Abstract

Femtosecond laser written Bragg gratings have been written in exposed-core microstructured optical fibers with core diameters ranging from 2.7 µm to 12.5 µm and can be spliced to conventional single mode fiber. Writing a Bragg grating on an open core fiber allows for real-time refractive index based sensing, with a view to multiplexed biosensing. Smaller core fibers are shown both experimentally and theoretically to provide a higher sensitivity. A 7.5 µm core diameter fiber is shown to provide a good compromise between sensitivity and practicality and was used for monitoring the deposition of polyelectrolyte layers, an important first step in developing a biosensor.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Exposed core microstructured optical fiber Bragg gratings: refractive index sensing

Stephen C. Warren-Smith and Tanya M. Monro
Opt. Express 22(2) 1480-1489 (2014)

Fabrication of low-loss, small-core exposed core microstructured optical fibers

Erik P. Schartner, Alastair Dowler, and Heike Ebendorff-Heidepriem
Opt. Mater. Express 7(5) 1496-1502 (2017)

Exposed-core microstructured optical fibers for real-time fluorescence sensing

Stephen C. Warren-Smith, Heike Ebendorff-Heidepriem, Tze Cheung Foo, Roger Moore, Claire Davis, and Tanya M. Monro
Opt. Express 17(21) 18533-18542 (2009)

References

  • View by:
  • |
  • |
  • |

  1. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [Crossref] [PubMed]
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
    [Crossref] [PubMed]
  3. W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russel, “Very high numerical aperture fibers,” IEEE Photonic. Tech. L. 16, 843–845 (2004).
    [Crossref]
  4. K. Furusawa, A. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson, and D. J. Richardson, “Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding,” Opt. Express 9(13), 714–720 (2001).
    [Crossref] [PubMed]
  5. J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,” Electron. Lett. 37(18), 1116–1117 (2001).
    [Crossref]
  6. J. Laegsgaard and A. Bjarklev, “Microstructured optical fibers-fundamentals and applications,” J. Am. Ceram. Soc. 89(1), 2–12 (2006).
    [Crossref]
  7. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
    [Crossref]
  8. X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23(6), 2046–2054 (2005).
    [Crossref]
  9. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007).
    [Crossref] [PubMed]
  10. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
    [Crossref] [PubMed]
  11. S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
    [Crossref] [PubMed]
  12. S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–15062 (2009).
    [Crossref] [PubMed]
  13. T. M. Monro, S. C. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. V. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
    [Crossref]
  14. T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
    [Crossref]
  15. Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
    [Crossref]
  16. Y. Zhu, H. Du, and R. Bise, “Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing,” Opt. Express 14(8), 3541–3546 (2006).
    [Crossref] [PubMed]
  17. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004).
    [Crossref] [PubMed]
  18. S. V. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
    [Crossref] [PubMed]
  19. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004).
    [Crossref] [PubMed]
  20. C. J. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express 15(11), 6690–6695 (2007).
    [Crossref] [PubMed]
  21. O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser and Photonic Reviews 2(6), 449–459 (2008).
    [Crossref]
  22. S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
    [Crossref] [PubMed]
  23. S. Heng, A. M. Mak, D. B. Stubing, T. M. Monro, and A. D. Abell, “Dual sensor for Cd(II) and Ca(II): selective nanoliter-scale sensing of metal ions,” Anal. Chem. 86(7), 3268–3272 (2014).
    [Crossref] [PubMed]
  24. L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem. 385(8), 1370–1375 (2006).
    [Crossref] [PubMed]
  25. Y. Ruan, T. C. Foo, S. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008).
    [Crossref] [PubMed]
  26. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
    [Crossref] [PubMed]
  27. G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
    [Crossref] [PubMed]
  28. M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16(12), 8427–8432 (2008).
    [Crossref] [PubMed]
  29. A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett. 34(24), 3890–3892 (2009).
    [Crossref] [PubMed]
  30. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
    [Crossref] [PubMed]
  31. B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15(18), 11413–11426 (2007).
    [Crossref] [PubMed]
  32. G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
    [Crossref] [PubMed]
  33. B. Culshaw, “Optical fiber sensor technologies: opportunities and-perhaps-pitfalls,” J. Lightwave Technol. 22(1), 39–50 (2004).
    [Crossref]
  34. Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett. 36(16), 3115–3117 (2011).
    [Crossref] [PubMed]
  35. A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonic. Tech. L. 16(4), 1149–1151 (2004).
    [Crossref]
  36. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [Crossref]
  37. B. N. Shivananju, M. Renilkumar, G. R. Prashanth, S. Asokan, and M. M. Varma, “Detection limit of etched fiber Bragg grating sensors,” J. Lightwave Technol. 31(14), 2441–2447 (2013).
    [Crossref]
  38. M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
    [Crossref] [PubMed]
  39. A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).
  40. S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014).
    [Crossref] [PubMed]
  41. R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
    [Crossref]
  42. R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2, 1538–1547 (2012).
  43. R. Kostecki, H. Ebendorff Heidepriem, S. V. Afshar, G. McAdam, C. Davis, and T. M. Monro, “Novel polymer functionalization method for exposed-core optical fiber,” Opt. Mater. Express 4(8), 1515–1525 (2014).
    [Crossref]
  44. G. Tsiminis, F. Chu, S. C. Warren-Smith, N. A. Spooner, and T. M. Monro, “Identification and quantification of explosives in nanolitre solution volumes by Raman spectroscopy in suspended core optical fibers,” Sensors (Basel) 13(10), 13163–13177 (2013).
    [Crossref] [PubMed]
  45. K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).
  46. J. Wooler, S. R. Sandoghchi, D. Gray, F. Poletti, M. N. Petrovich, N. V. Wheeler, N. K. Baddela, and D. Richardson, “Overcoming the challenges of splicing dissimilar diameter solid-core and hollow-core photonic band gap fibers,” Workshop on Specialty Optical Fibers and their Applications (2013).
    [Crossref]
  47. L. Xiao, W. Jin, and M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett. 32(2), 115–117 (2007).
    [Crossref] [PubMed]
  48. L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25(11), 2563–2574 (2007).
    [Crossref]
  49. G. V. Steenberge, P. Geerinck, S. V. Put, J. Watte, H. Ottevaere, H. Thienpont, and P. V. Daele, “Laser cleaving of glass fibers and glass fiber arrays,” J. Lightwave Technol. 23(2), 609–614 (2005).
    [Crossref]
  50. K.-Y. Chu and A. R. Thompson, “Densities and refractive indices of alcohol-water solutions,” J. Chem. Eng. Data 7(3), 358–360 (1962).
    [Crossref]
  51. Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor,” Opt. Lett. 30(9), 1021–1023 (2005).
    [Crossref] [PubMed]
  52. D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006).
    [Crossref]

2014 (4)

2013 (4)

G. Tsiminis, F. Chu, S. C. Warren-Smith, N. A. Spooner, and T. M. Monro, “Identification and quantification of explosives in nanolitre solution volumes by Raman spectroscopy in suspended core optical fibers,” Sensors (Basel) 13(10), 13163–13177 (2013).
[Crossref] [PubMed]

B. N. Shivananju, M. Renilkumar, G. R. Prashanth, S. Asokan, and M. M. Varma, “Detection limit of etched fiber Bragg grating sensors,” J. Lightwave Technol. 31(14), 2441–2447 (2013).
[Crossref]

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

2012 (1)

2011 (2)

Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett. 36(16), 3115–3117 (2011).
[Crossref] [PubMed]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

2010 (1)

T. M. Monro, S. C. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. V. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

2009 (4)

2008 (4)

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16(12), 8427–8432 (2008).
[Crossref] [PubMed]

Y. Ruan, T. C. Foo, S. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008).
[Crossref] [PubMed]

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser and Photonic Reviews 2(6), 449–459 (2008).
[Crossref]

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[Crossref]

2007 (9)

S. V. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[Crossref] [PubMed]

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007).
[Crossref] [PubMed]

C. J. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express 15(11), 6690–6695 (2007).
[Crossref] [PubMed]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[Crossref] [PubMed]

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15(18), 11413–11426 (2007).
[Crossref] [PubMed]

M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
[Crossref] [PubMed]

L. Xiao, W. Jin, and M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett. 32(2), 115–117 (2007).
[Crossref] [PubMed]

L. Xiao, M. S. Demokan, W. Jin, Y. Wang, and C.-L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25(11), 2563–2574 (2007).
[Crossref]

2006 (5)

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006).
[Crossref]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
[Crossref] [PubMed]

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem. 385(8), 1370–1375 (2006).
[Crossref] [PubMed]

J. Laegsgaard and A. Bjarklev, “Microstructured optical fibers-fundamentals and applications,” J. Am. Ceram. Soc. 89(1), 2–12 (2006).
[Crossref]

Y. Zhu, H. Du, and R. Bise, “Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing,” Opt. Express 14(8), 3541–3546 (2006).
[Crossref] [PubMed]

2005 (5)

2004 (5)

2001 (2)

K. Furusawa, A. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson, and D. J. Richardson, “Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding,” Opt. Express 9(13), 714–720 (2001).
[Crossref] [PubMed]

J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,” Electron. Lett. 37(18), 1116–1117 (2001).
[Crossref]

1999 (2)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[Crossref]

1997 (1)

1962 (1)

K.-Y. Chu and A. R. Thompson, “Densities and refractive indices of alcohol-water solutions,” J. Chem. Eng. Data 7(3), 358–360 (1962).
[Crossref]

Abbott, D.

Abell, A. D.

S. Heng, A. M. Mak, D. B. Stubing, T. M. Monro, and A. D. Abell, “Dual sensor for Cd(II) and Ca(II): selective nanoliter-scale sensing of metal ions,” Anal. Chem. 86(7), 3268–3272 (2014).
[Crossref] [PubMed]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

Afshar, S. V.

Afshar V, S.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Alvarez-Chavez, J. A.

J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,” Electron. Lett. 37(18), 1116–1117 (2001).
[Crossref]

Araujo, F. M.

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser and Photonic Reviews 2(6), 449–459 (2008).
[Crossref]

Asokan, S.

Atakaramians, S.

Auguste, J. L.

Bang, O.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[Crossref] [PubMed]

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem. 385(8), 1370–1375 (2006).
[Crossref] [PubMed]

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[Crossref] [PubMed]

Bennett, P. J.

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[Crossref]

Bernini, R.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonic. Tech. L. 16(4), 1149–1151 (2004).
[Crossref]

Bertucci, A.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).

Birks, T. A.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russel, “Very high numerical aperture fibers,” IEEE Photonic. Tech. L. 16, 843–845 (2004).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
[Crossref] [PubMed]

Bise, R.

Bise, R. T.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[Crossref]

Bjarklev, A.

Blanc, W.

Bouwmans, G.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russel, “Very high numerical aperture fibers,” IEEE Photonic. Tech. L. 16, 843–845 (2004).
[Crossref]

Broaddus, D. H.

Candiani, A.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).

Carlsen, A.

Chu, F.

G. Tsiminis, F. Chu, S. C. Warren-Smith, N. A. Spooner, and T. M. Monro, “Identification and quantification of explosives in nanolitre solution volumes by Raman spectroscopy in suspended core optical fibers,” Sensors (Basel) 13(10), 13163–13177 (2013).
[Crossref] [PubMed]

Chu, K.-Y.

K.-Y. Chu and A. R. Thompson, “Densities and refractive indices of alcohol-water solutions,” J. Chem. Eng. Data 7(3), 358–360 (1962).
[Crossref]

Cooper, K. L.

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006).
[Crossref]

Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor,” Opt. Lett. 30(9), 1021–1023 (2005).
[Crossref] [PubMed]

Corradini, R.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).

Cox, F. M.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Cucinotta, A.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).

Culshaw, B.

Cusano, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonic. Tech. L. 16(4), 1149–1151 (2004).
[Crossref]

Cutolo, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonic. Tech. L. 16(4), 1149–1151 (2004).
[Crossref]

Daele, P. V.

Davis, C.

Demokan, M. S.

Dewynter, V.

Docherty, A.

Du, H.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[Crossref]

Y. Zhu, H. Du, and R. Bise, “Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing,” Opt. Express 14(8), 3541–3546 (2006).
[Crossref] [PubMed]

Dussardier, B.

Ebendorff Heidepriem, H.

Ebendorff-Heidepriem, H.

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
[Crossref]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2, 1538–1547 (2012).

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

T. M. Monro, S. C. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. V. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–15062 (2009).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

Y. Ruan, T. C. Foo, S. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007).
[Crossref] [PubMed]

Emiliyanov, G.

Fassi Fehri, M.

Feng, X.

Ferdinand, P.

Ferreira, L. A.

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser and Photonic Reviews 2(6), 449–459 (2008).
[Crossref]

Fischer, B. M.

Folkenberg, J. R.

Foo, T. C.

Francois, A.

T. M. Monro, S. C. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. V. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Frazão, O.

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser and Photonic Reviews 2(6), 449–459 (2008).
[Crossref]

Furusawa, K.

J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,” Electron. Lett. 37(18), 1116–1117 (2001).
[Crossref]

K. Furusawa, A. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson, and D. J. Richardson, “Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding,” Opt. Express 9(13), 714–720 (2001).
[Crossref] [PubMed]

Gaeta, A. L.

Gauvreau, B.

Geerinck, P.

Geschke, O.

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem. 385(8), 1370–1375 (2006).
[Crossref] [PubMed]

Giannetti, S.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).

Giordano, M.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonic. Tech. L. 16(4), 1149–1151 (2004).
[Crossref]

Hansen, T. P.

Hassani, A.

Hautakorpi, M.

Hedley, T. D.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russel, “Very high numerical aperture fibers,” IEEE Photonic. Tech. L. 16, 843–845 (2004).
[Crossref]

Heng, S.

S. Heng, A. M. Mak, D. B. Stubing, T. M. Monro, and A. D. Abell, “Dual sensor for Cd(II) and Ca(II): selective nanoliter-scale sensing of metal ions,” Anal. Chem. 86(7), 3268–3272 (2014).
[Crossref] [PubMed]

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

T. M. Monro, S. C. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. V. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Hensley, C. J.

Hewak, D. W.

Hoffmann, P.

Hoiby, P. E.

Høiby, P. E.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem. 385(8), 1370–1375 (2006).
[Crossref] [PubMed]

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Iadicicco, A.

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonic. Tech. L. 16(4), 1149–1151 (2004).
[Crossref]

Jensen, J. B.

Jin, W.

Kabashin, A.

Kanka, J.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[Crossref]

Kim, D. W.

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006).
[Crossref]

Kjaer, E. M.

Knight, J. C.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russel, “Very high numerical aperture fibers,” IEEE Photonic. Tech. L. 16, 843–845 (2004).
[Crossref]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
[Crossref] [PubMed]

Konstantaki, M.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).

Kostecki, R.

Kuhlmey, B. T.

Laegsgaard, J.

J. Laegsgaard and A. Bjarklev, “Microstructured optical fibers-fundamentals and applications,” J. Am. Ceram. Soc. 89(1), 2–12 (2006).
[Crossref]

Laffont, G.

Large, M. C. J.

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Lindvold, L.

Liu, Y.

Ludvigsen, H.

Mairaj, A. K.

Mak, A. M.

S. Heng, A. M. Mak, D. B. Stubing, T. M. Monro, and A. D. Abell, “Dual sensor for Cd(II) and Ca(II): selective nanoliter-scale sensing of metal ions,” Anal. Chem. 86(7), 3268–3272 (2014).
[Crossref] [PubMed]

Malinowski, A.

Mangan, B. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Manicardi, A.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).

Mattinen, M.

McAdam, G.

Meng, C.

Monro, T. M.

R. Kostecki, H. Ebendorff Heidepriem, S. V. Afshar, G. McAdam, C. Davis, and T. M. Monro, “Novel polymer functionalization method for exposed-core optical fiber,” Opt. Mater. Express 4(8), 1515–1525 (2014).
[Crossref]

S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014).
[Crossref] [PubMed]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
[Crossref]

S. Heng, A. M. Mak, D. B. Stubing, T. M. Monro, and A. D. Abell, “Dual sensor for Cd(II) and Ca(II): selective nanoliter-scale sensing of metal ions,” Anal. Chem. 86(7), 3268–3272 (2014).
[Crossref] [PubMed]

G. Tsiminis, F. Chu, S. C. Warren-Smith, N. A. Spooner, and T. M. Monro, “Identification and quantification of explosives in nanolitre solution volumes by Raman spectroscopy in suspended core optical fibers,” Sensors (Basel) 13(10), 13163–13177 (2013).
[Crossref] [PubMed]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2, 1538–1547 (2012).

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

T. M. Monro, S. C. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. V. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–15062 (2009).
[Crossref] [PubMed]

Y. Ruan, T. C. Foo, S. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008).
[Crossref] [PubMed]

S. V. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007).
[Crossref] [PubMed]

X. Feng, A. K. Mairaj, D. W. Hewak, and T. M. Monro, “Nonsilica glasses for holey fibers,” J. Lightwave Technol. 23(6), 2046–2054 (2005).
[Crossref]

K. Furusawa, A. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson, and D. J. Richardson, “Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding,” Opt. Express 9(13), 714–720 (2001).
[Crossref] [PubMed]

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[Crossref]

Moore, R.

Moore, R. C.

Nagel, M.

Nielsen, K.

Nielsen, L. B.

Nilsson, J.

K. Furusawa, A. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson, and D. J. Richardson, “Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding,” Opt. Express 9(13), 714–720 (2001).
[Crossref] [PubMed]

J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,” Electron. Lett. 37(18), 1116–1117 (2001).
[Crossref]

Noordegraaf, D.

Ottevaere, H.

Pagnoux, D.

Pedersen, L. H.

Percival, R. M.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russel, “Very high numerical aperture fibers,” IEEE Photonic. Tech. L. 16, 843–845 (2004).
[Crossref]

Peterka, P.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[Crossref]

Petersen, J. C.

Phan Huy, M. C.

Pissadakis, S.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).

Poletti, F.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

Prashanth, G. R.

Price, J. H. V.

Put, S. V.

Renaud, C. C.

J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,” Electron. Lett. 37(18), 1116–1117 (2001).
[Crossref]

Renilkumar, M.

Richardson, D. J.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,” Electron. Lett. 37(18), 1116–1117 (2001).
[Crossref]

K. Furusawa, A. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson, and D. J. Richardson, “Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding,” Opt. Express 9(13), 714–720 (2001).
[Crossref] [PubMed]

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[Crossref]

Riishede, J.

Rindorf, L.

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem. 385(8), 1370–1375 (2006).
[Crossref] [PubMed]

Ritari, T.

Roberts, P. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Roy, P.

Ruan, Y.

Russel, P. S. J.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russel, “Very high numerical aperture fibers,” IEEE Photonic. Tech. L. 16, 843–845 (2004).
[Crossref]

Russell, P. S. J.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
[Crossref] [PubMed]

Sahu, J. K.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,” Electron. Lett. 37(18), 1116–1117 (2001).
[Crossref]

K. Furusawa, A. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson, and D. J. Richardson, “Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding,” Opt. Express 9(13), 714–720 (2001).
[Crossref] [PubMed]

Santos, J. L.

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser and Photonic Reviews 2(6), 449–459 (2008).
[Crossref]

Schaffer, C. B.

Schartner, E. P.

T. M. Monro, S. C. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. V. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Selleri, S.

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).

Selvas, R.

J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,” Electron. Lett. 37(18), 1116–1117 (2001).
[Crossref]

Shibru, H.

Shivananju, B. N.

Simonsen, H. R.

Skorobogatiy, M.

Skorobogatiy, M. A.

Sørensen, T.

Spooner, N. A.

G. Tsiminis, F. Chu, S. C. Warren-Smith, N. A. Spooner, and T. M. Monro, “Identification and quantification of explosives in nanolitre solution volumes by Raman spectroscopy in suspended core optical fibers,” Sensors (Basel) 13(10), 13163–13177 (2013).
[Crossref] [PubMed]

Steenberge, G. V.

Stubing, D. B.

S. Heng, A. M. Mak, D. B. Stubing, T. M. Monro, and A. D. Abell, “Dual sensor for Cd(II) and Ca(II): selective nanoliter-scale sensing of metal ions,” Anal. Chem. 86(7), 3268–3272 (2014).
[Crossref] [PubMed]

Thienpont, H.

Thompson, A. R.

K.-Y. Chu and A. R. Thompson, “Densities and refractive indices of alcohol-water solutions,” J. Chem. Eng. Data 7(3), 358–360 (1962).
[Crossref]

Tong, L.

Tsiminis, G.

G. Tsiminis, F. Chu, S. C. Warren-Smith, N. A. Spooner, and T. M. Monro, “Identification and quantification of explosives in nanolitre solution volumes by Raman spectroscopy in suspended core optical fibers,” Sensors (Basel) 13(10), 13163–13177 (2013).
[Crossref] [PubMed]

Tuominen, J.

Varma, M. M.

Wadsworth, W. J.

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russel, “Very high numerical aperture fibers,” IEEE Photonic. Tech. L. 16, 843–845 (2004).
[Crossref]

Wang, A.

Wang, Y.

Warren-Smith, S.

Warren-Smith, S. C.

S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014).
[Crossref] [PubMed]

R. Kostecki, H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Predicting the drawing conditions for microstructured optical fiber fabrication,” Opt. Mater. Express 4(1), 29–40 (2014).
[Crossref]

G. Tsiminis, F. Chu, S. C. Warren-Smith, N. A. Spooner, and T. M. Monro, “Identification and quantification of explosives in nanolitre solution volumes by Raman spectroscopy in suspended core optical fibers,” Sensors (Basel) 13(10), 13163–13177 (2013).
[Crossref] [PubMed]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2, 1538–1547 (2012).

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

T. M. Monro, S. C. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. V. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

S. V. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[Crossref] [PubMed]

Watte, J.

Webb, A. S.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

Xiao, L.

Xiao, Y.

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yu, H.

Zhang, A. P.

Zhang, Y.

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006).
[Crossref]

Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor,” Opt. Lett. 30(9), 1021–1023 (2005).
[Crossref] [PubMed]

Zhao, C.-L.

Zhu, Y.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[Crossref]

Y. Zhu, H. Du, and R. Bise, “Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing,” Opt. Express 14(8), 3541–3546 (2006).
[Crossref] [PubMed]

Anal. Bioanal. Chem. (1)

L. Rindorf, P. E. Høiby, J. B. Jensen, L. H. Pedersen, O. Bang, and O. Geschke, “Towards biochips using microstructured optical fiber sensors,” Anal. Bioanal. Chem. 385(8), 1370–1375 (2006).
[Crossref] [PubMed]

Anal. Chem. (1)

S. Heng, A. M. Mak, D. B. Stubing, T. M. Monro, and A. D. Abell, “Dual sensor for Cd(II) and Ca(II): selective nanoliter-scale sensing of metal ions,” Anal. Chem. 86(7), 3268–3272 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Electron. Lett. (3)

T. M. Monro, D. J. Richardson, and P. J. Bennett, “Developing holey fibres for evanescent field devices,” Electron. Lett. 35(14), 1188–1189 (1999).
[Crossref]

J. K. Sahu, C. C. Renaud, K. Furusawa, R. Selvas, J. A. Alvarez-Chavez, D. J. Richardson, and J. Nilsson, “Jacketed air-clad cladding pumped ytterbium-doped fibre laser with wide tuning range,” Electron. Lett. 37(18), 1116–1117 (2001).
[Crossref]

D. W. Kim, Y. Zhang, K. L. Cooper, and A. Wang, “Fibre-optic interferometric immuno-sensor using long period grating,” Electron. Lett. 42(6), 324–325 (2006).
[Crossref]

IEEE Photonic. Tech. L. (2)

W. J. Wadsworth, R. M. Percival, G. Bouwmans, J. C. Knight, T. A. Birks, T. D. Hedley, and P. S. J. Russel, “Very high numerical aperture fibers,” IEEE Photonic. Tech. L. 16, 843–845 (2004).
[Crossref]

A. Iadicicco, A. Cusano, A. Cutolo, R. Bernini, and M. Giordano, “Thinned fiber Bragg gratings as high sensitivity refractive index sensor,” IEEE Photonic. Tech. L. 16(4), 1149–1151 (2004).
[Crossref]

J. Am. Ceram. Soc. (1)

J. Laegsgaard and A. Bjarklev, “Microstructured optical fibers-fundamentals and applications,” J. Am. Ceram. Soc. 89(1), 2–12 (2006).
[Crossref]

J. Biomed. Opt. (1)

A. Candiani, A. Bertucci, S. Giannetti, M. Konstantaki, A. Manicardi, S. Pissadakis, A. Cucinotta, R. Corradini, and S. Selleri, “Label-free DNA biosensor based on a peptide nucleic acid-functionalized microstructured optical fiber-Bragg grating,” J. Biomed. Opt. 18, 057004 (2013).

J. Chem. Eng. Data (1)

K.-Y. Chu and A. R. Thompson, “Densities and refractive indices of alcohol-water solutions,” J. Chem. Eng. Data 7(3), 358–360 (1962).
[Crossref]

J. Lightwave Technol. (5)

Langmuir (1)

S. C. Warren-Smith, S. Heng, H. Ebendorff-Heidepriem, A. D. Abell, and T. M. Monro, “Fluorescence-based aluminum ion sensing using a surface-functionalized microstructured optical fiber,” Langmuir 27(9), 5680–5685 (2011).
[Crossref] [PubMed]

Laser and Photonic Reviews (1)

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser and Photonic Reviews 2(6), 449–459 (2008).
[Crossref]

Opt. Commun. (1)

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[Crossref]

Opt. Eng. (1)

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 010503 (2007).
[Crossref]

Opt. Express (15)

S. V. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[Crossref] [PubMed]

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004).
[Crossref] [PubMed]

C. J. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express 15(11), 6690–6695 (2007).
[Crossref] [PubMed]

Y. Zhu, H. Du, and R. Bise, “Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing,” Opt. Express 14(8), 3541–3546 (2006).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007).
[Crossref] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: Fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[Crossref] [PubMed]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

S. Atakaramians, S. Afshar V, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication and experimental characterization,” Opt. Express 17(16), 14053–15062 (2009).
[Crossref] [PubMed]

K. Furusawa, A. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson, and D. J. Richardson, “Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding,” Opt. Express 9(13), 714–720 (2001).
[Crossref] [PubMed]

M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on three-hole microstructured optical fiber,” Opt. Express 16(12), 8427–8432 (2008).
[Crossref] [PubMed]

Y. Ruan, T. C. Foo, S. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008).
[Crossref] [PubMed]

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[Crossref] [PubMed]

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
[Crossref] [PubMed]

B. Gauvreau, A. Hassani, M. Fassi Fehri, A. Kabashin, and M. A. Skorobogatiy, “Photonic bandgap fiber-based surface plasmon resonance sensors,” Opt. Express 15(18), 11413–11426 (2007).
[Crossref] [PubMed]

S. C. Warren-Smith and T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

T. M. Monro, S. C. Warren-Smith, E. P. Schartner, A. Francois, S. Heng, H. Ebendorff-Heidepriem, and S. V. Afshar, “Sensing with suspended-core optical fibers,” Opt. Fiber Technol. 16(6), 343–356 (2010).
[Crossref]

Opt. Lett. (8)

T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
[Crossref] [PubMed]

J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004).
[Crossref] [PubMed]

Y. Liu, C. Meng, A. P. Zhang, Y. Xiao, H. Yu, and L. Tong, “Compact microfiber Bragg gratings with high-index contrast,” Opt. Lett. 36(16), 3115–3117 (2011).
[Crossref] [PubMed]

M. C. Phan Huy, G. Laffont, V. Dewynter, P. Ferdinand, P. Roy, J. L. Auguste, D. Pagnoux, W. Blanc, and B. Dussardier, “Three-hole microstructured optical fiber for efficient fiber Bragg grating refractometer,” Opt. Lett. 32(16), 2390–2392 (2007).
[Crossref] [PubMed]

G. Emiliyanov, J. B. Jensen, O. Bang, P. E. Hoiby, L. H. Pedersen, E. M. Kjaer, and L. Lindvold, “Localized biosensing with Topas microstructured polymer optical fiber,” Opt. Lett. 32(5), 460–462 (2007).
[Crossref] [PubMed]

A. Wang, A. Docherty, B. T. Kuhlmey, F. M. Cox, and M. C. J. Large, “Side-hole fiber sensor based on surface plasmon resonance,” Opt. Lett. 34(24), 3890–3892 (2009).
[Crossref] [PubMed]

Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor,” Opt. Lett. 30(9), 1021–1023 (2005).
[Crossref] [PubMed]

L. Xiao, W. Jin, and M. S. Demokan, “Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges,” Opt. Lett. 32(2), 115–117 (2007).
[Crossref] [PubMed]

Opt. Mater. Express (3)

Science (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Sensors (Basel) (2)

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

G. Tsiminis, F. Chu, S. C. Warren-Smith, N. A. Spooner, and T. M. Monro, “Identification and quantification of explosives in nanolitre solution volumes by Raman spectroscopy in suspended core optical fibers,” Sensors (Basel) 13(10), 13163–13177 (2013).
[Crossref] [PubMed]

Other (2)

K. Okamoto, Fundamentals of Optical Waveguides (Academic, 2000).

J. Wooler, S. R. Sandoghchi, D. Gray, F. Poletti, M. N. Petrovich, N. V. Wheeler, N. K. Baddela, and D. Richardson, “Overcoming the challenges of splicing dissimilar diameter solid-core and hollow-core photonic band gap fibers,” Workshop on Specialty Optical Fibers and their Applications (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Preforms demonstrating the various structures that can be utilized for exposed-core fiber fabrication. (a) Drilling, (b) milling, and (c) cutting. The diameter of the preforms are (a) 12 mm, (b) 12 mm, and (c) 20 mm.
Fig. 2
Fig. 2 Scanning electron images (SEMs) of the EC-MOFs that have been fabricated. The fibers have effective core diameters of (a) 12.5 µm [42], (b) 9.3 µm, (c) 7.5 µm [43], and (d) 2.7 µm [41]. The outer diameters at the maximum point of the fibers are (a) 200 µm, (b) 200 µm, (c) 160 µm, and (d) 200 µm.
Fig. 3
Fig. 3 Transmitted power through 7.5 µm core diameter EC-MOF spliced to 980HP single mode fiber. Power is relative to butt-coupled transmission with a 5 µm offset. Is is the standard current used by the arc splicer after calibration, approximately 16.5 mA.
Fig. 4
Fig. 4 (a) Femtosecond laser written Bragg gratings in the wedged (7.5 µm core) fiber, written directly on its core. (b) Magnified image of (a). Damage caused on the core of the small core (2.7 µm core) fiber, which results from aberrations to the femtosecond laser beam due to the narrow fiber geometry in combination with the thin struts that support the fiber core.
Fig. 5
Fig. 5 The reflected Bragg grating spectra when the EC-MOF with a core diameter of 7.5 µm [Fig. 2(c)] was immersed in different refractive index liquids. The refractive index was varied by dissolving isopropanol in water. Only the longest wavelength is shown, which corresponds to the fundamental mode.
Fig. 6
Fig. 6 Refractive index sensitivity curves for the (a) D-shaped (12.5 µm core), (b) wedged (7.5 µm core), and (c) small-core (2.7 µm) EC-MOFs, both theoretical (lines) and experimental (circles). The grating lengths used were (a) 20 mm, (b) 10 mm, and (c) 2 mm.
Fig. 7
Fig. 7 (a) Shift in the Bragg wavelength as each polyelectrolyte coating is added. (b) Example spectra indicating the position of the weighted mean (λw), which was used to determine the values in (a).

Tables (1)

Tables Icon

Table 1 Splice loss from SMF into EC-MOF

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α SL =10 log 10 [ | 2( e S × h E z dA)( e E × h S z dA) e S × h E z dA+ e E × h S z dA | 2 ]
λ w = λ I B (λ)dλ I B (λ)dλ

Metrics