Abstract

Zn nanoparticles (NPs) embedded in a silica matrix subjected to irradiation with swift heavy ions of 200 MeV Xe14+ have been found to undergo shape elongation from spheres to prolate-spheroids while maintaining the major axes of the NPs in parallel alignment. The directionally-aligned Zn spheroids enable acquisition of optical properties, such as linear dichroism and birefringence. In this paper, the birefringence of the Zn spheroids was evaluated by the crossed-Nicols (XN) transmittance, where a sample was inserted between a pair of optical polarizers that were set in an orthogonal configuration. Linearly-polarized light aligned by the first polarizer was transformed to an elliptic polarization by the birefringence of the Zn spheroids. The existence of the birefringence was confirmed by the non-zero transmittance of the second polarizer in the orthogonal configuration. The sample irradiated with a fluence of 5.0 × 1013 ions/cm2 exhibited a maximum XN transmittance of 2.1% at a photon energy of ~4 eV. The XN transmission was observed down to a fluence of 1.0 × 1012 ions/cm2, but reduced below the detection limit at a fluence of 1.0 × 1011 ions/cm2. The possible application of the elongated Zn NPs as a polarizer with nanometric thickness working in the near- and mid-ultraviolet region is discussed.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Xe ion irradiation-induced polycrystallization of Ag nanoparticles embedded in SiO2 and related optical absorption property

Guangyi Jia, Huixian Liu, Xiaoyu Mu, Haitao Dai, and Changlong Liu
Opt. Mater. Express 4(7) 1303-1312 (2014)

Thick optical waveguides in lithium niobate induced by swift heavy ions (~10 MeV/amu) at ultralow fluences

José Olivares, Miguel L. Crespillo, Olga Caballero-Calero, María D. Ynsa, Angel García-Cabañes, Marcel Toulemonde, Christina Trautmann, and Fernando Agulló-López
Opt. Express 17(26) 24175-24182 (2009)

Planar optical waveguides in Bi4Ge3O12 crystal fabricated by swift heavy-ion irradiation

Jin Yang, Chao Zhang, Feng Chen, Sh. Akhmadaliev, and Shengqiang Zhou
Appl. Opt. 50(36) 6678-6681 (2011)

References

  • View by:
  • |
  • |
  • |

  1. R. F. Haglund, L. Yang, R. H. Magruder, C. W. White, R. A. Zuhr, L. Yang, R. Dorsinville, and R. R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 91(1-4), 493–504 (1994).
    [Crossref]
  2. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  3. A. Nakajima, H. Nakao, H. Ueno, T. Futatsugi, and N. Yokoyama, “Coulomb blockade in Sb nanocrystals formed in thin, thermally grown SiO2 layers by low-energy ion implantation,” Appl. Phys. Lett. 73(8), 1071–1073 (1998).
    [Crossref]
  4. M. Solzi, M. Ghidini, and G. Asti, “Macroscopic magnetic properties of nanostructured and nanocomposite systems,” in Magnetic Nanostructures, H. S. Nalwa, ed. (American Sci. Pub., 2002), pp. 123–200.
  5. H. Amekura, H. Kitazawa, N. Umeda, Y. Takeda, and N. Kishimoto, “Nickel nanoparticles in silica glass fabricated by 60 keV negative-ion implantation,” Nucl. Instrum. Methods Phys. Res. B 222(1-2), 114–122 (2004).
    [Crossref]
  6. H. Amekura, Y. Fudamoto, Y. Takeda, and N. Kishimoto, “Curie transition of superparamagnetic nickel nanoparticles in silica glass: a phase transition in a finite size system,” Phys. Rev. B 71(17), 172404 (2005).
    [Crossref]
  7. C. D’Orleans, J. P. Stoquert, C. Estournes, C. Cerruti, J. J. Grob, J. L. Guille, F. Haas, D. Muller, and M. Richard-Plouet, “Anisotropy of Co nanoparticles induced by swift heavy ions,” Phys. Rev. B 67(22), 220101 (2003).
    [Crossref]
  8. S. Roorda, T. van Dillen, A. Polman, C. Graf, A. van Blaaderen, and B. J. Kooi, “Aligned gold nanorods in silica made by ion irradiation of core-shell colloidal particles,” Adv. Mater. 16(3), 235–237 (2004).
    [Crossref]
  9. J. M. Lamarre, Z. Yu, C. Harkati, S. Roorda, and L. Martinu, “Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation,” Thin Solid Films 479(1-2), 232–237 (2005).
    [Crossref]
  10. J. J. Penninkhof, T. van Dillen, S. Roorda, C. Graf, A. van Blaaderen, A. M. Vredenberg, and A. Polman, “Anisotropic deformation of metallo-dielectric core-shell colloids under MeV ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 242(1-2), 523–529 (2006).
    [Crossref]
  11. A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Roman-Velazquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24), 245425 (2006).
    [Crossref]
  12. P. Kluth, B. Johannessen, R. Giulian, C. S. Schnohr, G. J. Foran, D. J. Cookson, A. P. Byrne, and M. C. Ridgway, “Ion irradiation effects on metallic nanocrystals,” Rad. Effects Defects Solids 162(7-8), 501–513 (2007).
    [Crossref]
  13. Y. K. Mishra, F. Singh, D. K. Avasthi, J. C. Pivin, D. Malinovska, and E. Pippel, “Synthesis of elongated Au nanoparticles in silica matrix by ion irradiation,” Appl. Phys. Lett. 91(6), 063103 (2007).
    [Crossref]
  14. C. Harkati Kerboua, J. M. Lamarre, L. Martinu, and S. Roorda, “Deformation, alignment and anisotropic optical properties of gold nanoparticles embedded in silica,” Nucl. Instrum. Methods Phys. Res. B 257(1-2), 42–46 (2007).
    [Crossref]
  15. R. Giulian, P. Kluth, L. L. Araujo, D. J. Sprouster, A. P. Byrne, D. J. Cookson, and M. C. Ridgway, “Shape transformation of Pt nanoparticles induced by swift heavy-ion irradiation,” Phys. Rev. B 78(12), 125413 (2008).
    [Crossref]
  16. K. Awazu, X. Wang, M. Fujimaki, J. Tominaga, H. Aiba, Y. Ohki, and T. Komatsubara, “Elongation of gold nanoparticles in silica glass by irradiation with swift heavy ions,” Phys. Rev. B 78(5), 054102 (2008).
    [Crossref]
  17. P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine Structure in Swift Heavy Ion Tracks in Amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
    [Crossref] [PubMed]
  18. J. A. Reyes-Esqueda, C. Torres-Torres, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, C. Noguez, and A. Oliver, “Large optical birefringence by anisotropic silver nanocomposites,” Opt. Express 16(2), 710–717 (2008).
    [Crossref] [PubMed]
  19. M. C. Ridgway, P. Kluth, R. Giulian, D. J. Sprouster, L. L. Araujo, C. S. Schnohr, D. J. Llewellyn, A. P. Byrne, G. J. Foran, and D. J. Cookson, “Changes in metal nanoparticle shape and size induced by swift heavy-ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 267(6), 931–935 (2009).
    [Crossref]
  20. S. Klaumunzer, “Modification of nanostructures by high-energy ion beams,” Nucl. Instrum. Methods Phys. Res. B 244(1), 1–7 (2006).
    [Crossref]
  21. E. A. Dawi, G. Rizza, M. P. Mink, A. M. Vredenberg, and F. Habraken, “Ion beam shaping of Au nanoparticles in silica: Particle size and concentration dependence,” J. Appl. Phys. 105(7), 074305 (2009).
    [Crossref]
  22. B. Schmidt, K. H. Heinig, A. Mueklich, and C. Akhmadaliev, “Swift-heavy-ion-induced shaping of spherical Ge nanoparticles into disks and rods,” Nucl. Instrum. Methods Phys. Res. B 267(8-9), 1345–1348 (2009).
    [Crossref]
  23. M. C. Ridgway, R. Giulian, D. J. Sprouster, P. Kluth, L. L. Araujo, D. J. Llewellyn, A. P. Byrne, F. Kremer, P. F. P. Fichtner, G. Rizza, H. Amekura, and M. Toulemonde, “Role of Thermodynamics in the Shape Transformation of Embedded Metal Nanoparticles Induced by Swift Heavy-Ion Irradiation,” Phys. Rev. Lett. 106(9), 095505 (2011).
    [Crossref] [PubMed]
  24. H. Amekura, N. Ishikawa, N. Okubo, M. C. Ridgway, R. Giulian, K. Mitsuishi, Y. Nakayama, Ch. Buchal, S. Mantl, and N. Kishimoto, “Zn nanoparticles irradiated with swift heavy ions at low fluences: Optically-detected shape elongation induced by nonoverlapping ion tracks,” Phys. Rev. B 83(20), 205401 (2011).
    [Crossref]
  25. H. Amekura, S. Mohapatra, U. B. Singh, S. A. Khan, P. K. Kulriya, N. Ishikawa, N. Okubo, and D. K. Avasthi, “Shape elongation of Zn nanoparticles in silica irradiated with swift heavy ions of different species and energies: scaling law and some insights on the elongation mechanism,” Nanotechnology 25(43), 435301 (2014).
    [Crossref] [PubMed]
  26. H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology 18(39), 395707 (2007).
    [Crossref] [PubMed]
  27. H. Amekura, N. Umeda, Y. Sakuma, O. A. Plaksin, Y. Takeda, N. Kishimoto, and Ch. Buchal, “Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect-free luminescence,” Appl. Phys. Lett. 88(15), 153119 (2006).
    [Crossref]
  28. H. Amekura and N. Kishimoto, “Fabrication of oxide nanoparticles by ion implantation and thermal oxidation,” in “Lecture Notes in Nanoscale Science and Technology” Vol. 5, Z. Wang, ed. (Springer, 2009), p. 1~75.
  29. J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985).
  30. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 2007).
  31. This function is ascribed to the optical linear dichroism of elongated Zn NPs, rather than the birefringence.
  32. N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Y. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefringence in anisotropically nanostructured silicon,” Opt. Lett. 26(16), 1265–1267 (2001).
    [Crossref] [PubMed]
  33. F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gösele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63(16), 161101 (2001).
    [Crossref]
  34. O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. G. Rivas, “Giant optical birefringence in ensembles of semiconductor nanowires,” Appl. Phys. Lett. 89(23), 233117 (2006).
    [Crossref]

2014 (1)

H. Amekura, S. Mohapatra, U. B. Singh, S. A. Khan, P. K. Kulriya, N. Ishikawa, N. Okubo, and D. K. Avasthi, “Shape elongation of Zn nanoparticles in silica irradiated with swift heavy ions of different species and energies: scaling law and some insights on the elongation mechanism,” Nanotechnology 25(43), 435301 (2014).
[Crossref] [PubMed]

2011 (2)

M. C. Ridgway, R. Giulian, D. J. Sprouster, P. Kluth, L. L. Araujo, D. J. Llewellyn, A. P. Byrne, F. Kremer, P. F. P. Fichtner, G. Rizza, H. Amekura, and M. Toulemonde, “Role of Thermodynamics in the Shape Transformation of Embedded Metal Nanoparticles Induced by Swift Heavy-Ion Irradiation,” Phys. Rev. Lett. 106(9), 095505 (2011).
[Crossref] [PubMed]

H. Amekura, N. Ishikawa, N. Okubo, M. C. Ridgway, R. Giulian, K. Mitsuishi, Y. Nakayama, Ch. Buchal, S. Mantl, and N. Kishimoto, “Zn nanoparticles irradiated with swift heavy ions at low fluences: Optically-detected shape elongation induced by nonoverlapping ion tracks,” Phys. Rev. B 83(20), 205401 (2011).
[Crossref]

2009 (3)

E. A. Dawi, G. Rizza, M. P. Mink, A. M. Vredenberg, and F. Habraken, “Ion beam shaping of Au nanoparticles in silica: Particle size and concentration dependence,” J. Appl. Phys. 105(7), 074305 (2009).
[Crossref]

B. Schmidt, K. H. Heinig, A. Mueklich, and C. Akhmadaliev, “Swift-heavy-ion-induced shaping of spherical Ge nanoparticles into disks and rods,” Nucl. Instrum. Methods Phys. Res. B 267(8-9), 1345–1348 (2009).
[Crossref]

M. C. Ridgway, P. Kluth, R. Giulian, D. J. Sprouster, L. L. Araujo, C. S. Schnohr, D. J. Llewellyn, A. P. Byrne, G. J. Foran, and D. J. Cookson, “Changes in metal nanoparticle shape and size induced by swift heavy-ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 267(6), 931–935 (2009).
[Crossref]

2008 (4)

R. Giulian, P. Kluth, L. L. Araujo, D. J. Sprouster, A. P. Byrne, D. J. Cookson, and M. C. Ridgway, “Shape transformation of Pt nanoparticles induced by swift heavy-ion irradiation,” Phys. Rev. B 78(12), 125413 (2008).
[Crossref]

K. Awazu, X. Wang, M. Fujimaki, J. Tominaga, H. Aiba, Y. Ohki, and T. Komatsubara, “Elongation of gold nanoparticles in silica glass by irradiation with swift heavy ions,” Phys. Rev. B 78(5), 054102 (2008).
[Crossref]

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine Structure in Swift Heavy Ion Tracks in Amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

J. A. Reyes-Esqueda, C. Torres-Torres, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, C. Noguez, and A. Oliver, “Large optical birefringence by anisotropic silver nanocomposites,” Opt. Express 16(2), 710–717 (2008).
[Crossref] [PubMed]

2007 (4)

P. Kluth, B. Johannessen, R. Giulian, C. S. Schnohr, G. J. Foran, D. J. Cookson, A. P. Byrne, and M. C. Ridgway, “Ion irradiation effects on metallic nanocrystals,” Rad. Effects Defects Solids 162(7-8), 501–513 (2007).
[Crossref]

Y. K. Mishra, F. Singh, D. K. Avasthi, J. C. Pivin, D. Malinovska, and E. Pippel, “Synthesis of elongated Au nanoparticles in silica matrix by ion irradiation,” Appl. Phys. Lett. 91(6), 063103 (2007).
[Crossref]

C. Harkati Kerboua, J. M. Lamarre, L. Martinu, and S. Roorda, “Deformation, alignment and anisotropic optical properties of gold nanoparticles embedded in silica,” Nucl. Instrum. Methods Phys. Res. B 257(1-2), 42–46 (2007).
[Crossref]

H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology 18(39), 395707 (2007).
[Crossref] [PubMed]

2006 (5)

H. Amekura, N. Umeda, Y. Sakuma, O. A. Plaksin, Y. Takeda, N. Kishimoto, and Ch. Buchal, “Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect-free luminescence,” Appl. Phys. Lett. 88(15), 153119 (2006).
[Crossref]

O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. G. Rivas, “Giant optical birefringence in ensembles of semiconductor nanowires,” Appl. Phys. Lett. 89(23), 233117 (2006).
[Crossref]

S. Klaumunzer, “Modification of nanostructures by high-energy ion beams,” Nucl. Instrum. Methods Phys. Res. B 244(1), 1–7 (2006).
[Crossref]

J. J. Penninkhof, T. van Dillen, S. Roorda, C. Graf, A. van Blaaderen, A. M. Vredenberg, and A. Polman, “Anisotropic deformation of metallo-dielectric core-shell colloids under MeV ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 242(1-2), 523–529 (2006).
[Crossref]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Roman-Velazquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24), 245425 (2006).
[Crossref]

2005 (2)

H. Amekura, Y. Fudamoto, Y. Takeda, and N. Kishimoto, “Curie transition of superparamagnetic nickel nanoparticles in silica glass: a phase transition in a finite size system,” Phys. Rev. B 71(17), 172404 (2005).
[Crossref]

J. M. Lamarre, Z. Yu, C. Harkati, S. Roorda, and L. Martinu, “Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation,” Thin Solid Films 479(1-2), 232–237 (2005).
[Crossref]

2004 (2)

H. Amekura, H. Kitazawa, N. Umeda, Y. Takeda, and N. Kishimoto, “Nickel nanoparticles in silica glass fabricated by 60 keV negative-ion implantation,” Nucl. Instrum. Methods Phys. Res. B 222(1-2), 114–122 (2004).
[Crossref]

S. Roorda, T. van Dillen, A. Polman, C. Graf, A. van Blaaderen, and B. J. Kooi, “Aligned gold nanorods in silica made by ion irradiation of core-shell colloidal particles,” Adv. Mater. 16(3), 235–237 (2004).
[Crossref]

2003 (1)

C. D’Orleans, J. P. Stoquert, C. Estournes, C. Cerruti, J. J. Grob, J. L. Guille, F. Haas, D. Muller, and M. Richard-Plouet, “Anisotropy of Co nanoparticles induced by swift heavy ions,” Phys. Rev. B 67(22), 220101 (2003).
[Crossref]

2001 (2)

N. Künzner, D. Kovalev, J. Diener, E. Gross, V. Y. Timoshenko, G. Polisski, F. Koch, and M. Fujii, “Giant birefringence in anisotropically nanostructured silicon,” Opt. Lett. 26(16), 1265–1267 (2001).
[Crossref] [PubMed]

F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gösele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63(16), 161101 (2001).
[Crossref]

1998 (1)

A. Nakajima, H. Nakao, H. Ueno, T. Futatsugi, and N. Yokoyama, “Coulomb blockade in Sb nanocrystals formed in thin, thermally grown SiO2 layers by low-energy ion implantation,” Appl. Phys. Lett. 73(8), 1071–1073 (1998).
[Crossref]

1994 (1)

R. F. Haglund, L. Yang, R. H. Magruder, C. W. White, R. A. Zuhr, L. Yang, R. Dorsinville, and R. R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 91(1-4), 493–504 (1994).
[Crossref]

Aiba, H.

K. Awazu, X. Wang, M. Fujimaki, J. Tominaga, H. Aiba, Y. Ohki, and T. Komatsubara, “Elongation of gold nanoparticles in silica glass by irradiation with swift heavy ions,” Phys. Rev. B 78(5), 054102 (2008).
[Crossref]

Akhmadaliev, C.

B. Schmidt, K. H. Heinig, A. Mueklich, and C. Akhmadaliev, “Swift-heavy-ion-induced shaping of spherical Ge nanoparticles into disks and rods,” Nucl. Instrum. Methods Phys. Res. B 267(8-9), 1345–1348 (2009).
[Crossref]

Alfano, R. R.

R. F. Haglund, L. Yang, R. H. Magruder, C. W. White, R. A. Zuhr, L. Yang, R. Dorsinville, and R. R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 91(1-4), 493–504 (1994).
[Crossref]

Amekura, H.

H. Amekura, S. Mohapatra, U. B. Singh, S. A. Khan, P. K. Kulriya, N. Ishikawa, N. Okubo, and D. K. Avasthi, “Shape elongation of Zn nanoparticles in silica irradiated with swift heavy ions of different species and energies: scaling law and some insights on the elongation mechanism,” Nanotechnology 25(43), 435301 (2014).
[Crossref] [PubMed]

H. Amekura, N. Ishikawa, N. Okubo, M. C. Ridgway, R. Giulian, K. Mitsuishi, Y. Nakayama, Ch. Buchal, S. Mantl, and N. Kishimoto, “Zn nanoparticles irradiated with swift heavy ions at low fluences: Optically-detected shape elongation induced by nonoverlapping ion tracks,” Phys. Rev. B 83(20), 205401 (2011).
[Crossref]

M. C. Ridgway, R. Giulian, D. J. Sprouster, P. Kluth, L. L. Araujo, D. J. Llewellyn, A. P. Byrne, F. Kremer, P. F. P. Fichtner, G. Rizza, H. Amekura, and M. Toulemonde, “Role of Thermodynamics in the Shape Transformation of Embedded Metal Nanoparticles Induced by Swift Heavy-Ion Irradiation,” Phys. Rev. Lett. 106(9), 095505 (2011).
[Crossref] [PubMed]

H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology 18(39), 395707 (2007).
[Crossref] [PubMed]

H. Amekura, N. Umeda, Y. Sakuma, O. A. Plaksin, Y. Takeda, N. Kishimoto, and Ch. Buchal, “Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect-free luminescence,” Appl. Phys. Lett. 88(15), 153119 (2006).
[Crossref]

H. Amekura, Y. Fudamoto, Y. Takeda, and N. Kishimoto, “Curie transition of superparamagnetic nickel nanoparticles in silica glass: a phase transition in a finite size system,” Phys. Rev. B 71(17), 172404 (2005).
[Crossref]

H. Amekura, H. Kitazawa, N. Umeda, Y. Takeda, and N. Kishimoto, “Nickel nanoparticles in silica glass fabricated by 60 keV negative-ion implantation,” Nucl. Instrum. Methods Phys. Res. B 222(1-2), 114–122 (2004).
[Crossref]

Araujo, L. L.

M. C. Ridgway, R. Giulian, D. J. Sprouster, P. Kluth, L. L. Araujo, D. J. Llewellyn, A. P. Byrne, F. Kremer, P. F. P. Fichtner, G. Rizza, H. Amekura, and M. Toulemonde, “Role of Thermodynamics in the Shape Transformation of Embedded Metal Nanoparticles Induced by Swift Heavy-Ion Irradiation,” Phys. Rev. Lett. 106(9), 095505 (2011).
[Crossref] [PubMed]

M. C. Ridgway, P. Kluth, R. Giulian, D. J. Sprouster, L. L. Araujo, C. S. Schnohr, D. J. Llewellyn, A. P. Byrne, G. J. Foran, and D. J. Cookson, “Changes in metal nanoparticle shape and size induced by swift heavy-ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 267(6), 931–935 (2009).
[Crossref]

R. Giulian, P. Kluth, L. L. Araujo, D. J. Sprouster, A. P. Byrne, D. J. Cookson, and M. C. Ridgway, “Shape transformation of Pt nanoparticles induced by swift heavy-ion irradiation,” Phys. Rev. B 78(12), 125413 (2008).
[Crossref]

Avasthi, D. K.

H. Amekura, S. Mohapatra, U. B. Singh, S. A. Khan, P. K. Kulriya, N. Ishikawa, N. Okubo, and D. K. Avasthi, “Shape elongation of Zn nanoparticles in silica irradiated with swift heavy ions of different species and energies: scaling law and some insights on the elongation mechanism,” Nanotechnology 25(43), 435301 (2014).
[Crossref] [PubMed]

Y. K. Mishra, F. Singh, D. K. Avasthi, J. C. Pivin, D. Malinovska, and E. Pippel, “Synthesis of elongated Au nanoparticles in silica matrix by ion irradiation,” Appl. Phys. Lett. 91(6), 063103 (2007).
[Crossref]

Awazu, K.

K. Awazu, X. Wang, M. Fujimaki, J. Tominaga, H. Aiba, Y. Ohki, and T. Komatsubara, “Elongation of gold nanoparticles in silica glass by irradiation with swift heavy ions,” Phys. Rev. B 78(5), 054102 (2008).
[Crossref]

Bakkers, E. P. A. M.

O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. G. Rivas, “Giant optical birefringence in ensembles of semiconductor nanowires,” Appl. Phys. Lett. 89(23), 233117 (2006).
[Crossref]

Birner, A.

F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gösele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63(16), 161101 (2001).
[Crossref]

Borgstrom, M. T.

O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. G. Rivas, “Giant optical birefringence in ensembles of semiconductor nanowires,” Appl. Phys. Lett. 89(23), 233117 (2006).
[Crossref]

Buchal, Ch.

H. Amekura, N. Ishikawa, N. Okubo, M. C. Ridgway, R. Giulian, K. Mitsuishi, Y. Nakayama, Ch. Buchal, S. Mantl, and N. Kishimoto, “Zn nanoparticles irradiated with swift heavy ions at low fluences: Optically-detected shape elongation induced by nonoverlapping ion tracks,” Phys. Rev. B 83(20), 205401 (2011).
[Crossref]

H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology 18(39), 395707 (2007).
[Crossref] [PubMed]

H. Amekura, N. Umeda, Y. Sakuma, O. A. Plaksin, Y. Takeda, N. Kishimoto, and Ch. Buchal, “Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect-free luminescence,” Appl. Phys. Lett. 88(15), 153119 (2006).
[Crossref]

Byrne, A. P.

M. C. Ridgway, R. Giulian, D. J. Sprouster, P. Kluth, L. L. Araujo, D. J. Llewellyn, A. P. Byrne, F. Kremer, P. F. P. Fichtner, G. Rizza, H. Amekura, and M. Toulemonde, “Role of Thermodynamics in the Shape Transformation of Embedded Metal Nanoparticles Induced by Swift Heavy-Ion Irradiation,” Phys. Rev. Lett. 106(9), 095505 (2011).
[Crossref] [PubMed]

M. C. Ridgway, P. Kluth, R. Giulian, D. J. Sprouster, L. L. Araujo, C. S. Schnohr, D. J. Llewellyn, A. P. Byrne, G. J. Foran, and D. J. Cookson, “Changes in metal nanoparticle shape and size induced by swift heavy-ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 267(6), 931–935 (2009).
[Crossref]

R. Giulian, P. Kluth, L. L. Araujo, D. J. Sprouster, A. P. Byrne, D. J. Cookson, and M. C. Ridgway, “Shape transformation of Pt nanoparticles induced by swift heavy-ion irradiation,” Phys. Rev. B 78(12), 125413 (2008).
[Crossref]

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine Structure in Swift Heavy Ion Tracks in Amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

P. Kluth, B. Johannessen, R. Giulian, C. S. Schnohr, G. J. Foran, D. J. Cookson, A. P. Byrne, and M. C. Ridgway, “Ion irradiation effects on metallic nanocrystals,” Rad. Effects Defects Solids 162(7-8), 501–513 (2007).
[Crossref]

Cerruti, C.

C. D’Orleans, J. P. Stoquert, C. Estournes, C. Cerruti, J. J. Grob, J. L. Guille, F. Haas, D. Muller, and M. Richard-Plouet, “Anisotropy of Co nanoparticles induced by swift heavy ions,” Phys. Rev. B 67(22), 220101 (2003).
[Crossref]

Cheang-Wong, J. C.

J. A. Reyes-Esqueda, C. Torres-Torres, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, C. Noguez, and A. Oliver, “Large optical birefringence by anisotropic silver nanocomposites,” Opt. Express 16(2), 710–717 (2008).
[Crossref] [PubMed]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Roman-Velazquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24), 245425 (2006).
[Crossref]

Cookson, D. J.

M. C. Ridgway, P. Kluth, R. Giulian, D. J. Sprouster, L. L. Araujo, C. S. Schnohr, D. J. Llewellyn, A. P. Byrne, G. J. Foran, and D. J. Cookson, “Changes in metal nanoparticle shape and size induced by swift heavy-ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 267(6), 931–935 (2009).
[Crossref]

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine Structure in Swift Heavy Ion Tracks in Amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

R. Giulian, P. Kluth, L. L. Araujo, D. J. Sprouster, A. P. Byrne, D. J. Cookson, and M. C. Ridgway, “Shape transformation of Pt nanoparticles induced by swift heavy-ion irradiation,” Phys. Rev. B 78(12), 125413 (2008).
[Crossref]

P. Kluth, B. Johannessen, R. Giulian, C. S. Schnohr, G. J. Foran, D. J. Cookson, A. P. Byrne, and M. C. Ridgway, “Ion irradiation effects on metallic nanocrystals,” Rad. Effects Defects Solids 162(7-8), 501–513 (2007).
[Crossref]

Crespo-Sosa, A.

J. A. Reyes-Esqueda, C. Torres-Torres, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, C. Noguez, and A. Oliver, “Large optical birefringence by anisotropic silver nanocomposites,” Opt. Express 16(2), 710–717 (2008).
[Crossref] [PubMed]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Roman-Velazquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24), 245425 (2006).
[Crossref]

D’Orleans, C.

C. D’Orleans, J. P. Stoquert, C. Estournes, C. Cerruti, J. J. Grob, J. L. Guille, F. Haas, D. Muller, and M. Richard-Plouet, “Anisotropy of Co nanoparticles induced by swift heavy ions,” Phys. Rev. B 67(22), 220101 (2003).
[Crossref]

Dawi, E. A.

E. A. Dawi, G. Rizza, M. P. Mink, A. M. Vredenberg, and F. Habraken, “Ion beam shaping of Au nanoparticles in silica: Particle size and concentration dependence,” J. Appl. Phys. 105(7), 074305 (2009).
[Crossref]

Diener, J.

Djurabekova, F.

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine Structure in Swift Heavy Ion Tracks in Amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

Dorsinville, R.

R. F. Haglund, L. Yang, R. H. Magruder, C. W. White, R. A. Zuhr, L. Yang, R. Dorsinville, and R. R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 91(1-4), 493–504 (1994).
[Crossref]

Estournes, C.

C. D’Orleans, J. P. Stoquert, C. Estournes, C. Cerruti, J. J. Grob, J. L. Guille, F. Haas, D. Muller, and M. Richard-Plouet, “Anisotropy of Co nanoparticles induced by swift heavy ions,” Phys. Rev. B 67(22), 220101 (2003).
[Crossref]

Fichtner, P. F. P.

M. C. Ridgway, R. Giulian, D. J. Sprouster, P. Kluth, L. L. Araujo, D. J. Llewellyn, A. P. Byrne, F. Kremer, P. F. P. Fichtner, G. Rizza, H. Amekura, and M. Toulemonde, “Role of Thermodynamics in the Shape Transformation of Embedded Metal Nanoparticles Induced by Swift Heavy-Ion Irradiation,” Phys. Rev. Lett. 106(9), 095505 (2011).
[Crossref] [PubMed]

Foran, G. J.

M. C. Ridgway, P. Kluth, R. Giulian, D. J. Sprouster, L. L. Araujo, C. S. Schnohr, D. J. Llewellyn, A. P. Byrne, G. J. Foran, and D. J. Cookson, “Changes in metal nanoparticle shape and size induced by swift heavy-ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 267(6), 931–935 (2009).
[Crossref]

P. Kluth, B. Johannessen, R. Giulian, C. S. Schnohr, G. J. Foran, D. J. Cookson, A. P. Byrne, and M. C. Ridgway, “Ion irradiation effects on metallic nanocrystals,” Rad. Effects Defects Solids 162(7-8), 501–513 (2007).
[Crossref]

Fudamoto, Y.

H. Amekura, Y. Fudamoto, Y. Takeda, and N. Kishimoto, “Curie transition of superparamagnetic nickel nanoparticles in silica glass: a phase transition in a finite size system,” Phys. Rev. B 71(17), 172404 (2005).
[Crossref]

Fujii, M.

Fujimaki, M.

K. Awazu, X. Wang, M. Fujimaki, J. Tominaga, H. Aiba, Y. Ohki, and T. Komatsubara, “Elongation of gold nanoparticles in silica glass by irradiation with swift heavy ions,” Phys. Rev. B 78(5), 054102 (2008).
[Crossref]

Futatsugi, T.

A. Nakajima, H. Nakao, H. Ueno, T. Futatsugi, and N. Yokoyama, “Coulomb blockade in Sb nanocrystals formed in thin, thermally grown SiO2 layers by low-energy ion implantation,” Appl. Phys. Lett. 73(8), 1071–1073 (1998).
[Crossref]

Genereux, F.

F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gösele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63(16), 161101 (2001).
[Crossref]

Giulian, R.

H. Amekura, N. Ishikawa, N. Okubo, M. C. Ridgway, R. Giulian, K. Mitsuishi, Y. Nakayama, Ch. Buchal, S. Mantl, and N. Kishimoto, “Zn nanoparticles irradiated with swift heavy ions at low fluences: Optically-detected shape elongation induced by nonoverlapping ion tracks,” Phys. Rev. B 83(20), 205401 (2011).
[Crossref]

M. C. Ridgway, R. Giulian, D. J. Sprouster, P. Kluth, L. L. Araujo, D. J. Llewellyn, A. P. Byrne, F. Kremer, P. F. P. Fichtner, G. Rizza, H. Amekura, and M. Toulemonde, “Role of Thermodynamics in the Shape Transformation of Embedded Metal Nanoparticles Induced by Swift Heavy-Ion Irradiation,” Phys. Rev. Lett. 106(9), 095505 (2011).
[Crossref] [PubMed]

M. C. Ridgway, P. Kluth, R. Giulian, D. J. Sprouster, L. L. Araujo, C. S. Schnohr, D. J. Llewellyn, A. P. Byrne, G. J. Foran, and D. J. Cookson, “Changes in metal nanoparticle shape and size induced by swift heavy-ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 267(6), 931–935 (2009).
[Crossref]

R. Giulian, P. Kluth, L. L. Araujo, D. J. Sprouster, A. P. Byrne, D. J. Cookson, and M. C. Ridgway, “Shape transformation of Pt nanoparticles induced by swift heavy-ion irradiation,” Phys. Rev. B 78(12), 125413 (2008).
[Crossref]

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine Structure in Swift Heavy Ion Tracks in Amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

P. Kluth, B. Johannessen, R. Giulian, C. S. Schnohr, G. J. Foran, D. J. Cookson, A. P. Byrne, and M. C. Ridgway, “Ion irradiation effects on metallic nanocrystals,” Rad. Effects Defects Solids 162(7-8), 501–513 (2007).
[Crossref]

Gösele, U.

F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gösele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63(16), 161101 (2001).
[Crossref]

Graf, C.

J. J. Penninkhof, T. van Dillen, S. Roorda, C. Graf, A. van Blaaderen, A. M. Vredenberg, and A. Polman, “Anisotropic deformation of metallo-dielectric core-shell colloids under MeV ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 242(1-2), 523–529 (2006).
[Crossref]

S. Roorda, T. van Dillen, A. Polman, C. Graf, A. van Blaaderen, and B. J. Kooi, “Aligned gold nanorods in silica made by ion irradiation of core-shell colloidal particles,” Adv. Mater. 16(3), 235–237 (2004).
[Crossref]

Grob, J. J.

C. D’Orleans, J. P. Stoquert, C. Estournes, C. Cerruti, J. J. Grob, J. L. Guille, F. Haas, D. Muller, and M. Richard-Plouet, “Anisotropy of Co nanoparticles induced by swift heavy ions,” Phys. Rev. B 67(22), 220101 (2003).
[Crossref]

Gross, E.

Guille, J. L.

C. D’Orleans, J. P. Stoquert, C. Estournes, C. Cerruti, J. J. Grob, J. L. Guille, F. Haas, D. Muller, and M. Richard-Plouet, “Anisotropy of Co nanoparticles induced by swift heavy ions,” Phys. Rev. B 67(22), 220101 (2003).
[Crossref]

Haas, F.

C. D’Orleans, J. P. Stoquert, C. Estournes, C. Cerruti, J. J. Grob, J. L. Guille, F. Haas, D. Muller, and M. Richard-Plouet, “Anisotropy of Co nanoparticles induced by swift heavy ions,” Phys. Rev. B 67(22), 220101 (2003).
[Crossref]

Habraken, F.

E. A. Dawi, G. Rizza, M. P. Mink, A. M. Vredenberg, and F. Habraken, “Ion beam shaping of Au nanoparticles in silica: Particle size and concentration dependence,” J. Appl. Phys. 105(7), 074305 (2009).
[Crossref]

Haglund, R. F.

R. F. Haglund, L. Yang, R. H. Magruder, C. W. White, R. A. Zuhr, L. Yang, R. Dorsinville, and R. R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 91(1-4), 493–504 (1994).
[Crossref]

Harkati, C.

J. M. Lamarre, Z. Yu, C. Harkati, S. Roorda, and L. Martinu, “Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation,” Thin Solid Films 479(1-2), 232–237 (2005).
[Crossref]

Harkati Kerboua, C.

C. Harkati Kerboua, J. M. Lamarre, L. Martinu, and S. Roorda, “Deformation, alignment and anisotropic optical properties of gold nanoparticles embedded in silica,” Nucl. Instrum. Methods Phys. Res. B 257(1-2), 42–46 (2007).
[Crossref]

Heinig, K. H.

B. Schmidt, K. H. Heinig, A. Mueklich, and C. Akhmadaliev, “Swift-heavy-ion-induced shaping of spherical Ge nanoparticles into disks and rods,” Nucl. Instrum. Methods Phys. Res. B 267(8-9), 1345–1348 (2009).
[Crossref]

Ishikawa, N.

H. Amekura, S. Mohapatra, U. B. Singh, S. A. Khan, P. K. Kulriya, N. Ishikawa, N. Okubo, and D. K. Avasthi, “Shape elongation of Zn nanoparticles in silica irradiated with swift heavy ions of different species and energies: scaling law and some insights on the elongation mechanism,” Nanotechnology 25(43), 435301 (2014).
[Crossref] [PubMed]

H. Amekura, N. Ishikawa, N. Okubo, M. C. Ridgway, R. Giulian, K. Mitsuishi, Y. Nakayama, Ch. Buchal, S. Mantl, and N. Kishimoto, “Zn nanoparticles irradiated with swift heavy ions at low fluences: Optically-detected shape elongation induced by nonoverlapping ion tracks,” Phys. Rev. B 83(20), 205401 (2011).
[Crossref]

Johannessen, B.

P. Kluth, B. Johannessen, R. Giulian, C. S. Schnohr, G. J. Foran, D. J. Cookson, A. P. Byrne, and M. C. Ridgway, “Ion irradiation effects on metallic nanocrystals,” Rad. Effects Defects Solids 162(7-8), 501–513 (2007).
[Crossref]

Khan, S. A.

H. Amekura, S. Mohapatra, U. B. Singh, S. A. Khan, P. K. Kulriya, N. Ishikawa, N. Okubo, and D. K. Avasthi, “Shape elongation of Zn nanoparticles in silica irradiated with swift heavy ions of different species and energies: scaling law and some insights on the elongation mechanism,” Nanotechnology 25(43), 435301 (2014).
[Crossref] [PubMed]

Kishimoto, N.

H. Amekura, N. Ishikawa, N. Okubo, M. C. Ridgway, R. Giulian, K. Mitsuishi, Y. Nakayama, Ch. Buchal, S. Mantl, and N. Kishimoto, “Zn nanoparticles irradiated with swift heavy ions at low fluences: Optically-detected shape elongation induced by nonoverlapping ion tracks,” Phys. Rev. B 83(20), 205401 (2011).
[Crossref]

H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology 18(39), 395707 (2007).
[Crossref] [PubMed]

H. Amekura, N. Umeda, Y. Sakuma, O. A. Plaksin, Y. Takeda, N. Kishimoto, and Ch. Buchal, “Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect-free luminescence,” Appl. Phys. Lett. 88(15), 153119 (2006).
[Crossref]

H. Amekura, Y. Fudamoto, Y. Takeda, and N. Kishimoto, “Curie transition of superparamagnetic nickel nanoparticles in silica glass: a phase transition in a finite size system,” Phys. Rev. B 71(17), 172404 (2005).
[Crossref]

H. Amekura, H. Kitazawa, N. Umeda, Y. Takeda, and N. Kishimoto, “Nickel nanoparticles in silica glass fabricated by 60 keV negative-ion implantation,” Nucl. Instrum. Methods Phys. Res. B 222(1-2), 114–122 (2004).
[Crossref]

Kitazawa, H.

H. Amekura, H. Kitazawa, N. Umeda, Y. Takeda, and N. Kishimoto, “Nickel nanoparticles in silica glass fabricated by 60 keV negative-ion implantation,” Nucl. Instrum. Methods Phys. Res. B 222(1-2), 114–122 (2004).
[Crossref]

Klaumunzer, S.

S. Klaumunzer, “Modification of nanostructures by high-energy ion beams,” Nucl. Instrum. Methods Phys. Res. B 244(1), 1–7 (2006).
[Crossref]

Kluth, P.

M. C. Ridgway, R. Giulian, D. J. Sprouster, P. Kluth, L. L. Araujo, D. J. Llewellyn, A. P. Byrne, F. Kremer, P. F. P. Fichtner, G. Rizza, H. Amekura, and M. Toulemonde, “Role of Thermodynamics in the Shape Transformation of Embedded Metal Nanoparticles Induced by Swift Heavy-Ion Irradiation,” Phys. Rev. Lett. 106(9), 095505 (2011).
[Crossref] [PubMed]

M. C. Ridgway, P. Kluth, R. Giulian, D. J. Sprouster, L. L. Araujo, C. S. Schnohr, D. J. Llewellyn, A. P. Byrne, G. J. Foran, and D. J. Cookson, “Changes in metal nanoparticle shape and size induced by swift heavy-ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 267(6), 931–935 (2009).
[Crossref]

R. Giulian, P. Kluth, L. L. Araujo, D. J. Sprouster, A. P. Byrne, D. J. Cookson, and M. C. Ridgway, “Shape transformation of Pt nanoparticles induced by swift heavy-ion irradiation,” Phys. Rev. B 78(12), 125413 (2008).
[Crossref]

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine Structure in Swift Heavy Ion Tracks in Amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

P. Kluth, B. Johannessen, R. Giulian, C. S. Schnohr, G. J. Foran, D. J. Cookson, A. P. Byrne, and M. C. Ridgway, “Ion irradiation effects on metallic nanocrystals,” Rad. Effects Defects Solids 162(7-8), 501–513 (2007).
[Crossref]

Koch, F.

Komatsubara, T.

K. Awazu, X. Wang, M. Fujimaki, J. Tominaga, H. Aiba, Y. Ohki, and T. Komatsubara, “Elongation of gold nanoparticles in silica glass by irradiation with swift heavy ions,” Phys. Rev. B 78(5), 054102 (2008).
[Crossref]

Kono, K.

H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology 18(39), 395707 (2007).
[Crossref] [PubMed]

Kooi, B. J.

S. Roorda, T. van Dillen, A. Polman, C. Graf, A. van Blaaderen, and B. J. Kooi, “Aligned gold nanorods in silica made by ion irradiation of core-shell colloidal particles,” Adv. Mater. 16(3), 235–237 (2004).
[Crossref]

Kovalev, D.

Kremer, F.

M. C. Ridgway, R. Giulian, D. J. Sprouster, P. Kluth, L. L. Araujo, D. J. Llewellyn, A. P. Byrne, F. Kremer, P. F. P. Fichtner, G. Rizza, H. Amekura, and M. Toulemonde, “Role of Thermodynamics in the Shape Transformation of Embedded Metal Nanoparticles Induced by Swift Heavy-Ion Irradiation,” Phys. Rev. Lett. 106(9), 095505 (2011).
[Crossref] [PubMed]

Kulriya, P. K.

H. Amekura, S. Mohapatra, U. B. Singh, S. A. Khan, P. K. Kulriya, N. Ishikawa, N. Okubo, and D. K. Avasthi, “Shape elongation of Zn nanoparticles in silica irradiated with swift heavy ions of different species and energies: scaling law and some insights on the elongation mechanism,” Nanotechnology 25(43), 435301 (2014).
[Crossref] [PubMed]

Künzner, N.

Lamarre, J. M.

C. Harkati Kerboua, J. M. Lamarre, L. Martinu, and S. Roorda, “Deformation, alignment and anisotropic optical properties of gold nanoparticles embedded in silica,” Nucl. Instrum. Methods Phys. Res. B 257(1-2), 42–46 (2007).
[Crossref]

J. M. Lamarre, Z. Yu, C. Harkati, S. Roorda, and L. Martinu, “Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation,” Thin Solid Films 479(1-2), 232–237 (2005).
[Crossref]

Leonard, S. W.

F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gösele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63(16), 161101 (2001).
[Crossref]

Llewellyn, D. J.

M. C. Ridgway, R. Giulian, D. J. Sprouster, P. Kluth, L. L. Araujo, D. J. Llewellyn, A. P. Byrne, F. Kremer, P. F. P. Fichtner, G. Rizza, H. Amekura, and M. Toulemonde, “Role of Thermodynamics in the Shape Transformation of Embedded Metal Nanoparticles Induced by Swift Heavy-Ion Irradiation,” Phys. Rev. Lett. 106(9), 095505 (2011).
[Crossref] [PubMed]

M. C. Ridgway, P. Kluth, R. Giulian, D. J. Sprouster, L. L. Araujo, C. S. Schnohr, D. J. Llewellyn, A. P. Byrne, G. J. Foran, and D. J. Cookson, “Changes in metal nanoparticle shape and size induced by swift heavy-ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 267(6), 931–935 (2009).
[Crossref]

Magruder, R. H.

R. F. Haglund, L. Yang, R. H. Magruder, C. W. White, R. A. Zuhr, L. Yang, R. Dorsinville, and R. R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 91(1-4), 493–504 (1994).
[Crossref]

Malinovska, D.

Y. K. Mishra, F. Singh, D. K. Avasthi, J. C. Pivin, D. Malinovska, and E. Pippel, “Synthesis of elongated Au nanoparticles in silica matrix by ion irradiation,” Appl. Phys. Lett. 91(6), 063103 (2007).
[Crossref]

Mantl, S.

H. Amekura, N. Ishikawa, N. Okubo, M. C. Ridgway, R. Giulian, K. Mitsuishi, Y. Nakayama, Ch. Buchal, S. Mantl, and N. Kishimoto, “Zn nanoparticles irradiated with swift heavy ions at low fluences: Optically-detected shape elongation induced by nonoverlapping ion tracks,” Phys. Rev. B 83(20), 205401 (2011).
[Crossref]

H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology 18(39), 395707 (2007).
[Crossref] [PubMed]

Martinu, L.

C. Harkati Kerboua, J. M. Lamarre, L. Martinu, and S. Roorda, “Deformation, alignment and anisotropic optical properties of gold nanoparticles embedded in silica,” Nucl. Instrum. Methods Phys. Res. B 257(1-2), 42–46 (2007).
[Crossref]

J. M. Lamarre, Z. Yu, C. Harkati, S. Roorda, and L. Martinu, “Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation,” Thin Solid Films 479(1-2), 232–237 (2005).
[Crossref]

Mink, M. P.

E. A. Dawi, G. Rizza, M. P. Mink, A. M. Vredenberg, and F. Habraken, “Ion beam shaping of Au nanoparticles in silica: Particle size and concentration dependence,” J. Appl. Phys. 105(7), 074305 (2009).
[Crossref]

Mishra, Y. K.

Y. K. Mishra, F. Singh, D. K. Avasthi, J. C. Pivin, D. Malinovska, and E. Pippel, “Synthesis of elongated Au nanoparticles in silica matrix by ion irradiation,” Appl. Phys. Lett. 91(6), 063103 (2007).
[Crossref]

Mitsuishi, K.

H. Amekura, N. Ishikawa, N. Okubo, M. C. Ridgway, R. Giulian, K. Mitsuishi, Y. Nakayama, Ch. Buchal, S. Mantl, and N. Kishimoto, “Zn nanoparticles irradiated with swift heavy ions at low fluences: Optically-detected shape elongation induced by nonoverlapping ion tracks,” Phys. Rev. B 83(20), 205401 (2011).
[Crossref]

Mohapatra, S.

H. Amekura, S. Mohapatra, U. B. Singh, S. A. Khan, P. K. Kulriya, N. Ishikawa, N. Okubo, and D. K. Avasthi, “Shape elongation of Zn nanoparticles in silica irradiated with swift heavy ions of different species and energies: scaling law and some insights on the elongation mechanism,” Nanotechnology 25(43), 435301 (2014).
[Crossref] [PubMed]

Mueklich, A.

B. Schmidt, K. H. Heinig, A. Mueklich, and C. Akhmadaliev, “Swift-heavy-ion-induced shaping of spherical Ge nanoparticles into disks and rods,” Nucl. Instrum. Methods Phys. Res. B 267(8-9), 1345–1348 (2009).
[Crossref]

Muller, D.

C. D’Orleans, J. P. Stoquert, C. Estournes, C. Cerruti, J. J. Grob, J. L. Guille, F. Haas, D. Muller, and M. Richard-Plouet, “Anisotropy of Co nanoparticles induced by swift heavy ions,” Phys. Rev. B 67(22), 220101 (2003).
[Crossref]

Muskens, O. L.

O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. G. Rivas, “Giant optical birefringence in ensembles of semiconductor nanowires,” Appl. Phys. Lett. 89(23), 233117 (2006).
[Crossref]

Nakajima, A.

A. Nakajima, H. Nakao, H. Ueno, T. Futatsugi, and N. Yokoyama, “Coulomb blockade in Sb nanocrystals formed in thin, thermally grown SiO2 layers by low-energy ion implantation,” Appl. Phys. Lett. 73(8), 1071–1073 (1998).
[Crossref]

Nakao, H.

A. Nakajima, H. Nakao, H. Ueno, T. Futatsugi, and N. Yokoyama, “Coulomb blockade in Sb nanocrystals formed in thin, thermally grown SiO2 layers by low-energy ion implantation,” Appl. Phys. Lett. 73(8), 1071–1073 (1998).
[Crossref]

Nakayama, Y.

H. Amekura, N. Ishikawa, N. Okubo, M. C. Ridgway, R. Giulian, K. Mitsuishi, Y. Nakayama, Ch. Buchal, S. Mantl, and N. Kishimoto, “Zn nanoparticles irradiated with swift heavy ions at low fluences: Optically-detected shape elongation induced by nonoverlapping ion tracks,” Phys. Rev. B 83(20), 205401 (2011).
[Crossref]

Noguez, C.

J. A. Reyes-Esqueda, C. Torres-Torres, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, C. Noguez, and A. Oliver, “Large optical birefringence by anisotropic silver nanocomposites,” Opt. Express 16(2), 710–717 (2008).
[Crossref] [PubMed]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Roman-Velazquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24), 245425 (2006).
[Crossref]

Nordlund, K.

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine Structure in Swift Heavy Ion Tracks in Amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

Ohki, Y.

K. Awazu, X. Wang, M. Fujimaki, J. Tominaga, H. Aiba, Y. Ohki, and T. Komatsubara, “Elongation of gold nanoparticles in silica glass by irradiation with swift heavy ions,” Phys. Rev. B 78(5), 054102 (2008).
[Crossref]

Okubo, N.

H. Amekura, S. Mohapatra, U. B. Singh, S. A. Khan, P. K. Kulriya, N. Ishikawa, N. Okubo, and D. K. Avasthi, “Shape elongation of Zn nanoparticles in silica irradiated with swift heavy ions of different species and energies: scaling law and some insights on the elongation mechanism,” Nanotechnology 25(43), 435301 (2014).
[Crossref] [PubMed]

H. Amekura, N. Ishikawa, N. Okubo, M. C. Ridgway, R. Giulian, K. Mitsuishi, Y. Nakayama, Ch. Buchal, S. Mantl, and N. Kishimoto, “Zn nanoparticles irradiated with swift heavy ions at low fluences: Optically-detected shape elongation induced by nonoverlapping ion tracks,” Phys. Rev. B 83(20), 205401 (2011).
[Crossref]

Oliver, A.

J. A. Reyes-Esqueda, C. Torres-Torres, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, C. Noguez, and A. Oliver, “Large optical birefringence by anisotropic silver nanocomposites,” Opt. Express 16(2), 710–717 (2008).
[Crossref] [PubMed]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Roman-Velazquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24), 245425 (2006).
[Crossref]

Pakarinen, O. H.

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine Structure in Swift Heavy Ion Tracks in Amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

Penninkhof, J. J.

J. J. Penninkhof, T. van Dillen, S. Roorda, C. Graf, A. van Blaaderen, A. M. Vredenberg, and A. Polman, “Anisotropic deformation of metallo-dielectric core-shell colloids under MeV ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 242(1-2), 523–529 (2006).
[Crossref]

Pippel, E.

Y. K. Mishra, F. Singh, D. K. Avasthi, J. C. Pivin, D. Malinovska, and E. Pippel, “Synthesis of elongated Au nanoparticles in silica matrix by ion irradiation,” Appl. Phys. Lett. 91(6), 063103 (2007).
[Crossref]

Pivin, J. C.

Y. K. Mishra, F. Singh, D. K. Avasthi, J. C. Pivin, D. Malinovska, and E. Pippel, “Synthesis of elongated Au nanoparticles in silica matrix by ion irradiation,” Appl. Phys. Lett. 91(6), 063103 (2007).
[Crossref]

Plaksin, O. A.

H. Amekura, N. Umeda, Y. Sakuma, O. A. Plaksin, Y. Takeda, N. Kishimoto, and Ch. Buchal, “Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect-free luminescence,” Appl. Phys. Lett. 88(15), 153119 (2006).
[Crossref]

Polisski, G.

Polman, A.

J. J. Penninkhof, T. van Dillen, S. Roorda, C. Graf, A. van Blaaderen, A. M. Vredenberg, and A. Polman, “Anisotropic deformation of metallo-dielectric core-shell colloids under MeV ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 242(1-2), 523–529 (2006).
[Crossref]

S. Roorda, T. van Dillen, A. Polman, C. Graf, A. van Blaaderen, and B. J. Kooi, “Aligned gold nanorods in silica made by ion irradiation of core-shell colloidal particles,” Adv. Mater. 16(3), 235–237 (2004).
[Crossref]

Reyes-Esqueda, J. A.

J. A. Reyes-Esqueda, C. Torres-Torres, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, C. Noguez, and A. Oliver, “Large optical birefringence by anisotropic silver nanocomposites,” Opt. Express 16(2), 710–717 (2008).
[Crossref] [PubMed]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Roman-Velazquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24), 245425 (2006).
[Crossref]

Richard-Plouet, M.

C. D’Orleans, J. P. Stoquert, C. Estournes, C. Cerruti, J. J. Grob, J. L. Guille, F. Haas, D. Muller, and M. Richard-Plouet, “Anisotropy of Co nanoparticles induced by swift heavy ions,” Phys. Rev. B 67(22), 220101 (2003).
[Crossref]

Ridgway, M. C.

M. C. Ridgway, R. Giulian, D. J. Sprouster, P. Kluth, L. L. Araujo, D. J. Llewellyn, A. P. Byrne, F. Kremer, P. F. P. Fichtner, G. Rizza, H. Amekura, and M. Toulemonde, “Role of Thermodynamics in the Shape Transformation of Embedded Metal Nanoparticles Induced by Swift Heavy-Ion Irradiation,” Phys. Rev. Lett. 106(9), 095505 (2011).
[Crossref] [PubMed]

H. Amekura, N. Ishikawa, N. Okubo, M. C. Ridgway, R. Giulian, K. Mitsuishi, Y. Nakayama, Ch. Buchal, S. Mantl, and N. Kishimoto, “Zn nanoparticles irradiated with swift heavy ions at low fluences: Optically-detected shape elongation induced by nonoverlapping ion tracks,” Phys. Rev. B 83(20), 205401 (2011).
[Crossref]

M. C. Ridgway, P. Kluth, R. Giulian, D. J. Sprouster, L. L. Araujo, C. S. Schnohr, D. J. Llewellyn, A. P. Byrne, G. J. Foran, and D. J. Cookson, “Changes in metal nanoparticle shape and size induced by swift heavy-ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 267(6), 931–935 (2009).
[Crossref]

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine Structure in Swift Heavy Ion Tracks in Amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

R. Giulian, P. Kluth, L. L. Araujo, D. J. Sprouster, A. P. Byrne, D. J. Cookson, and M. C. Ridgway, “Shape transformation of Pt nanoparticles induced by swift heavy-ion irradiation,” Phys. Rev. B 78(12), 125413 (2008).
[Crossref]

P. Kluth, B. Johannessen, R. Giulian, C. S. Schnohr, G. J. Foran, D. J. Cookson, A. P. Byrne, and M. C. Ridgway, “Ion irradiation effects on metallic nanocrystals,” Rad. Effects Defects Solids 162(7-8), 501–513 (2007).
[Crossref]

Rivas, J. G.

O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. G. Rivas, “Giant optical birefringence in ensembles of semiconductor nanowires,” Appl. Phys. Lett. 89(23), 233117 (2006).
[Crossref]

Rizza, G.

M. C. Ridgway, R. Giulian, D. J. Sprouster, P. Kluth, L. L. Araujo, D. J. Llewellyn, A. P. Byrne, F. Kremer, P. F. P. Fichtner, G. Rizza, H. Amekura, and M. Toulemonde, “Role of Thermodynamics in the Shape Transformation of Embedded Metal Nanoparticles Induced by Swift Heavy-Ion Irradiation,” Phys. Rev. Lett. 106(9), 095505 (2011).
[Crossref] [PubMed]

E. A. Dawi, G. Rizza, M. P. Mink, A. M. Vredenberg, and F. Habraken, “Ion beam shaping of Au nanoparticles in silica: Particle size and concentration dependence,” J. Appl. Phys. 105(7), 074305 (2009).
[Crossref]

Rodriguez-Fernandez, L.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Roman-Velazquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24), 245425 (2006).
[Crossref]

Rodríguez-Fernández, L.

Roman-Velazquez, C. E.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Roman-Velazquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24), 245425 (2006).
[Crossref]

Roorda, S.

C. Harkati Kerboua, J. M. Lamarre, L. Martinu, and S. Roorda, “Deformation, alignment and anisotropic optical properties of gold nanoparticles embedded in silica,” Nucl. Instrum. Methods Phys. Res. B 257(1-2), 42–46 (2007).
[Crossref]

J. J. Penninkhof, T. van Dillen, S. Roorda, C. Graf, A. van Blaaderen, A. M. Vredenberg, and A. Polman, “Anisotropic deformation of metallo-dielectric core-shell colloids under MeV ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 242(1-2), 523–529 (2006).
[Crossref]

J. M. Lamarre, Z. Yu, C. Harkati, S. Roorda, and L. Martinu, “Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation,” Thin Solid Films 479(1-2), 232–237 (2005).
[Crossref]

S. Roorda, T. van Dillen, A. Polman, C. Graf, A. van Blaaderen, and B. J. Kooi, “Aligned gold nanorods in silica made by ion irradiation of core-shell colloidal particles,” Adv. Mater. 16(3), 235–237 (2004).
[Crossref]

Sakuma, Y.

H. Amekura, N. Umeda, Y. Sakuma, O. A. Plaksin, Y. Takeda, N. Kishimoto, and Ch. Buchal, “Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect-free luminescence,” Appl. Phys. Lett. 88(15), 153119 (2006).
[Crossref]

Schmidt, B.

B. Schmidt, K. H. Heinig, A. Mueklich, and C. Akhmadaliev, “Swift-heavy-ion-induced shaping of spherical Ge nanoparticles into disks and rods,” Nucl. Instrum. Methods Phys. Res. B 267(8-9), 1345–1348 (2009).
[Crossref]

Schnohr, C. S.

M. C. Ridgway, P. Kluth, R. Giulian, D. J. Sprouster, L. L. Araujo, C. S. Schnohr, D. J. Llewellyn, A. P. Byrne, G. J. Foran, and D. J. Cookson, “Changes in metal nanoparticle shape and size induced by swift heavy-ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 267(6), 931–935 (2009).
[Crossref]

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine Structure in Swift Heavy Ion Tracks in Amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

P. Kluth, B. Johannessen, R. Giulian, C. S. Schnohr, G. J. Foran, D. J. Cookson, A. P. Byrne, and M. C. Ridgway, “Ion irradiation effects on metallic nanocrystals,” Rad. Effects Defects Solids 162(7-8), 501–513 (2007).
[Crossref]

Seman, J. A.

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Roman-Velazquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24), 245425 (2006).
[Crossref]

Singh, F.

Y. K. Mishra, F. Singh, D. K. Avasthi, J. C. Pivin, D. Malinovska, and E. Pippel, “Synthesis of elongated Au nanoparticles in silica matrix by ion irradiation,” Appl. Phys. Lett. 91(6), 063103 (2007).
[Crossref]

Singh, U. B.

H. Amekura, S. Mohapatra, U. B. Singh, S. A. Khan, P. K. Kulriya, N. Ishikawa, N. Okubo, and D. K. Avasthi, “Shape elongation of Zn nanoparticles in silica irradiated with swift heavy ions of different species and energies: scaling law and some insights on the elongation mechanism,” Nanotechnology 25(43), 435301 (2014).
[Crossref] [PubMed]

Sprouster, D. J.

M. C. Ridgway, R. Giulian, D. J. Sprouster, P. Kluth, L. L. Araujo, D. J. Llewellyn, A. P. Byrne, F. Kremer, P. F. P. Fichtner, G. Rizza, H. Amekura, and M. Toulemonde, “Role of Thermodynamics in the Shape Transformation of Embedded Metal Nanoparticles Induced by Swift Heavy-Ion Irradiation,” Phys. Rev. Lett. 106(9), 095505 (2011).
[Crossref] [PubMed]

M. C. Ridgway, P. Kluth, R. Giulian, D. J. Sprouster, L. L. Araujo, C. S. Schnohr, D. J. Llewellyn, A. P. Byrne, G. J. Foran, and D. J. Cookson, “Changes in metal nanoparticle shape and size induced by swift heavy-ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 267(6), 931–935 (2009).
[Crossref]

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine Structure in Swift Heavy Ion Tracks in Amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

R. Giulian, P. Kluth, L. L. Araujo, D. J. Sprouster, A. P. Byrne, D. J. Cookson, and M. C. Ridgway, “Shape transformation of Pt nanoparticles induced by swift heavy-ion irradiation,” Phys. Rev. B 78(12), 125413 (2008).
[Crossref]

Stoquert, J. P.

C. D’Orleans, J. P. Stoquert, C. Estournes, C. Cerruti, J. J. Grob, J. L. Guille, F. Haas, D. Muller, and M. Richard-Plouet, “Anisotropy of Co nanoparticles induced by swift heavy ions,” Phys. Rev. B 67(22), 220101 (2003).
[Crossref]

Takeda, Y.

H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology 18(39), 395707 (2007).
[Crossref] [PubMed]

H. Amekura, N. Umeda, Y. Sakuma, O. A. Plaksin, Y. Takeda, N. Kishimoto, and Ch. Buchal, “Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect-free luminescence,” Appl. Phys. Lett. 88(15), 153119 (2006).
[Crossref]

H. Amekura, Y. Fudamoto, Y. Takeda, and N. Kishimoto, “Curie transition of superparamagnetic nickel nanoparticles in silica glass: a phase transition in a finite size system,” Phys. Rev. B 71(17), 172404 (2005).
[Crossref]

H. Amekura, H. Kitazawa, N. Umeda, Y. Takeda, and N. Kishimoto, “Nickel nanoparticles in silica glass fabricated by 60 keV negative-ion implantation,” Nucl. Instrum. Methods Phys. Res. B 222(1-2), 114–122 (2004).
[Crossref]

Timoshenko, V. Y.

Tominaga, J.

K. Awazu, X. Wang, M. Fujimaki, J. Tominaga, H. Aiba, Y. Ohki, and T. Komatsubara, “Elongation of gold nanoparticles in silica glass by irradiation with swift heavy ions,” Phys. Rev. B 78(5), 054102 (2008).
[Crossref]

Torres-Torres, C.

Toulemonde, M.

M. C. Ridgway, R. Giulian, D. J. Sprouster, P. Kluth, L. L. Araujo, D. J. Llewellyn, A. P. Byrne, F. Kremer, P. F. P. Fichtner, G. Rizza, H. Amekura, and M. Toulemonde, “Role of Thermodynamics in the Shape Transformation of Embedded Metal Nanoparticles Induced by Swift Heavy-Ion Irradiation,” Phys. Rev. Lett. 106(9), 095505 (2011).
[Crossref] [PubMed]

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine Structure in Swift Heavy Ion Tracks in Amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

Trautmann, C.

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine Structure in Swift Heavy Ion Tracks in Amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

Ueno, H.

A. Nakajima, H. Nakao, H. Ueno, T. Futatsugi, and N. Yokoyama, “Coulomb blockade in Sb nanocrystals formed in thin, thermally grown SiO2 layers by low-energy ion implantation,” Appl. Phys. Lett. 73(8), 1071–1073 (1998).
[Crossref]

Umeda, N.

H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology 18(39), 395707 (2007).
[Crossref] [PubMed]

H. Amekura, N. Umeda, Y. Sakuma, O. A. Plaksin, Y. Takeda, N. Kishimoto, and Ch. Buchal, “Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect-free luminescence,” Appl. Phys. Lett. 88(15), 153119 (2006).
[Crossref]

H. Amekura, H. Kitazawa, N. Umeda, Y. Takeda, and N. Kishimoto, “Nickel nanoparticles in silica glass fabricated by 60 keV negative-ion implantation,” Nucl. Instrum. Methods Phys. Res. B 222(1-2), 114–122 (2004).
[Crossref]

van Blaaderen, A.

J. J. Penninkhof, T. van Dillen, S. Roorda, C. Graf, A. van Blaaderen, A. M. Vredenberg, and A. Polman, “Anisotropic deformation of metallo-dielectric core-shell colloids under MeV ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 242(1-2), 523–529 (2006).
[Crossref]

S. Roorda, T. van Dillen, A. Polman, C. Graf, A. van Blaaderen, and B. J. Kooi, “Aligned gold nanorods in silica made by ion irradiation of core-shell colloidal particles,” Adv. Mater. 16(3), 235–237 (2004).
[Crossref]

van Dillen, T.

J. J. Penninkhof, T. van Dillen, S. Roorda, C. Graf, A. van Blaaderen, A. M. Vredenberg, and A. Polman, “Anisotropic deformation of metallo-dielectric core-shell colloids under MeV ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 242(1-2), 523–529 (2006).
[Crossref]

S. Roorda, T. van Dillen, A. Polman, C. Graf, A. van Blaaderen, and B. J. Kooi, “Aligned gold nanorods in silica made by ion irradiation of core-shell colloidal particles,” Adv. Mater. 16(3), 235–237 (2004).
[Crossref]

van Driel, H. M.

F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gösele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63(16), 161101 (2001).
[Crossref]

Vredenberg, A. M.

E. A. Dawi, G. Rizza, M. P. Mink, A. M. Vredenberg, and F. Habraken, “Ion beam shaping of Au nanoparticles in silica: Particle size and concentration dependence,” J. Appl. Phys. 105(7), 074305 (2009).
[Crossref]

J. J. Penninkhof, T. van Dillen, S. Roorda, C. Graf, A. van Blaaderen, A. M. Vredenberg, and A. Polman, “Anisotropic deformation of metallo-dielectric core-shell colloids under MeV ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 242(1-2), 523–529 (2006).
[Crossref]

Wang, X.

K. Awazu, X. Wang, M. Fujimaki, J. Tominaga, H. Aiba, Y. Ohki, and T. Komatsubara, “Elongation of gold nanoparticles in silica glass by irradiation with swift heavy ions,” Phys. Rev. B 78(5), 054102 (2008).
[Crossref]

White, C. W.

R. F. Haglund, L. Yang, R. H. Magruder, C. W. White, R. A. Zuhr, L. Yang, R. Dorsinville, and R. R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 91(1-4), 493–504 (1994).
[Crossref]

Yang, L.

R. F. Haglund, L. Yang, R. H. Magruder, C. W. White, R. A. Zuhr, L. Yang, R. Dorsinville, and R. R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 91(1-4), 493–504 (1994).
[Crossref]

R. F. Haglund, L. Yang, R. H. Magruder, C. W. White, R. A. Zuhr, L. Yang, R. Dorsinville, and R. R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 91(1-4), 493–504 (1994).
[Crossref]

Yokoyama, N.

A. Nakajima, H. Nakao, H. Ueno, T. Futatsugi, and N. Yokoyama, “Coulomb blockade in Sb nanocrystals formed in thin, thermally grown SiO2 layers by low-energy ion implantation,” Appl. Phys. Lett. 73(8), 1071–1073 (1998).
[Crossref]

Yu, Z.

J. M. Lamarre, Z. Yu, C. Harkati, S. Roorda, and L. Martinu, “Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation,” Thin Solid Films 479(1-2), 232–237 (2005).
[Crossref]

Zuhr, R. A.

R. F. Haglund, L. Yang, R. H. Magruder, C. W. White, R. A. Zuhr, L. Yang, R. Dorsinville, and R. R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 91(1-4), 493–504 (1994).
[Crossref]

Adv. Mater. (1)

S. Roorda, T. van Dillen, A. Polman, C. Graf, A. van Blaaderen, and B. J. Kooi, “Aligned gold nanorods in silica made by ion irradiation of core-shell colloidal particles,” Adv. Mater. 16(3), 235–237 (2004).
[Crossref]

Appl. Phys. Lett. (4)

A. Nakajima, H. Nakao, H. Ueno, T. Futatsugi, and N. Yokoyama, “Coulomb blockade in Sb nanocrystals formed in thin, thermally grown SiO2 layers by low-energy ion implantation,” Appl. Phys. Lett. 73(8), 1071–1073 (1998).
[Crossref]

Y. K. Mishra, F. Singh, D. K. Avasthi, J. C. Pivin, D. Malinovska, and E. Pippel, “Synthesis of elongated Au nanoparticles in silica matrix by ion irradiation,” Appl. Phys. Lett. 91(6), 063103 (2007).
[Crossref]

H. Amekura, N. Umeda, Y. Sakuma, O. A. Plaksin, Y. Takeda, N. Kishimoto, and Ch. Buchal, “Zn and ZnO nanoparticles fabricated by ion implantation combined with thermal oxidation, and the defect-free luminescence,” Appl. Phys. Lett. 88(15), 153119 (2006).
[Crossref]

O. L. Muskens, M. T. Borgstrom, E. P. A. M. Bakkers, and J. G. Rivas, “Giant optical birefringence in ensembles of semiconductor nanowires,” Appl. Phys. Lett. 89(23), 233117 (2006).
[Crossref]

J. Appl. Phys. (1)

E. A. Dawi, G. Rizza, M. P. Mink, A. M. Vredenberg, and F. Habraken, “Ion beam shaping of Au nanoparticles in silica: Particle size and concentration dependence,” J. Appl. Phys. 105(7), 074305 (2009).
[Crossref]

Nanotechnology (2)

H. Amekura, S. Mohapatra, U. B. Singh, S. A. Khan, P. K. Kulriya, N. Ishikawa, N. Okubo, and D. K. Avasthi, “Shape elongation of Zn nanoparticles in silica irradiated with swift heavy ions of different species and energies: scaling law and some insights on the elongation mechanism,” Nanotechnology 25(43), 435301 (2014).
[Crossref] [PubMed]

H. Amekura, N. Umeda, K. Kono, Y. Takeda, N. Kishimoto, Ch. Buchal, and S. Mantl, “Dual surface plasmon resonances in Zn nanoparticles in SiO2: an experimental study based on optical absorption and thermal stability,” Nanotechnology 18(39), 395707 (2007).
[Crossref] [PubMed]

Nucl. Instrum. Methods Phys. Res. B (7)

B. Schmidt, K. H. Heinig, A. Mueklich, and C. Akhmadaliev, “Swift-heavy-ion-induced shaping of spherical Ge nanoparticles into disks and rods,” Nucl. Instrum. Methods Phys. Res. B 267(8-9), 1345–1348 (2009).
[Crossref]

C. Harkati Kerboua, J. M. Lamarre, L. Martinu, and S. Roorda, “Deformation, alignment and anisotropic optical properties of gold nanoparticles embedded in silica,” Nucl. Instrum. Methods Phys. Res. B 257(1-2), 42–46 (2007).
[Crossref]

J. J. Penninkhof, T. van Dillen, S. Roorda, C. Graf, A. van Blaaderen, A. M. Vredenberg, and A. Polman, “Anisotropic deformation of metallo-dielectric core-shell colloids under MeV ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 242(1-2), 523–529 (2006).
[Crossref]

M. C. Ridgway, P. Kluth, R. Giulian, D. J. Sprouster, L. L. Araujo, C. S. Schnohr, D. J. Llewellyn, A. P. Byrne, G. J. Foran, and D. J. Cookson, “Changes in metal nanoparticle shape and size induced by swift heavy-ion irradiation,” Nucl. Instrum. Methods Phys. Res. B 267(6), 931–935 (2009).
[Crossref]

S. Klaumunzer, “Modification of nanostructures by high-energy ion beams,” Nucl. Instrum. Methods Phys. Res. B 244(1), 1–7 (2006).
[Crossref]

R. F. Haglund, L. Yang, R. H. Magruder, C. W. White, R. A. Zuhr, L. Yang, R. Dorsinville, and R. R. Alfano, “Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation,” Nucl. Instrum. Methods Phys. Res. B 91(1-4), 493–504 (1994).
[Crossref]

H. Amekura, H. Kitazawa, N. Umeda, Y. Takeda, and N. Kishimoto, “Nickel nanoparticles in silica glass fabricated by 60 keV negative-ion implantation,” Nucl. Instrum. Methods Phys. Res. B 222(1-2), 114–122 (2004).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (7)

F. Genereux, S. W. Leonard, H. M. van Driel, A. Birner, and U. Gösele, “Large birefringence in two-dimensional silicon photonic crystals,” Phys. Rev. B 63(16), 161101 (2001).
[Crossref]

H. Amekura, N. Ishikawa, N. Okubo, M. C. Ridgway, R. Giulian, K. Mitsuishi, Y. Nakayama, Ch. Buchal, S. Mantl, and N. Kishimoto, “Zn nanoparticles irradiated with swift heavy ions at low fluences: Optically-detected shape elongation induced by nonoverlapping ion tracks,” Phys. Rev. B 83(20), 205401 (2011).
[Crossref]

H. Amekura, Y. Fudamoto, Y. Takeda, and N. Kishimoto, “Curie transition of superparamagnetic nickel nanoparticles in silica glass: a phase transition in a finite size system,” Phys. Rev. B 71(17), 172404 (2005).
[Crossref]

C. D’Orleans, J. P. Stoquert, C. Estournes, C. Cerruti, J. J. Grob, J. L. Guille, F. Haas, D. Muller, and M. Richard-Plouet, “Anisotropy of Co nanoparticles induced by swift heavy ions,” Phys. Rev. B 67(22), 220101 (2003).
[Crossref]

A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Roman-Velazquez, A. Crespo-Sosa, L. Rodriguez-Fernandez, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24), 245425 (2006).
[Crossref]

R. Giulian, P. Kluth, L. L. Araujo, D. J. Sprouster, A. P. Byrne, D. J. Cookson, and M. C. Ridgway, “Shape transformation of Pt nanoparticles induced by swift heavy-ion irradiation,” Phys. Rev. B 78(12), 125413 (2008).
[Crossref]

K. Awazu, X. Wang, M. Fujimaki, J. Tominaga, H. Aiba, Y. Ohki, and T. Komatsubara, “Elongation of gold nanoparticles in silica glass by irradiation with swift heavy ions,” Phys. Rev. B 78(5), 054102 (2008).
[Crossref]

Phys. Rev. Lett. (2)

P. Kluth, C. S. Schnohr, O. H. Pakarinen, F. Djurabekova, D. J. Sprouster, R. Giulian, M. C. Ridgway, A. P. Byrne, C. Trautmann, D. J. Cookson, K. Nordlund, and M. Toulemonde, “Fine Structure in Swift Heavy Ion Tracks in Amorphous SiO2.,” Phys. Rev. Lett. 101(17), 175503 (2008).
[Crossref] [PubMed]

M. C. Ridgway, R. Giulian, D. J. Sprouster, P. Kluth, L. L. Araujo, D. J. Llewellyn, A. P. Byrne, F. Kremer, P. F. P. Fichtner, G. Rizza, H. Amekura, and M. Toulemonde, “Role of Thermodynamics in the Shape Transformation of Embedded Metal Nanoparticles Induced by Swift Heavy-Ion Irradiation,” Phys. Rev. Lett. 106(9), 095505 (2011).
[Crossref] [PubMed]

Rad. Effects Defects Solids (1)

P. Kluth, B. Johannessen, R. Giulian, C. S. Schnohr, G. J. Foran, D. J. Cookson, A. P. Byrne, and M. C. Ridgway, “Ion irradiation effects on metallic nanocrystals,” Rad. Effects Defects Solids 162(7-8), 501–513 (2007).
[Crossref]

Thin Solid Films (1)

J. M. Lamarre, Z. Yu, C. Harkati, S. Roorda, and L. Martinu, “Optical and microstructural properties of nanocomposite Au/SiO2 films containing particles deformed by heavy ion irradiation,” Thin Solid Films 479(1-2), 232–237 (2005).
[Crossref]

Other (6)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).

M. Solzi, M. Ghidini, and G. Asti, “Macroscopic magnetic properties of nanostructured and nanocomposite systems,” in Magnetic Nanostructures, H. S. Nalwa, ed. (American Sci. Pub., 2002), pp. 123–200.

H. Amekura and N. Kishimoto, “Fabrication of oxide nanoparticles by ion implantation and thermal oxidation,” in “Lecture Notes in Nanoscale Science and Technology” Vol. 5, Z. Wang, ed. (Springer, 2009), p. 1~75.

J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, 1985).

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (John Wiley & Sons, 2007).

This function is ascribed to the optical linear dichroism of elongated Zn NPs, rather than the birefringence.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) A schematic providing a comparison between linear dichroism and birefringence as methods for evaluating the small shape elongation of NPs. (b) Geometric configuration for the XN transmission measurements. A sample including elongated Zn NPs embedded in a silica matrix is inserted between a pair of polarizers P and A. The polarization angle of the first polarizer P is defined as 0°, and that of the second polarizer A is defined as θ. The major axes of the elongated NPs are defined by the angle α.
Fig. 2
Fig. 2 Bright-field cross-sectional TEM images of Zn NPs embedded in silica observed under an acceleration voltage of 200 kV, (a) irradiated with 200 MeV Xe14+ ions to a fluence of 2 × 1014 ions/cm2, (b) before the irradiation.
Fig. 3
Fig. 3 The transmission spectra of Zn NPs embedded in a silica matrix irradiated by 200 MeV Xe14+ ions with a fluence of 5.0 × 1013 ions/cm2, for various angles θ of the second polarizer A. The major axes of the elongated NPs are set to (a) α = 0° and (b) 45°.
Fig. 4
Fig. 4 The identical spectra shown in Fig. 3, except each spectrum is divided in accordance with the transmission spectrum at θ = 0°. The broken lines indicate the values given by Eq. (1) which are those expected when the polarization state is unchanged after transmission through the sample.
Fig. 5
Fig. 5 (a) XN transmission spectra of Zn NPs embedded in a silica matrix irradiated by 200 MeV Xe14+ ions with a fluence of 5.0 × 1013 ions/cm2 for various values of the major-axis angle α. The spectrum without the sample is also shown. (b) The peak transmittance values around 4 eV are plotted by black squares with respect to the angle α. The curve indicates the best fit using Eq. (2).
Fig. 6
Fig. 6 (a) XN transmission spectra of Zn NPs embedded in a silica matrix irradiated by 200 MeV Xe14+ ions with three different fluences. The angles α and θ are set to 45° and 90°, respectively. (b) The fluence dependence of the peak values of the XN transmittance around 4 eV. The solid line shows the best fit of the data points, indicating a roughly linear relationship.
Fig. 7
Fig. 7 Birefringence spectrum Δnmax, i.e., the difference between the refractive indices along the two different principle axes, of Zn NPs embedded in a silica matrix irradiated by 200 MeV Xe14+ions with a fluence of 5.0 × 1013 ions/cm2, as determined from Eq. (6). For comparison, the corresponding XN transmission spectrum is also shown.

Tables (1)

Tables Icon

Table 1 Comparison of the extinction ratios and the thicknesses of films for polarizer applications from past literature.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

T(θ)/T(0)= cos 2 θ.
T XN (α)= T o sin 2 [ π 2 ( α α o 45 o ) ]
E s = t s ( E in s)sexp( iπLΔn λ ) E p = t p ( E in p)pexp( iπLΔn λ )
T(α,θ)= | E(α,θ)/ E in | 2 = | { E s (α)+ E p (α) } E in ·A(α+θ) | 2 = | t s exp( iπLΔn(α) λ )sinαsin(α+θ)+ t p exp( iπLΔn(α) λ )cosαcos(α+θ) | 2 .
T XN =T(α= π 4 ,θ= π 2 )= 1 4 { t s 2 + t p 2 2 t s t p cos( 2πLΔ n max λ ) }.
Δ n max = λ 2πL cos 1 [ t s 2 + t p 2 2 t s t p 2T( π 4 , π 2 ) t s t p ] = λ 2πL cos 1 [ 1 T(0,0)T( π 2 ,0) { T(0,0)+T( π 2 ,0) 2 2T( π 4 , π 2 ) } ].

Metrics