Abstract

We present a novel privacy filter film with transparent micro-cuboid arrays. The privacy filter film, which does not include any opaque materials, rarely affects the normal transparency, whereas it obscures personal information by distorting paths of oblique light rays. The effects of the cuboid size and a gap between the privacy filter and a display are analyzed using a ray-tracing program. The analysis is consistent with the experimental results carried out using the poly-dimethylsiloxane (PDMS) micro-cuboid (100 μm × 100 μm × 200 μm) arrays, which are fabricated by lithography and transfer molding.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly transparent light-harvesting window film

Byron Cocilovo, Aki Hashimura, Douglas J. Tweet, Tolis Voutsas, and Robert A. Norwood
Appl. Opt. 54(30) 8990-8998 (2015)

Enhanced image quality of OLED transparent display by cholesteric liquid crystal back-panel

Cheng-Chang Li, Heng-Yi Tseng, Hung-Chia Liao, Han-Ming Chen, Ting Hsieh, Sin-An Lin, Hung-Chang Jau, Yu-Ching Wu, Ya-Ling Hsu, Wen-Hao Hsu, and Tsung-Hsien Lin
Opt. Express 25(23) 29199-29206 (2017)

Pre-inverse filtering of distorted images

Bahaa E. A. Saleh and Nikola S. Subotic
Appl. Opt. 20(22) 3912-3916 (1981)

References

  • View by:
  • |
  • |
  • |

  1. L. Rainie, “Tablet and e-book reader ownership nearly double over the holiday gift-giving period,” (2012), http://www.timesrepublican.com/pdf/news/546372_1.pdf .
  2. E. Chin, A. P. Felt, V. Sekar, and D. Wagner,L. G. Cranor, ed., “Measuring user confidence in smartphone security and privacy,” in Proceedings of the Eighth Symposium on Usable Privacy and Security, L. G. Cranor, ed. (ACM, 2012), pp. 1–16.
    [Crossref]
  3. H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
    [Crossref] [PubMed]
  4. G. E. Gaides, I. A. Kadoma, R. A. Larson, D. B. Olson, and A. R. Sykora, “Light collimating film,” U.S. patent 8,133,572 B2 (13 March 2012).
  5. P. K. Tien and R. Ulrich, “Theory of prism-film coupler and thin-film light guides,” J. Opt. Soc. Am. 60(10), 1325–1337 (1970).
    [Crossref]
  6. S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
    [Crossref]
  7. V. A. Sautenkov, H. Li, Y. V. Rostovtsev, and M. O. Scully, “Ultradispersive adaptive prism based on a coherently prepared atomic medium,” Phys. Rev. A 81(6), 063824 (2010).
    [Crossref]
  8. R. Dumke, M. Volk, T. Müther, F. B. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89(9), 097903 (2002).
    [Crossref] [PubMed]
  9. H. Yabu and M. Shimomura, “Simple fabrication of micro lens arrays,” Langmuir 21(5), 1709–1711 (2005).
    [Crossref] [PubMed]
  10. F. Krogmann, W. Mönch, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A, Pure Appl. Opt. 8(7), S330–S336 (2006).
    [Crossref]
  11. R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express 14(2), 810–816 (2006).
    [Crossref] [PubMed]
  12. T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
    [Crossref]
  13. S. S. Oh, C.-G. Choi, and Y.-S. Kim, “Fabrication of micro-lens arrays with moth-eye antireflective nanostructures using thermal imprinting process,” Microelectron. Eng. 87(11), 2328–2331 (2010).
    [Crossref]
  14. X. Zhang, W. Que, C. Jia, J. Hu, and W. Liu, “Fabrication of micro-lens arrays built in photosensitive hybrid films by UV-cured imprinting technique,” J. Sol-Gel Sci. Technol. 60(1), 71–80 (2011).
    [Crossref]
  15. B. G. Park, K. Choi, C. J. Jo, and H. S. Lee, “Micro lens-on-lens array,” Soft Matter 8(6), 1751–1755 (2012).
    [Crossref]
  16. Y. Duan, G. Barbastathis, and B. Zhang, “Classical imaging theory of a microlens with super-resolution,” Opt. Lett. 38(16), 2988–2990 (2013).
    [Crossref] [PubMed]
  17. A. C. Hamilton and J. Courtial, “Optical properties of a Dove-prism sheet,” J. Opt. A, Pure Appl. Opt. 10(12), 125302 (2008).
    [Crossref]
  18. C. A. Sanchez and J. Z. Goolsbee, “Character size and reading to remember from small displays,” Comput. Educ. 55(3), 1056–1062 (2010).
    [Crossref]

2013 (1)

2012 (1)

B. G. Park, K. Choi, C. J. Jo, and H. S. Lee, “Micro lens-on-lens array,” Soft Matter 8(6), 1751–1755 (2012).
[Crossref]

2011 (2)

X. Zhang, W. Que, C. Jia, J. Hu, and W. Liu, “Fabrication of micro-lens arrays built in photosensitive hybrid films by UV-cured imprinting technique,” J. Sol-Gel Sci. Technol. 60(1), 71–80 (2011).
[Crossref]

H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

2010 (3)

V. A. Sautenkov, H. Li, Y. V. Rostovtsev, and M. O. Scully, “Ultradispersive adaptive prism based on a coherently prepared atomic medium,” Phys. Rev. A 81(6), 063824 (2010).
[Crossref]

S. S. Oh, C.-G. Choi, and Y.-S. Kim, “Fabrication of micro-lens arrays with moth-eye antireflective nanostructures using thermal imprinting process,” Microelectron. Eng. 87(11), 2328–2331 (2010).
[Crossref]

C. A. Sanchez and J. Z. Goolsbee, “Character size and reading to remember from small displays,” Comput. Educ. 55(3), 1056–1062 (2010).
[Crossref]

2008 (2)

A. C. Hamilton and J. Courtial, “Optical properties of a Dove-prism sheet,” J. Opt. A, Pure Appl. Opt. 10(12), 125302 (2008).
[Crossref]

T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
[Crossref]

2006 (2)

F. Krogmann, W. Mönch, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A, Pure Appl. Opt. 8(7), S330–S336 (2006).
[Crossref]

R. Guo, S. Xiao, X. Zhai, J. Li, A. Xia, and W. Huang, “Micro lens fabrication by means of femtosecond two photon photopolymerization,” Opt. Express 14(2), 810–816 (2006).
[Crossref] [PubMed]

2005 (1)

H. Yabu and M. Shimomura, “Simple fabrication of micro lens arrays,” Langmuir 21(5), 1709–1711 (2005).
[Crossref] [PubMed]

2004 (1)

S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

2002 (1)

R. Dumke, M. Volk, T. Müther, F. B. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89(9), 097903 (2002).
[Crossref] [PubMed]

1970 (1)

Barbastathis, G.

Birkl, G.

R. Dumke, M. Volk, T. Müther, F. B. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89(9), 097903 (2002).
[Crossref] [PubMed]

Buchkremer, F. B.

R. Dumke, M. Volk, T. Müther, F. B. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89(9), 097903 (2002).
[Crossref] [PubMed]

Char, K.

H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Chen, C.-F.

T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
[Crossref]

Choi, C.-G.

S. S. Oh, C.-G. Choi, and Y.-S. Kim, “Fabrication of micro-lens arrays with moth-eye antireflective nanostructures using thermal imprinting process,” Microelectron. Eng. 87(11), 2328–2331 (2010).
[Crossref]

Choi, K.

B. G. Park, K. Choi, C. J. Jo, and H. S. Lee, “Micro lens-on-lens array,” Soft Matter 8(6), 1751–1755 (2012).
[Crossref]

Choi, S. J.

H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Courtial, J.

A. C. Hamilton and J. Courtial, “Optical properties of a Dove-prism sheet,” J. Opt. A, Pure Appl. Opt. 10(12), 125302 (2008).
[Crossref]

Duan, Y.

Dumke, R.

R. Dumke, M. Volk, T. Müther, F. B. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89(9), 097903 (2002).
[Crossref] [PubMed]

Ertmer, W.

R. Dumke, M. Volk, T. Müther, F. B. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89(9), 097903 (2002).
[Crossref] [PubMed]

Goolsbee, J. Z.

C. A. Sanchez and J. Z. Goolsbee, “Character size and reading to remember from small displays,” Comput. Educ. 55(3), 1056–1062 (2010).
[Crossref]

Guo, R.

Hamilton, A. C.

A. C. Hamilton and J. Courtial, “Optical properties of a Dove-prism sheet,” J. Opt. A, Pure Appl. Opt. 10(12), 125302 (2008).
[Crossref]

Hendriks, B.

S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Hu, J.

X. Zhang, W. Que, C. Jia, J. Hu, and W. Liu, “Fabrication of micro-lens arrays built in photosensitive hybrid films by UV-cured imprinting technique,” J. Sol-Gel Sci. Technol. 60(1), 71–80 (2011).
[Crossref]

Huang, W.

Jia, C.

X. Zhang, W. Que, C. Jia, J. Hu, and W. Liu, “Fabrication of micro-lens arrays built in photosensitive hybrid films by UV-cured imprinting technique,” J. Sol-Gel Sci. Technol. 60(1), 71–80 (2011).
[Crossref]

Jo, C. J.

B. G. Park, K. Choi, C. J. Jo, and H. S. Lee, “Micro lens-on-lens array,” Soft Matter 8(6), 1751–1755 (2012).
[Crossref]

Kang, D. S.

H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Kim, Y.-S.

S. S. Oh, C.-G. Choi, and Y.-S. Kim, “Fabrication of micro-lens arrays with moth-eye antireflective nanostructures using thermal imprinting process,” Microelectron. Eng. 87(11), 2328–2331 (2010).
[Crossref]

Krogmann, F.

F. Krogmann, W. Mönch, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A, Pure Appl. Opt. 8(7), S330–S336 (2006).
[Crossref]

Kuiper, S.

S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Lee, H. H.

H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Lee, H. S.

B. G. Park, K. Choi, C. J. Jo, and H. S. Lee, “Micro lens-on-lens array,” Soft Matter 8(6), 1751–1755 (2012).
[Crossref]

Li, H.

V. A. Sautenkov, H. Li, Y. V. Rostovtsev, and M. O. Scully, “Ultradispersive adaptive prism based on a coherently prepared atomic medium,” Phys. Rev. A 81(6), 063824 (2010).
[Crossref]

Li, J.

Liao, Y.-S.

T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
[Crossref]

Lin, T.-W.

T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
[Crossref]

Liu, W.

X. Zhang, W. Que, C. Jia, J. Hu, and W. Liu, “Fabrication of micro-lens arrays built in photosensitive hybrid films by UV-cured imprinting technique,” J. Sol-Gel Sci. Technol. 60(1), 71–80 (2011).
[Crossref]

Mönch, W.

F. Krogmann, W. Mönch, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A, Pure Appl. Opt. 8(7), S330–S336 (2006).
[Crossref]

Müther, T.

R. Dumke, M. Volk, T. Müther, F. B. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89(9), 097903 (2002).
[Crossref] [PubMed]

Oh, S. G.

H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Oh, S. S.

S. S. Oh, C.-G. Choi, and Y.-S. Kim, “Fabrication of micro-lens arrays with moth-eye antireflective nanostructures using thermal imprinting process,” Microelectron. Eng. 87(11), 2328–2331 (2010).
[Crossref]

Park, B. G.

B. G. Park, K. Choi, C. J. Jo, and H. S. Lee, “Micro lens-on-lens array,” Soft Matter 8(6), 1751–1755 (2012).
[Crossref]

Park, J. M.

H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Que, W.

X. Zhang, W. Que, C. Jia, J. Hu, and W. Liu, “Fabrication of micro-lens arrays built in photosensitive hybrid films by UV-cured imprinting technique,” J. Sol-Gel Sci. Technol. 60(1), 71–80 (2011).
[Crossref]

Rostovtsev, Y. V.

V. A. Sautenkov, H. Li, Y. V. Rostovtsev, and M. O. Scully, “Ultradispersive adaptive prism based on a coherently prepared atomic medium,” Phys. Rev. A 81(6), 063824 (2010).
[Crossref]

Sanchez, C. A.

C. A. Sanchez and J. Z. Goolsbee, “Character size and reading to remember from small displays,” Comput. Educ. 55(3), 1056–1062 (2010).
[Crossref]

Sautenkov, V. A.

V. A. Sautenkov, H. Li, Y. V. Rostovtsev, and M. O. Scully, “Ultradispersive adaptive prism based on a coherently prepared atomic medium,” Phys. Rev. A 81(6), 063824 (2010).
[Crossref]

Scully, M. O.

V. A. Sautenkov, H. Li, Y. V. Rostovtsev, and M. O. Scully, “Ultradispersive adaptive prism based on a coherently prepared atomic medium,” Phys. Rev. A 81(6), 063824 (2010).
[Crossref]

Shimomura, M.

H. Yabu and M. Shimomura, “Simple fabrication of micro lens arrays,” Langmuir 21(5), 1709–1711 (2005).
[Crossref] [PubMed]

Suh, K. Y.

H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Tien, P. K.

Ulrich, R.

Volk, M.

R. Dumke, M. Volk, T. Müther, F. B. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89(9), 097903 (2002).
[Crossref] [PubMed]

Xia, A.

Xiao, S.

Yabu, H.

H. Yabu and M. Shimomura, “Simple fabrication of micro lens arrays,” Langmuir 21(5), 1709–1711 (2005).
[Crossref] [PubMed]

Yang, J.-J.

T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
[Crossref]

Yoon, H.

H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Zappe, H.

F. Krogmann, W. Mönch, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A, Pure Appl. Opt. 8(7), S330–S336 (2006).
[Crossref]

Zhai, X.

Zhang, B.

Zhang, X.

X. Zhang, W. Que, C. Jia, J. Hu, and W. Liu, “Fabrication of micro-lens arrays built in photosensitive hybrid films by UV-cured imprinting technique,” J. Sol-Gel Sci. Technol. 60(1), 71–80 (2011).
[Crossref]

Appl. Phys. Lett. (1)

S. Kuiper and B. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85(7), 1128–1130 (2004).
[Crossref]

Comput. Educ. (1)

C. A. Sanchez and J. Z. Goolsbee, “Character size and reading to remember from small displays,” Comput. Educ. 55(3), 1056–1062 (2010).
[Crossref]

J. Micromech. Microeng. (1)

T.-W. Lin, C.-F. Chen, J.-J. Yang, and Y.-S. Liao, “A dual-directional light-control film with a high-sag and high-asymmetrical-shape microlens array fabricated by a UV imprinting process,” J. Micromech. Microeng. 18(9), 095029 (2008).
[Crossref]

J. Opt. A, Pure Appl. Opt. (2)

F. Krogmann, W. Mönch, and H. Zappe, “A MEMS-based variable micro-lens system,” J. Opt. A, Pure Appl. Opt. 8(7), S330–S336 (2006).
[Crossref]

A. C. Hamilton and J. Courtial, “Optical properties of a Dove-prism sheet,” J. Opt. A, Pure Appl. Opt. 10(12), 125302 (2008).
[Crossref]

J. Opt. Soc. Am. (1)

J. Sol-Gel Sci. Technol. (1)

X. Zhang, W. Que, C. Jia, J. Hu, and W. Liu, “Fabrication of micro-lens arrays built in photosensitive hybrid films by UV-cured imprinting technique,” J. Sol-Gel Sci. Technol. 60(1), 71–80 (2011).
[Crossref]

Langmuir (1)

H. Yabu and M. Shimomura, “Simple fabrication of micro lens arrays,” Langmuir 21(5), 1709–1711 (2005).
[Crossref] [PubMed]

Microelectron. Eng. (1)

S. S. Oh, C.-G. Choi, and Y.-S. Kim, “Fabrication of micro-lens arrays with moth-eye antireflective nanostructures using thermal imprinting process,” Microelectron. Eng. 87(11), 2328–2331 (2010).
[Crossref]

Nat. Commun. (1)

H. Yoon, S. G. Oh, D. S. Kang, J. M. Park, S. J. Choi, K. Y. Suh, K. Char, and H. H. Lee, “Arrays of Lucius microprisms for directional allocation of light and autostereoscopic three-dimensional displays,” Nat. Commun. 2, 455 (2011).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

V. A. Sautenkov, H. Li, Y. V. Rostovtsev, and M. O. Scully, “Ultradispersive adaptive prism based on a coherently prepared atomic medium,” Phys. Rev. A 81(6), 063824 (2010).
[Crossref]

Phys. Rev. Lett. (1)

R. Dumke, M. Volk, T. Müther, F. B. Buchkremer, G. Birkl, and W. Ertmer, “Micro-optical realization of arrays of selectively addressable dipole traps: a scalable configuration for quantum computation with atomic qubits,” Phys. Rev. Lett. 89(9), 097903 (2002).
[Crossref] [PubMed]

Soft Matter (1)

B. G. Park, K. Choi, C. J. Jo, and H. S. Lee, “Micro lens-on-lens array,” Soft Matter 8(6), 1751–1755 (2012).
[Crossref]

Other (3)

G. E. Gaides, I. A. Kadoma, R. A. Larson, D. B. Olson, and A. R. Sykora, “Light collimating film,” U.S. patent 8,133,572 B2 (13 March 2012).

L. Rainie, “Tablet and e-book reader ownership nearly double over the holiday gift-giving period,” (2012), http://www.timesrepublican.com/pdf/news/546372_1.pdf .

E. Chin, A. P. Felt, V. Sekar, and D. Wagner,L. G. Cranor, ed., “Measuring user confidence in smartphone security and privacy,” in Proceedings of the Eighth Symposium on Usable Privacy and Security, L. G. Cranor, ed. (ACM, 2012), pp. 1–16.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Top view of the high-transparency privacy filter film. (b), (c) Cross-sectional view of the light ray paths in the normal direction (0°) and in the inclined direction (45°). (d) A simulated image of a single transparent cuboid at 45°. (e), (f) Simulated images of transparent cuboid arrays at 0° and 45°.
Fig. 2
Fig. 2 Experimental results with large-scale PDMS cuboid (1.4 cm × 1.4 cm × 1.8 cm) arrays: (a) normal view (0°) and inclined view (45°) of an LCD monitor, (b) inclined view of a printed paper, and (c) images with different view angles and character-to-cuboid size ratios.
Fig. 3
Fig. 3 Concept of the gap effect in the privacy filter with the micro-cuboid arrays. (a) Observed character distance is affected by the gap d between the display and the privacy filter. (b) Simulated images of the gap effect from an inclined view (45°). The characters are duplicated and overlapped when d is 2 mm. (c) Simulated images describing the effect of the cuboid thickness from an inclined view (15°).
Fig. 4
Fig. 4 (a) Fabrication process of the PDMS privacy filter with the micro-cuboid arrays. (b) Top view and cross-sectional view of the fabricated PDMS privacy filter. (c)-(e) Effects of the cuboid size and gap d, on the privacy filter: (c) 400 μm cuboid when d = 0, (d) 200 μm cuboid when d = 0, and (e) 200 μm cuboid when d = 1 mm.
Fig. 5
Fig. 5 The PDMS privacy filter with 100 μm × 100 μm × 200 μm cuboid arrays attached onto a mobile device. (a) Brightness change depending on view angles. (b) Transparency difference between PDMS privacy filter ii) and commercial privacy filters iii) and iv). (c) Three different observed directions. (d)-(e) Experimental results with the PDMS privacy filter obtained in the three observed directions.

Metrics