Abstract

This work focuses on the design and engineering of metropolitan area optical networks for multicast session provisioning. Specifically, the impact of polarization-dependent gain/loss of optical components in coordination with other physical layer impairments is investigated for the first time for several optical multicast algorithms and switch designs. Performance results indicate that the conventional probabilistic handling of PDG/PDL is not practical in this case, requiring a more refined and computationally efficient interaction between physical and control layers.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Segment-Based Protection of Multicast Connections in Metropolitan Area Optical Networks With Quality-of-Transmission Considerations

T. Panayiotou, G. Ellinas, and N. Antoniades
J. Opt. Commun. Netw. 4(9) 692-702 (2012)

Performance Analysis of a Data-Driven Quality-of-Transmission Decision Approach on a Dynamic Multicast-Capable Metro Optical Network

T. Panayiotou, S. P. Chatzis, and G. Ellinas
J. Opt. Commun. Netw. 9(1) 98-108 (2017)

Demonstration of Data and Control Plane for Optical Multicast at 100 and 200 Gb/s With and Without Frequency Conversion

N. Sambo, G. Meloni, G. Berrettini, F. Paolucci, A. Malacarne, A. Bogoni, F. Cugini, L. Potì, and P. Castoldi
J. Opt. Commun. Netw. 5(7) 667-676 (2013)

References

  • View by:
  • |
  • |
  • |

  1. G. Ellinas, N. Antoniades, T. Panayiotou, A. Hadjiantonis, and A.M. Levine, “Multicasting routing algorithms based on Q-factor physical layer constraints in metro,” IEEE Phot. Techn. Lett. 21(6), 365–367 (2009).
    [Crossref]
  2. Y. Xin and G.N. Rouskas, “Multicast routing under optical layer constraints,” Proc. IEEE Infocom, 2004.
  3. T. Panayiotou, G. Ellinas, N. Antoniades, and A. Hadjiantonis, “Node architecture design and network engineering impact on optical multicasting based on physical layer constraints,” Proc. ICTON, 2010.
  4. T. Panayiotou, G. Ellinas, N. Antoniades, and A.M. Levine, “Designing and engineering metropolitan area transparent optical networks for the provisioning of multicast sessions,” Proc. IEEE/OSA OFC, 2010.
  5. F. Bruyere and O. Audouin, “Penalties in long-haul optical amplifier systems due to polarization dependent loss and gain,” IEEE Phot. Techn. Lett. 6(5), 654–656 (1994).
    [Crossref]
  6. A. Mecozzi and M. Shtaif, “The statistics of polarization-dependent loss in optical communication systems,” IEEE Phot. Techn. Lett. 14(3), 313–315 (2002).
    [Crossref]
  7. X. Chongjin, “Polarization-dependent loss-induced outage probabilities in optical communication systems,” IEEE Phot. Techn. Lett. 20(13), 1091–1093 (2008).
    [Crossref]
  8. N. Antoniades, K.C. Reichmann, P.P Iannone, N.J. Frigo, A.M. Levine, and I. Roudas, “The impact of polarization-dependent gain on the design of cascaded semiconductor optical amplifier CWDM systems,” IEEE Phot. Techn. Lett. 18(20), 2099–2101 (2006).
    [Crossref]
  9. M. Lee, N. Antoniades, and A. Boskovic, “PDL-induced channel power divergence in a metro WDM network,” IEEE Phot. Techn. Lett. 14(4), 561–563 (2002).
    [Crossref]
  10. J.H. Lee, C. Youn, K.J. Park, and Y.C. Chung, “A novel technique to overcome the polarization effects,” Proc. IEEE/OSA OFC, 2003.
  11. C.-S. Kim, B. Choi, J.S. Nelson, P.Z. Dashti, and H.P. Lee, “Novel PDL/PDG compensator for transmission optical devices using Sagnac interferometer,” Proc. IEEE/OSA OFC/NFOEC, 2005.
  12. N. Antoniades, K.C. Reichmann, P.P Iannone, and A.M Levine, “Engineering methodology for the use of SOAs and CWDM transmission in the metro network environment,” Proc. IEEE/OSA OFC, 2006.
  13. P. Wall, P. Colbourne, C. Reimer, and S. McLaughlin, “WSS switching engine technologies,” Proc. IEEE/OSA OFC, 2008.
  14. D. T. Neilson, H. Tang, D.S Greywall, N.R Basavanhally, L. Ko, D.A. Ramsey, J.D. Weld, Y.L. Low, F. Pardo, D.O Lopez, P. Busch, J. Prybyla, M. Haueis, C.S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Topics Quant. Electr. 10(3), 563–569 (2004).
    [Crossref]

2009 (1)

G. Ellinas, N. Antoniades, T. Panayiotou, A. Hadjiantonis, and A.M. Levine, “Multicasting routing algorithms based on Q-factor physical layer constraints in metro,” IEEE Phot. Techn. Lett. 21(6), 365–367 (2009).
[Crossref]

2008 (1)

X. Chongjin, “Polarization-dependent loss-induced outage probabilities in optical communication systems,” IEEE Phot. Techn. Lett. 20(13), 1091–1093 (2008).
[Crossref]

2006 (1)

N. Antoniades, K.C. Reichmann, P.P Iannone, N.J. Frigo, A.M. Levine, and I. Roudas, “The impact of polarization-dependent gain on the design of cascaded semiconductor optical amplifier CWDM systems,” IEEE Phot. Techn. Lett. 18(20), 2099–2101 (2006).
[Crossref]

2004 (1)

D. T. Neilson, H. Tang, D.S Greywall, N.R Basavanhally, L. Ko, D.A. Ramsey, J.D. Weld, Y.L. Low, F. Pardo, D.O Lopez, P. Busch, J. Prybyla, M. Haueis, C.S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Topics Quant. Electr. 10(3), 563–569 (2004).
[Crossref]

2002 (2)

A. Mecozzi and M. Shtaif, “The statistics of polarization-dependent loss in optical communication systems,” IEEE Phot. Techn. Lett. 14(3), 313–315 (2002).
[Crossref]

M. Lee, N. Antoniades, and A. Boskovic, “PDL-induced channel power divergence in a metro WDM network,” IEEE Phot. Techn. Lett. 14(4), 561–563 (2002).
[Crossref]

1994 (1)

F. Bruyere and O. Audouin, “Penalties in long-haul optical amplifier systems due to polarization dependent loss and gain,” IEEE Phot. Techn. Lett. 6(5), 654–656 (1994).
[Crossref]

Antoniades, N.

G. Ellinas, N. Antoniades, T. Panayiotou, A. Hadjiantonis, and A.M. Levine, “Multicasting routing algorithms based on Q-factor physical layer constraints in metro,” IEEE Phot. Techn. Lett. 21(6), 365–367 (2009).
[Crossref]

N. Antoniades, K.C. Reichmann, P.P Iannone, N.J. Frigo, A.M. Levine, and I. Roudas, “The impact of polarization-dependent gain on the design of cascaded semiconductor optical amplifier CWDM systems,” IEEE Phot. Techn. Lett. 18(20), 2099–2101 (2006).
[Crossref]

M. Lee, N. Antoniades, and A. Boskovic, “PDL-induced channel power divergence in a metro WDM network,” IEEE Phot. Techn. Lett. 14(4), 561–563 (2002).
[Crossref]

T. Panayiotou, G. Ellinas, N. Antoniades, and A. Hadjiantonis, “Node architecture design and network engineering impact on optical multicasting based on physical layer constraints,” Proc. ICTON, 2010.

T. Panayiotou, G. Ellinas, N. Antoniades, and A.M. Levine, “Designing and engineering metropolitan area transparent optical networks for the provisioning of multicast sessions,” Proc. IEEE/OSA OFC, 2010.

N. Antoniades, K.C. Reichmann, P.P Iannone, and A.M Levine, “Engineering methodology for the use of SOAs and CWDM transmission in the metro network environment,” Proc. IEEE/OSA OFC, 2006.

Audouin, O.

F. Bruyere and O. Audouin, “Penalties in long-haul optical amplifier systems due to polarization dependent loss and gain,” IEEE Phot. Techn. Lett. 6(5), 654–656 (1994).
[Crossref]

Basavanhally, N.R

D. T. Neilson, H. Tang, D.S Greywall, N.R Basavanhally, L. Ko, D.A. Ramsey, J.D. Weld, Y.L. Low, F. Pardo, D.O Lopez, P. Busch, J. Prybyla, M. Haueis, C.S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Topics Quant. Electr. 10(3), 563–569 (2004).
[Crossref]

Boskovic, A.

M. Lee, N. Antoniades, and A. Boskovic, “PDL-induced channel power divergence in a metro WDM network,” IEEE Phot. Techn. Lett. 14(4), 561–563 (2002).
[Crossref]

Bruyere, F.

F. Bruyere and O. Audouin, “Penalties in long-haul optical amplifier systems due to polarization dependent loss and gain,” IEEE Phot. Techn. Lett. 6(5), 654–656 (1994).
[Crossref]

Busch, P.

D. T. Neilson, H. Tang, D.S Greywall, N.R Basavanhally, L. Ko, D.A. Ramsey, J.D. Weld, Y.L. Low, F. Pardo, D.O Lopez, P. Busch, J. Prybyla, M. Haueis, C.S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Topics Quant. Electr. 10(3), 563–569 (2004).
[Crossref]

Choi, B.

C.-S. Kim, B. Choi, J.S. Nelson, P.Z. Dashti, and H.P. Lee, “Novel PDL/PDG compensator for transmission optical devices using Sagnac interferometer,” Proc. IEEE/OSA OFC/NFOEC, 2005.

Chongjin, X.

X. Chongjin, “Polarization-dependent loss-induced outage probabilities in optical communication systems,” IEEE Phot. Techn. Lett. 20(13), 1091–1093 (2008).
[Crossref]

Chung, Y.C.

J.H. Lee, C. Youn, K.J. Park, and Y.C. Chung, “A novel technique to overcome the polarization effects,” Proc. IEEE/OSA OFC, 2003.

Colbourne, P.

P. Wall, P. Colbourne, C. Reimer, and S. McLaughlin, “WSS switching engine technologies,” Proc. IEEE/OSA OFC, 2008.

Dashti, P.Z.

C.-S. Kim, B. Choi, J.S. Nelson, P.Z. Dashti, and H.P. Lee, “Novel PDL/PDG compensator for transmission optical devices using Sagnac interferometer,” Proc. IEEE/OSA OFC/NFOEC, 2005.

Ellinas, G.

G. Ellinas, N. Antoniades, T. Panayiotou, A. Hadjiantonis, and A.M. Levine, “Multicasting routing algorithms based on Q-factor physical layer constraints in metro,” IEEE Phot. Techn. Lett. 21(6), 365–367 (2009).
[Crossref]

T. Panayiotou, G. Ellinas, N. Antoniades, and A. Hadjiantonis, “Node architecture design and network engineering impact on optical multicasting based on physical layer constraints,” Proc. ICTON, 2010.

T. Panayiotou, G. Ellinas, N. Antoniades, and A.M. Levine, “Designing and engineering metropolitan area transparent optical networks for the provisioning of multicast sessions,” Proc. IEEE/OSA OFC, 2010.

Frigo, N.J.

N. Antoniades, K.C. Reichmann, P.P Iannone, N.J. Frigo, A.M. Levine, and I. Roudas, “The impact of polarization-dependent gain on the design of cascaded semiconductor optical amplifier CWDM systems,” IEEE Phot. Techn. Lett. 18(20), 2099–2101 (2006).
[Crossref]

Greywall, D.S

D. T. Neilson, H. Tang, D.S Greywall, N.R Basavanhally, L. Ko, D.A. Ramsey, J.D. Weld, Y.L. Low, F. Pardo, D.O Lopez, P. Busch, J. Prybyla, M. Haueis, C.S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Topics Quant. Electr. 10(3), 563–569 (2004).
[Crossref]

Hadjiantonis, A.

G. Ellinas, N. Antoniades, T. Panayiotou, A. Hadjiantonis, and A.M. Levine, “Multicasting routing algorithms based on Q-factor physical layer constraints in metro,” IEEE Phot. Techn. Lett. 21(6), 365–367 (2009).
[Crossref]

T. Panayiotou, G. Ellinas, N. Antoniades, and A. Hadjiantonis, “Node architecture design and network engineering impact on optical multicasting based on physical layer constraints,” Proc. ICTON, 2010.

Haueis, M.

D. T. Neilson, H. Tang, D.S Greywall, N.R Basavanhally, L. Ko, D.A. Ramsey, J.D. Weld, Y.L. Low, F. Pardo, D.O Lopez, P. Busch, J. Prybyla, M. Haueis, C.S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Topics Quant. Electr. 10(3), 563–569 (2004).
[Crossref]

Iannone, P.P

N. Antoniades, K.C. Reichmann, P.P Iannone, N.J. Frigo, A.M. Levine, and I. Roudas, “The impact of polarization-dependent gain on the design of cascaded semiconductor optical amplifier CWDM systems,” IEEE Phot. Techn. Lett. 18(20), 2099–2101 (2006).
[Crossref]

N. Antoniades, K.C. Reichmann, P.P Iannone, and A.M Levine, “Engineering methodology for the use of SOAs and CWDM transmission in the metro network environment,” Proc. IEEE/OSA OFC, 2006.

Kim, C.-S.

C.-S. Kim, B. Choi, J.S. Nelson, P.Z. Dashti, and H.P. Lee, “Novel PDL/PDG compensator for transmission optical devices using Sagnac interferometer,” Proc. IEEE/OSA OFC/NFOEC, 2005.

Ko, L.

D. T. Neilson, H. Tang, D.S Greywall, N.R Basavanhally, L. Ko, D.A. Ramsey, J.D. Weld, Y.L. Low, F. Pardo, D.O Lopez, P. Busch, J. Prybyla, M. Haueis, C.S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Topics Quant. Electr. 10(3), 563–569 (2004).
[Crossref]

Lee, H.P.

C.-S. Kim, B. Choi, J.S. Nelson, P.Z. Dashti, and H.P. Lee, “Novel PDL/PDG compensator for transmission optical devices using Sagnac interferometer,” Proc. IEEE/OSA OFC/NFOEC, 2005.

Lee, J.H.

J.H. Lee, C. Youn, K.J. Park, and Y.C. Chung, “A novel technique to overcome the polarization effects,” Proc. IEEE/OSA OFC, 2003.

Lee, M.

M. Lee, N. Antoniades, and A. Boskovic, “PDL-induced channel power divergence in a metro WDM network,” IEEE Phot. Techn. Lett. 14(4), 561–563 (2002).
[Crossref]

Levine, A.M

N. Antoniades, K.C. Reichmann, P.P Iannone, and A.M Levine, “Engineering methodology for the use of SOAs and CWDM transmission in the metro network environment,” Proc. IEEE/OSA OFC, 2006.

Levine, A.M.

G. Ellinas, N. Antoniades, T. Panayiotou, A. Hadjiantonis, and A.M. Levine, “Multicasting routing algorithms based on Q-factor physical layer constraints in metro,” IEEE Phot. Techn. Lett. 21(6), 365–367 (2009).
[Crossref]

N. Antoniades, K.C. Reichmann, P.P Iannone, N.J. Frigo, A.M. Levine, and I. Roudas, “The impact of polarization-dependent gain on the design of cascaded semiconductor optical amplifier CWDM systems,” IEEE Phot. Techn. Lett. 18(20), 2099–2101 (2006).
[Crossref]

T. Panayiotou, G. Ellinas, N. Antoniades, and A.M. Levine, “Designing and engineering metropolitan area transparent optical networks for the provisioning of multicast sessions,” Proc. IEEE/OSA OFC, 2010.

Lopez, D.O

D. T. Neilson, H. Tang, D.S Greywall, N.R Basavanhally, L. Ko, D.A. Ramsey, J.D. Weld, Y.L. Low, F. Pardo, D.O Lopez, P. Busch, J. Prybyla, M. Haueis, C.S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Topics Quant. Electr. 10(3), 563–569 (2004).
[Crossref]

Low, Y.L.

D. T. Neilson, H. Tang, D.S Greywall, N.R Basavanhally, L. Ko, D.A. Ramsey, J.D. Weld, Y.L. Low, F. Pardo, D.O Lopez, P. Busch, J. Prybyla, M. Haueis, C.S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Topics Quant. Electr. 10(3), 563–569 (2004).
[Crossref]

McLaughlin, S.

P. Wall, P. Colbourne, C. Reimer, and S. McLaughlin, “WSS switching engine technologies,” Proc. IEEE/OSA OFC, 2008.

Mecozzi, A.

A. Mecozzi and M. Shtaif, “The statistics of polarization-dependent loss in optical communication systems,” IEEE Phot. Techn. Lett. 14(3), 313–315 (2002).
[Crossref]

Neilson, D. T.

D. T. Neilson, H. Tang, D.S Greywall, N.R Basavanhally, L. Ko, D.A. Ramsey, J.D. Weld, Y.L. Low, F. Pardo, D.O Lopez, P. Busch, J. Prybyla, M. Haueis, C.S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Topics Quant. Electr. 10(3), 563–569 (2004).
[Crossref]

Nelson, J.S.

C.-S. Kim, B. Choi, J.S. Nelson, P.Z. Dashti, and H.P. Lee, “Novel PDL/PDG compensator for transmission optical devices using Sagnac interferometer,” Proc. IEEE/OSA OFC/NFOEC, 2005.

Pai, C.S.

D. T. Neilson, H. Tang, D.S Greywall, N.R Basavanhally, L. Ko, D.A. Ramsey, J.D. Weld, Y.L. Low, F. Pardo, D.O Lopez, P. Busch, J. Prybyla, M. Haueis, C.S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Topics Quant. Electr. 10(3), 563–569 (2004).
[Crossref]

Panayiotou, T.

G. Ellinas, N. Antoniades, T. Panayiotou, A. Hadjiantonis, and A.M. Levine, “Multicasting routing algorithms based on Q-factor physical layer constraints in metro,” IEEE Phot. Techn. Lett. 21(6), 365–367 (2009).
[Crossref]

T. Panayiotou, G. Ellinas, N. Antoniades, and A. Hadjiantonis, “Node architecture design and network engineering impact on optical multicasting based on physical layer constraints,” Proc. ICTON, 2010.

T. Panayiotou, G. Ellinas, N. Antoniades, and A.M. Levine, “Designing and engineering metropolitan area transparent optical networks for the provisioning of multicast sessions,” Proc. IEEE/OSA OFC, 2010.

Pardo, F.

D. T. Neilson, H. Tang, D.S Greywall, N.R Basavanhally, L. Ko, D.A. Ramsey, J.D. Weld, Y.L. Low, F. Pardo, D.O Lopez, P. Busch, J. Prybyla, M. Haueis, C.S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Topics Quant. Electr. 10(3), 563–569 (2004).
[Crossref]

Park, K.J.

J.H. Lee, C. Youn, K.J. Park, and Y.C. Chung, “A novel technique to overcome the polarization effects,” Proc. IEEE/OSA OFC, 2003.

Prybyla, J.

D. T. Neilson, H. Tang, D.S Greywall, N.R Basavanhally, L. Ko, D.A. Ramsey, J.D. Weld, Y.L. Low, F. Pardo, D.O Lopez, P. Busch, J. Prybyla, M. Haueis, C.S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Topics Quant. Electr. 10(3), 563–569 (2004).
[Crossref]

Ramsey, D.A.

D. T. Neilson, H. Tang, D.S Greywall, N.R Basavanhally, L. Ko, D.A. Ramsey, J.D. Weld, Y.L. Low, F. Pardo, D.O Lopez, P. Busch, J. Prybyla, M. Haueis, C.S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Topics Quant. Electr. 10(3), 563–569 (2004).
[Crossref]

Reichmann, K.C.

N. Antoniades, K.C. Reichmann, P.P Iannone, N.J. Frigo, A.M. Levine, and I. Roudas, “The impact of polarization-dependent gain on the design of cascaded semiconductor optical amplifier CWDM systems,” IEEE Phot. Techn. Lett. 18(20), 2099–2101 (2006).
[Crossref]

N. Antoniades, K.C. Reichmann, P.P Iannone, and A.M Levine, “Engineering methodology for the use of SOAs and CWDM transmission in the metro network environment,” Proc. IEEE/OSA OFC, 2006.

Reimer, C.

P. Wall, P. Colbourne, C. Reimer, and S. McLaughlin, “WSS switching engine technologies,” Proc. IEEE/OSA OFC, 2008.

Roudas, I.

N. Antoniades, K.C. Reichmann, P.P Iannone, N.J. Frigo, A.M. Levine, and I. Roudas, “The impact of polarization-dependent gain on the design of cascaded semiconductor optical amplifier CWDM systems,” IEEE Phot. Techn. Lett. 18(20), 2099–2101 (2006).
[Crossref]

Rouskas, G.N.

Y. Xin and G.N. Rouskas, “Multicast routing under optical layer constraints,” Proc. IEEE Infocom, 2004.

Ryf, R.

D. T. Neilson, H. Tang, D.S Greywall, N.R Basavanhally, L. Ko, D.A. Ramsey, J.D. Weld, Y.L. Low, F. Pardo, D.O Lopez, P. Busch, J. Prybyla, M. Haueis, C.S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Topics Quant. Electr. 10(3), 563–569 (2004).
[Crossref]

Scotti, R.

D. T. Neilson, H. Tang, D.S Greywall, N.R Basavanhally, L. Ko, D.A. Ramsey, J.D. Weld, Y.L. Low, F. Pardo, D.O Lopez, P. Busch, J. Prybyla, M. Haueis, C.S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Topics Quant. Electr. 10(3), 563–569 (2004).
[Crossref]

Shtaif, M.

A. Mecozzi and M. Shtaif, “The statistics of polarization-dependent loss in optical communication systems,” IEEE Phot. Techn. Lett. 14(3), 313–315 (2002).
[Crossref]

Tang, H.

D. T. Neilson, H. Tang, D.S Greywall, N.R Basavanhally, L. Ko, D.A. Ramsey, J.D. Weld, Y.L. Low, F. Pardo, D.O Lopez, P. Busch, J. Prybyla, M. Haueis, C.S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Topics Quant. Electr. 10(3), 563–569 (2004).
[Crossref]

Wall, P.

P. Wall, P. Colbourne, C. Reimer, and S. McLaughlin, “WSS switching engine technologies,” Proc. IEEE/OSA OFC, 2008.

Weld, J.D.

D. T. Neilson, H. Tang, D.S Greywall, N.R Basavanhally, L. Ko, D.A. Ramsey, J.D. Weld, Y.L. Low, F. Pardo, D.O Lopez, P. Busch, J. Prybyla, M. Haueis, C.S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Topics Quant. Electr. 10(3), 563–569 (2004).
[Crossref]

Xin, Y.

Y. Xin and G.N. Rouskas, “Multicast routing under optical layer constraints,” Proc. IEEE Infocom, 2004.

Youn, C.

J.H. Lee, C. Youn, K.J. Park, and Y.C. Chung, “A novel technique to overcome the polarization effects,” Proc. IEEE/OSA OFC, 2003.

IEEE J. Sel. Topics Quant. Electr. (1)

D. T. Neilson, H. Tang, D.S Greywall, N.R Basavanhally, L. Ko, D.A. Ramsey, J.D. Weld, Y.L. Low, F. Pardo, D.O Lopez, P. Busch, J. Prybyla, M. Haueis, C.S. Pai, R. Scotti, and R. Ryf, “Channel equalization and blocking filter utilizing microelectromechanical mirrors,” IEEE J. Sel. Topics Quant. Electr. 10(3), 563–569 (2004).
[Crossref]

IEEE Phot. Techn. Lett. (6)

G. Ellinas, N. Antoniades, T. Panayiotou, A. Hadjiantonis, and A.M. Levine, “Multicasting routing algorithms based on Q-factor physical layer constraints in metro,” IEEE Phot. Techn. Lett. 21(6), 365–367 (2009).
[Crossref]

F. Bruyere and O. Audouin, “Penalties in long-haul optical amplifier systems due to polarization dependent loss and gain,” IEEE Phot. Techn. Lett. 6(5), 654–656 (1994).
[Crossref]

A. Mecozzi and M. Shtaif, “The statistics of polarization-dependent loss in optical communication systems,” IEEE Phot. Techn. Lett. 14(3), 313–315 (2002).
[Crossref]

X. Chongjin, “Polarization-dependent loss-induced outage probabilities in optical communication systems,” IEEE Phot. Techn. Lett. 20(13), 1091–1093 (2008).
[Crossref]

N. Antoniades, K.C. Reichmann, P.P Iannone, N.J. Frigo, A.M. Levine, and I. Roudas, “The impact of polarization-dependent gain on the design of cascaded semiconductor optical amplifier CWDM systems,” IEEE Phot. Techn. Lett. 18(20), 2099–2101 (2006).
[Crossref]

M. Lee, N. Antoniades, and A. Boskovic, “PDL-induced channel power divergence in a metro WDM network,” IEEE Phot. Techn. Lett. 14(4), 561–563 (2002).
[Crossref]

Other (7)

J.H. Lee, C. Youn, K.J. Park, and Y.C. Chung, “A novel technique to overcome the polarization effects,” Proc. IEEE/OSA OFC, 2003.

C.-S. Kim, B. Choi, J.S. Nelson, P.Z. Dashti, and H.P. Lee, “Novel PDL/PDG compensator for transmission optical devices using Sagnac interferometer,” Proc. IEEE/OSA OFC/NFOEC, 2005.

N. Antoniades, K.C. Reichmann, P.P Iannone, and A.M Levine, “Engineering methodology for the use of SOAs and CWDM transmission in the metro network environment,” Proc. IEEE/OSA OFC, 2006.

P. Wall, P. Colbourne, C. Reimer, and S. McLaughlin, “WSS switching engine technologies,” Proc. IEEE/OSA OFC, 2008.

Y. Xin and G.N. Rouskas, “Multicast routing under optical layer constraints,” Proc. IEEE Infocom, 2004.

T. Panayiotou, G. Ellinas, N. Antoniades, and A. Hadjiantonis, “Node architecture design and network engineering impact on optical multicasting based on physical layer constraints,” Proc. ICTON, 2010.

T. Panayiotou, G. Ellinas, N. Antoniades, and A.M. Levine, “Designing and engineering metropolitan area transparent optical networks for the provisioning of multicast sessions,” Proc. IEEE/OSA OFC, 2010.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) PDG model for EDFAs and SOA gates; (b) PDL model for all other optical components; PBS/PBC: polarization beam splitter/combiner modules.
Fig. 2
Fig. 2 Node design with (a) fixed TXs/RXs and (b) tunable TXs/RXs
Fig. 3
Fig. 3 Blocking probability vs. multicast group size: (a) best/worst-case polarization alignments for various routing heuristic algorithms; (b) random polarization alignments.
Fig. 4
Fig. 4 Multicasting results using the BLT Q 8.5 algorithm for node designs with: (a) fixed TXs/RXs; (b) tunable TXs/RXs.
Fig. 5
Fig. 5 Generic WSS module implementation [13].

Tables (1)

Tables Icon

Table 1 Typical PDG/PDL values for the optical node components of Fig. 2.

Metrics