grosse, P.

Havemann, R. H.

R. H. Havemann and J. A. Hutchby, “High-performance interconnects: an integration overview,” Proc. IEEE 89(5), 586–601 (2001).
[Crossref]

Heidenreich, J.

D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. Mcdevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full copper wiring in a sub-0.25um CMOS ULSI technology,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 1997), pp. 773–776.

Hillerkuss, D.

Hochberg, M.

R. Ding, Y. Liu, Q. Li, Y. S. Yang, Y. J. Ma, K. Padmaraju, A. E. J. Lim, G. Q. Lo, K. Bergman, T. B. Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. S. Yang, Y. J. Ma, X. G. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350 (2013).
[Crossref]

Hu, Y.

Hu, Y. F.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Hutchby, J. A.

R. H. Havemann and J. A. Hutchby, “High-performance interconnects: an integration overview,” Proc. IEEE 89(5), 586–601 (2001).
[Crossref]

Ichikawa, M.

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
[Crossref]

Ji, R. Q.

Jiang, Q.

Q. Jiang, Y. F. Zhu, and M. Zhao, “Copper metallization for current very large scale integration,” Recent Pat. Nanotechnol. 5(2), 106–137 (2011).
[Crossref] [PubMed]

Jiang, W.

Jones, T. B.

R. Ding, Y. Liu, Q. Li, Y. S. Yang, Y. J. Ma, K. Padmaraju, A. E. J. Lim, G. Q. Lo, K. Bergman, T. B. Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Kamisawa, A.

M. Matsumoto, K. Suzuki, T. Sakamoto, and A. Kamisawa, “Technology challenges for advanced Cu CMP using a new slurry free process,” Proceedings of IEEE international conference on interconnect technology (IEEE, 1999), pp. 92–94.
[Crossref]

Komorowska, K.

Korn, D.

Kuo, B. P. P.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Kwong, D. L.

Lakshminarayanan, S.

S. Lakshminarayanan, P. J. Wright, and J. Pallinti, “Electrical characterization of the copper CMP process and derivation of metal layout rules,” IEEE Trans. Semicond. Manuf. 16(4), 668–676 (2003).
[Crossref]

Lee, Y. H. D.

Y. H. D. Lee and M. Lipson, “Back-end deposited silicon photonics for monolithic integration on CMOS,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200207 (2013).
[Crossref]

Leuthold, J.

Li, Q.

R. Ding, Y. Liu, Q. Li, Y. S. Yang, Y. J. Ma, K. Padmaraju, A. E. J. Lim, G. Q. Lo, K. Bergman, T. B. Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Li, X. Y.

H. Xu, X. Y. Li, X. Xiao, Z. Y. Li, Y. D. Yu, and J. Z. Yu, “Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400110 (2013).

Li, Y.

Li, Z. Y.

H. Xu, X. Y. Li, X. Xiao, Z. Y. Li, Y. D. Yu, and J. Z. Yu, “Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400110 (2013).

Lim, A. E. J.

R. Ding, Y. Liu, Q. Li, Y. S. Yang, Y. J. Ma, K. Padmaraju, A. E. J. Lim, G. Q. Lo, K. Bergman, T. B. Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Lim, A. E.-J.

Liow, T. Y.

Lipson, M.

Y. H. D. Lee and M. Lipson, “Back-end deposited silicon photonics for monolithic integration on CMOS,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200207 (2013).
[Crossref]

Liu, Y.

R. Ding, Y. Liu, Q. Li, Y. S. Yang, Y. J. Ma, K. Padmaraju, A. E. J. Lim, G. Q. Lo, K. Bergman, T. B. Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. S. Yang, Y. J. Ma, X. G. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350 (2013).
[Crossref]

Lo, G. Q.

Lo, P. G.-Q.

Lockwood, D. J.

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
[Crossref]

Lu, Y. Y.

Luce, S.

D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. Mcdevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full copper wiring in a sub-0.25um CMOS ULSI technology,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 1997), pp. 773–776.

Luo, X. S.

Lustig, N.

D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. Mcdevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full copper wiring in a sub-0.25um CMOS ULSI technology,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 1997), pp. 773–776.

Ma, Y. J.

R. Ding, Y. Liu, Q. Li, Y. S. Yang, Y. J. Ma, K. Padmaraju, A. E. J. Lim, G. Q. Lo, K. Bergman, T. B. Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. S. Yang, Y. J. Ma, X. G. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350 (2013).
[Crossref]

Marris-Morini, D.

Mashanovich, G.

Mashanovich, G. Z.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Matsumoto, M.

M. Matsumoto, K. Suzuki, T. Sakamoto, and A. Kamisawa, “Technology challenges for advanced Cu CMP using a new slurry free process,” Proceedings of IEEE international conference on interconnect technology (IEEE, 1999), pp. 92–94.
[Crossref]

Mcdevitt, T.

D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. Mcdevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full copper wiring in a sub-0.25um CMOS ULSI technology,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 1997), pp. 773–776.

Min, R.

Motsiff, W.

D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. Mcdevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full copper wiring in a sub-0.25um CMOS ULSI technology,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 1997), pp. 773–776.

Myslivets, E.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Novack, A.

Ogawa, K.

Padmaraju, K.

R. Ding, Y. Liu, Q. Li, Y. S. Yang, Y. J. Ma, K. Padmaraju, A. E. J. Lim, G. Q. Lo, K. Bergman, T. B. Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Pallinti, J.

S. Lakshminarayanan, P. J. Wright, and J. Pallinti, “Electrical characterization of the copper CMP process and derivation of metal layout rules,” IEEE Trans. Semicond. Manuf. 16(4), 668–676 (2003).
[Crossref]

Paniccia, M.

M. Paniccia, “Integrating silicon photonics,” Nat. Photonics 4(8), 498–499 (2010).
[Crossref]

Pantouvaki, M.

Radic, S.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

Rasigade, G.

Rathore, H.

D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. Mcdevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full copper wiring in a sub-0.25um CMOS ULSI technology,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 1997), pp. 773–776.

Reed, G. T.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
[PubMed]

Roper, P.

D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. Mcdevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full copper wiring in a sub-0.25um CMOS ULSI technology,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 1997), pp. 773–776.

Rosenberg, J. C.

Sakamoto, T.

M. Matsumoto, K. Suzuki, T. Sakamoto, and A. Kamisawa, “Technology challenges for advanced Cu CMP using a new slurry free process,” Proceedings of IEEE international conference on interconnect technology (IEEE, 1999), pp. 92–94.
[Crossref]

Schulz, R.

D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. Mcdevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full copper wiring in a sub-0.25um CMOS ULSI technology,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 1997), pp. 773–776.

Shank, S. M.

Simon, A.

D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. Mcdevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full copper wiring in a sub-0.25um CMOS ULSI technology,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 1997), pp. 773–776.

Slattery, J.

D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. Mcdevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full copper wiring in a sub-0.25um CMOS ULSI technology,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 1997), pp. 773–776.

Song, J. F.

Spanos, C. J.

R. Chang and C. J. Spanos, “Dishing-radius model of copper CMP dishing effects,” IEEE Trans. Semicond. Manuf. 18(2), 297–303 (2005).
[Crossref]

Streshinsky, M.

Su, L.

D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. Mcdevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full copper wiring in a sub-0.25um CMOS ULSI technology,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 1997), pp. 773–776.

Suzuki, K.

M. Matsumoto, K. Suzuki, T. Sakamoto, and A. Kamisawa, “Technology challenges for advanced Cu CMP using a new slurry free process,” Proceedings of IEEE international conference on interconnect technology (IEEE, 1999), pp. 92–94.
[Crossref]

Tan, Y. T.

Thomson, D. J.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
[PubMed]

Tian, Y. H.

Tsybeskov, L.

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
[Crossref]

Tu, X. G.

Uzoh, C.

D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. Mcdevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full copper wiring in a sub-0.25um CMOS ULSI technology,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 1997), pp. 773–776.

Van Campenhout, J.

Verheyen, P.

Vivien, L.

Vlasov, Y. A.

Wachnik, R.

D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. Mcdevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full copper wiring in a sub-0.25um CMOS ULSI technology,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 1997), pp. 773–776.

Wright, P. J.

S. Lakshminarayanan, P. J. Wright, and J. Pallinti, “Electrical characterization of the copper CMP process and derivation of metal layout rules,” IEEE Trans. Semicond. Manuf. 16(4), 668–676 (2003).
[Crossref]

Xiao, X.

H. Xu, X. Y. Li, X. Xiao, Z. Y. Li, Y. D. Yu, and J. Z. Yu, “Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400110 (2013).

Xu, H.

H. Xu, X. Y. Li, X. Xiao, Z. Y. Li, Y. D. Yu, and J. Z. Yu, “Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400110 (2013).

Yang, L.

Yang, M.

Yang, Y. S.

R. Ding, Y. Liu, Q. Li, Y. S. Yang, Y. J. Ma, K. Padmaraju, A. E. J. Lim, G. Q. Lo, K. Bergman, T. B. Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. S. Yang, Y. J. Ma, X. G. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350 (2013).
[Crossref]

Yu, H.

Yu, J. Z.

H. Xu, X. Y. Li, X. Xiao, Z. Y. Li, Y. D. Yu, and J. Z. Yu, “Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400110 (2013).

Yu, M. B.

Yu, Y. D.

H. Xu, X. Y. Li, X. Xiao, Z. Y. Li, Y. D. Yu, and J. Z. Yu, “Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400110 (2013).

Zhang, L.

Zhao, M.

Q. Jiang, Y. F. Zhu, and M. Zhao, “Copper metallization for current very large scale integration,” Recent Pat. Nanotechnol. 5(2), 106–137 (2011).
[Crossref] [PubMed]

Zhao, Y.

Zhou, P.

Zhu, W. W.

Zhu, Y. F.

Q. Jiang, Y. F. Zhu, and M. Zhao, “Copper metallization for current very large scale integration,” Recent Pat. Nanotechnol. 5(2), 106–137 (2011).
[Crossref] [PubMed]

Ziebell, M.

Zlatanovic, S.

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. H. D. Lee and M. Lipson, “Back-end deposited silicon photonics for monolithic integration on CMOS,” IEEE J. Sel. Top. Quantum Electron. 19(2), 8200207 (2013).
[Crossref]

H. Xu, X. Y. Li, X. Xiao, Z. Y. Li, Y. D. Yu, and J. Z. Yu, “Demonstration and characterization of high-speed silicon depletion-mode Mach–Zehnder modulators,” IEEE J. Sel. Top. Quantum Electron. 20(4), 3400110 (2013).

IEEE Photon. Technol. Lett. (1)

D. J. Thomson, F. Y. Gardes, J. M. Fedeli, S. Zlatanovic, Y. F. Hu, B. P. P. Kuo, E. Myslivets, N. Alic, S. Radic, G. Z. Mashanovich, and G. T. Reed, “50-Gb/s silicon optical modulator,” IEEE Photon. Technol. Lett. 24(4), 234–236 (2012).
[Crossref]

IEEE Trans. Semicond. Manuf. (2)

R. Chang and C. J. Spanos, “Dishing-radius model of copper CMP dishing effects,” IEEE Trans. Semicond. Manuf. 18(2), 297–303 (2005).
[Crossref]

S. Lakshminarayanan, P. J. Wright, and J. Pallinti, “Electrical characterization of the copper CMP process and derivation of metal layout rules,” IEEE Trans. Semicond. Manuf. 16(4), 668–676 (2003).
[Crossref]

J. Lightwave Technol. (1)

Nat. Photonics (1)

M. Paniccia, “Integrating silicon photonics,” Nat. Photonics 4(8), 498–499 (2010).
[Crossref]

Opt. Commun. (1)

R. Ding, Y. Liu, Q. Li, Y. S. Yang, Y. J. Ma, K. Padmaraju, A. E. J. Lim, G. Q. Lo, K. Bergman, T. B. Jones, and M. Hochberg, “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator,” Opt. Commun. 321, 124–133 (2014).
[Crossref]

Opt. Express (11)

Q. Fang, T. Y. Liow, J. F. Song, K. W. Ang, M. B. Yu, G. Q. Lo, and D. L. Kwong, “WDM multi-channel silicon photonic receiver with 320 Gbps data transmission capability,” Opt. Express 18(5), 5106–5113 (2010).
[Crossref] [PubMed]

K. Ogawa, K. Goi, Y. T. Tan, T. Y. Liow, X. G. Tu, Q. Fang, G. Q. Lo, and D. L. Kwong, “Silicon Mach-Zehnder modulator of extinction ratio beyond 10 dB at 10.0-12.5 Gbps,” Opt. Express 19(26), B26–B31 (2011).
[Crossref] [PubMed]

J. F. Ding, H. T. Chen, L. Yang, L. Zhang, R. Q. Ji, Y. H. Tian, W. W. Zhu, Y. Y. Lu, P. Zhou, and R. Min, “Low-voltage, high-extinction-ratio, Mach-Zehnder silicon optical modulator for CMOS-compatible integration,” Opt. Express 20(3), 3209–3218 (2012).
[Crossref] [PubMed]

P. Dong, L. Chen, and Y.-K. Chen, “High-speed low-voltage single-drive push-pull silicon Mach-Zehnder modulators,” Opt. Express 20(6), 6163–6169 (2012).
[Crossref] [PubMed]

X. G. Tu, T. Y. Liow, J. F. Song, X. S. Luo, Q. Fang, M. B. Yu, and G. Q. Lo, “50-Gb/s silicon optical modulator with traveling-wave electrodes,” Opt. Express 21(10), 12776–12782 (2013).
[Crossref] [PubMed]

X. G. Tu, T. Y. Liow, J. F. Song, M. B. Yu, and G. Q. Lo, “Fabrication of low loss and high speed silicon optical modulator using doping compensation method,” Opt. Express 19(19), 18029–18035 (2011).
[Crossref] [PubMed]

M. Streshinsky, R. Ding, Y. Liu, A. Novack, Y. S. Yang, Y. J. Ma, X. G. Tu, E. K. S. Chee, A. E.-J. Lim, P. G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm,” Opt. Express 21(25), 30350 (2013).
[Crossref]

M. Ziebell, D. Marris-Morini, G. Rasigade, J. M. Fédéli, P. Crozat, E. Cassan, D. Bouville, and L. Vivien, “40 Gbit/s low-loss silicon optical modulator based on a pipin diode,” Opt. Express 20(10), 10591–10596 (2012).
[Crossref] [PubMed]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40Gbit/s optical modulation in silicon,” Opt. Express 19(12), 11507–11516 (2011).
[PubMed]

H. Yu, M. Pantouvaki, J. Van Campenhout, D. Korn, K. Komorowska, P. Dumon, Y. Li, P. Verheyen, P. Absil, L. Alloatti, D. Hillerkuss, J. Leuthold, R. Baets, and W. Bogaerts, “Performance tradeoff between lateral and interdigitated doping patterns for high speed carrier-depletion based silicon modulators,” Opt. Express 20(12), 12926–12938 (2012).
[Crossref] [PubMed]

J. C. Rosenberg, W. M. J. Green, S. Assefa, D. M. Gill, T. Barwicz, M. Yang, S. M. Shank, and Y. A. Vlasov, “A 25 Gbps silicon microring modulator based on an interleaved junction,” Opt. Express 20(24), 26411–26423 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

Proc. IEEE (2)

R. H. Havemann and J. A. Hutchby, “High-performance interconnects: an integration overview,” Proc. IEEE 89(5), 586–601 (2001).
[Crossref]

L. Tsybeskov, D. J. Lockwood, and M. Ichikawa, “Silicon photonics: CMOS going optical,” Proc. IEEE 97(7), 1161–1165 (2009).
[Crossref]

Recent Pat. Nanotechnol. (1)

Q. Jiang, Y. F. Zhu, and M. Zhao, “Copper metallization for current very large scale integration,” Recent Pat. Nanotechnol. 5(2), 106–137 (2011).
[Crossref] [PubMed]

Other (7)

S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, H. Pan, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, M. Yang, J. Proesel, J. Hofrichter, B. Offrein, X. Gu, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, ” A 90nm CMOS integrated nano-photonics technology for 25Gbps WDM optical communications applications,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 2012), postdeadline session 33.8. pp. 809–811.
[Crossref]

J. E. Cunningham, I. Shubin, H. D. Thacker, L. Jin-Hyoung, L. Guoliang, Z. Xuezhe, J. Lexau, R. Ho, J. G. Mitchell, L. Ying, Y. Jin, K. Raj, and A. V. Krishnamoorthy, “Scaling hybrid-integration of silicon photonics in Freescale 130nm to TSMC 40nm-CMOS VLSI drivers for low power communications,” Electronic Components and Technology Conference (ECTC) (IEEE 62nd, 2012), pp. 1518–1525.
[Crossref]

T. Pinguet, P. M. D. Dobbelaere, D. Foltz, S. Gloeckner, S. Hovey, Y. Liang, M. Mack, G. Masini, A. Mekis, M. Peterson, T. Pinguet, S. Sahni, J. Schramm, M. Sharp, L. Verslegers, B. P. Welch, K. Yokoyama, and S. H. Yu, “25 Gb/s silicon photonic transceivers,” 2012 IEEE 9th International Conference on Group IV Photonics (GFP) (IEEE, 2012), pp.189–191.
[Crossref]

M. Matsumoto, K. Suzuki, T. Sakamoto, and A. Kamisawa, “Technology challenges for advanced Cu CMP using a new slurry free process,” Proceedings of IEEE international conference on interconnect technology (IEEE, 1999), pp. 92–94.
[Crossref]

J. M. Liu, Photonic Devices (Cambridge University, 2005), Chap. 6.

D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. Mcdevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce, and J. Slattery, “Full copper wiring in a sub-0.25um CMOS ULSI technology,” Proceedings of IEEE International Electron Devices Meeting (IEEE, 1997), pp. 773–776.

X. Zhu, S. Santhanam, H. Lakdawala, H. Luo, and G. K. Fedder, “Copper interconnect low-K dielectric post-CMOS micromachining,” Proceedings of 11th International Conference on Solid-State Sensors and Actuators (Munich, Germany, 2001), pp. 1548–1551.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Microscope image of the MZI silicon optical modulator. Inset (a): implantation schematic diagram of the phase shifter (not to scale). Inset (b): latticed Cu surface pattern.
Fig. 2
Fig. 2 Simulated insertion loss S21 (a) and return loss S11 (b) of the normal Cu traveling-wave electrode, the latticed Cu traveling-wave electrode and the normal Al traveling-wave electrode.
Fig. 3
Fig. 3 SEM images of modulator waveguide. Output part of the modulator (a). Ridge waveguide of the phase shifter (b). 1 × 2 MMI combiner/splitter (c).
Fig. 4
Fig. 4 Images of Cu electrode. SEM image of the top view of the Cu electrode (a). TEM image of the phase shifter at the A-A' line (b). Inset: TEM image of the silicon ridge waveguide.
Fig. 5
Fig. 5 EE S21 of the latticed Cu traveling-wave electrode (a), Cu-induced waveguide propagation loss (b).
Fig. 6
Fig. 6 Output spectra of silicon modulator with 3 mm-long phase shifter (a), Inset: dynamic insertion loss. Phase shift and efficiency VπLπ of the phase shifter under different applied reversed voltages of the 3 mm-long phase shifter (b).
Fig. 7
Fig. 7 The EO bandwidth of the silicon modulator (a) and eye diagram of the silicon modulator (b).

Tables (2)

Tables Icon

Table 1 Sheet Resistance of Cu and Al, and Cu-to-Si Contact Resistivity

Tables Icon

Table 2 Comparison to Other MZI Modulators with Traveling-wave Electrode

Metrics